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In this paper, first, we prove some inequalities for randomly stopped variables, 
which arise naturally in the gambling theory, then we show that a theorem 
of Chacon and some pointwise convergence theorems, which imply the sub- 
martingale convergence theorem, are immediate consequences of these in- 
equalities. 

1. Introduction 

Throughout this paper (g2, ~,  P) is a probability space, {X} a sequence of random 
variables, {o~} an increasing sequence of sub a-fields of ~ to which {X,} is 
adapted, X* =lim sup X,, and X .= l imin fX, .  We recall that a mapping 

z: (2~N*w {oo}={1,2 . . . . .  oo} is called a stopping time (with respect to {~n}) 
if P([ r<  oo])= 1 and [-r__<n] ~ - ,  for each heN*. We denote by T 1 the set of all 
stopping times (with respect to {~}) and by T o the set of all bounded stopping 
times in T~. For any two stopping times z and t in T~, we write z < t if ~ (w)__< t(w) 
for all w~2. With this natural partial ordering, we write l imsupE(X) for 

zeTj 
"inf su ", { < p E(X,)}" and liminfE(X) for "sup{ inf E(X,)} j=O, 1. 

sETj s=t,t~Tj zETj s~Tj s<=t,t~Tj 
In Section 2 the following inequalities for randomly stopped variables, which 

arise naturally in the gambling theory, are proved: (1) if {X~-} is uniformly 
integrable then lim supE(X)>limsupE(X)>E(X*) and (2) if {X~+lzeTo} is 

~eTo r~Tt  

uniformly integrable then lim sup E(X)__< lim sup E(X)= E(X*). It is easy to see 
r~To r e T t  

that Inequality (2) strengthens and generalizes the usual Fatou lemma and the 
"Fatou equation" for randomly stopped variables obtained by Sudderth [5]. 
In Section 3 a new and simple proof of a theorem of Chacon [3] will be given as 
an application of these inequalities. In Section 4 some pointwise convergence 
theorems, which imply the submartingale convergence theorem, will be shown as 
immediate consequences of these inequalities. These pointwise convergence 
theorems are parallel to that studied by Austin, Edgar, and Tulcea in [1], by 
Baxter in [2]. 
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2. Some Inequalities 

We start with the following lemma which is known to Sudderth. 

(2.1) Lemma. Let {X,}, T 1, X*, and X ,  be as defined above then we have the 
following inequalities whenever all the expectations occuring in them are well- 
defined. 

(1) li~supE(X~)> E(X*). 

(2) lira infE(X~)<E(X,). 
ze T1 

Proof. Sudderth [-5] proved this lemma by an application of Lgvy's martingale 
convergence theorem, but a constructive proof is possible and we sketch it as 
follows: 

Step 1. Assume that X* is integrable and construct a sequence { Y~} of integrable 
random variables with the following properties: (a) Y < X *  a.s. for all n>__l, 

(b) Y ~ X *  a.s. and E(Y,)--*E(X*) as n ~ b o ,  and (c) for each n > l ,  I1,= ~ aiza, 
where a 1 > a 2 >--. and {A j} is a measurable partition of ~. i=: 

Step2. For each Yin the sequence {Y,} (constructed in Step 1), each e>0, and 
each stopping time z in T 1 , construct a stopping time t in T~ such that t > :  and 
E(Xt)>E(Y)-e.  (For example, for each k > l ,  let ek=e/[.2k(al--ak+l)], Zk(W)= 
inf{n[n>max{'c(w), Nk_l} and X(w)>ak}, Zg(W)= o~ if no such n exists, wGO, 
and let N k be the smallest positive integer such that P([.N k < z k < oo]) < ek, No = 1. 
If we let t=min{'Ck[k>= 1}, then t>z and E(Xt)>E(Y)-e .  ) 

Step 3. If E(X*)= o% then, for each constant c, let X~ = min {X,, c} for all n > 1. 
Then l i m s u p E ( X ) > l i m  sup E(X~)>E{lim sup X~}. Letting c ~  ~ ,  we get 

zGT1 zGTI n~c~ 

lim sup E(X) > E(X*) = oo. 
zeT1 

The proof of Lemma (2.1) now is complete since Inequality (1) is obvious if 
E(X*)= - o o  and Inequality (2) can be proved by the same argument. 

(2.1) Theorem. Let {X,}, T o, T~ , X* and X ,  be as defined above and suppose that 
E(X~) is well-defined for all ze T:, then 

(3) I f  {X-  } is uniformly integrable then lira sup E(X~) > lim sup E(X ) > E(X*). 
r e T o  ~ET: 

(4) / f  {X + } is uniformly integrable then lira infE(X~)<lim infE(X~)<=E(X,). 
z~ To ~G T1 

Proof. It suffices to prove (3). Since {X,-} is uniformly integrable, E(X*) is well- 
defined and E ( X * ) > - o e .  By Lemma2.1, limsupE(X~)>E(X*). Hence it is 

zeTt  

enough to show that lim sup E(X~) > lim sup E(X~). 
zeTo  "ceTt 

First, we assume that lim sup E(X~) = v is finite and show that lim sup E(X~) > v. 
"cE T1 zG To 

Since sup E(X~)> lim sup E(X) for all stopping times t in T l, for every e > 0, 
t<z,  7:eT1 rGT1 
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we can and do choose a strictly increasing sequence {~,} from T~ such that 
E(X~,)>v-e for all n > l .  For each positive integer n, let Xt,,j=Xv, zr~n_<; j for 
all j >  1. Then Xt. +.. .TX~, a.s., x t-., , ]' X ~ , .  a.s, a s j ~  ao, and by the monotone con- 
vergence theorem, E(Xt+j)~E(X~) and E(X~ , )~E(X~)  as j ~ .  Hence 
there is a positive in tegerJ  1 such that E(X t , , )>v -2e  i f j>J~. Since {X-} is 
uniformly integrable and P([z, < j ] ) ~  1 as j--. ~ ,  there is a positive integer J2 
such that sup ~ X Z d P < e  for all J>=J2. Let J=max(J1,J2,n ) and let t =  

k [v,~ > j l  

min (%, J), then t e T O and 

E(Xt~) = E(Xt,,, ~) + E(Xj Z[~, > s]) > v - 2 e - E(X f Zt~ > J]) > v - 3 e. 

Since {r,} is strictly increasing, t >_ n for all n => 1 and 

lira sup E(Xv) >_ lira inf E(X~ ) > v - 3 e. 
v e T o  - -  n ~  n 

Since e is arbitrary, lira sup E(X)>= v. 
v ~ T O  

Now suppose that l imsupE(Xv)=~ .  Then it is enough to show that 
z E Z i  

lira sup E(Xv)>_N for all positive integers N. Since lira sup E(X~)= ~ ,  for each 
v E T O - -  r ~ T I  

positive integer N, there is a strictly increasing sequence {z} of stopping times 
in T~ such that E(X~,)>N+I for all n__> I. By the same technique used above, 
we can and do construct a sequence {t} of bounded stopping times in T o such 
that t , > n  and E(X~,)>N for all n > l .  Hence lira supE(X)> l im  infE(X, )_N.  

w T o  n ~ c o  n - -  

Letting N ~ ~ ,  we get lim sup E(X~)= oo and the proof of Theorem 2.1 now is 
complete, v~ To 

For Theorem (2.2), we state a lemma which does not seem to have appeared 
before. 

(2.2) Lemma. Let {X,}, To, and T 1 be as defined above, then the following two 
assertions are equivalent. 

(5) {X~lze To} is uniformly integrable. 

(6) {XvlreT 1} is uniformly integrable. 

Proof. The implication "(6)~(5)"  is obvious, we only prove the implication 
"(5)~(6)".  To prove it, it suffices to show that (a) su~E(IXI)<oo and (b) for 

each e>0,  there is a 3>0  such that sup ~lXvj<e for all A e Y  and P(A)<6. 
w T 1  A 

Since, for each z in Tt, there exists a sequence {tk} in T o such that X~k-~ X v a.s. 
as k ~ o o  and since {X tzeTo} is uniformly integrable, (a) and (b) hold. So 
{X~pze T~ } is uniformly integrable. 

Now we state and prove our second inequality which strengthens and gener- 
alizes the usual Fatou lemma and Sudderth's Fatou equation for randomly 
stopped variables [5]. We replace dominace by an integrable random variable 
(the assumption for Sudderth's Theorem 2, [5]) with uniform integrability and 
we also consider the class T o of bounded stopping times, which is not considered 
by Sudderth. 
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(2.2) Theorem. Let {X}, To, T1, X*, and X .  be as defined above, then 

(7) I f  {X+lzETo} is uniformly integrable, then 

lim sup E(X~) < lira sup E(X~) = E(X*). 
z E T o  - -  z e T l  

(8) I f  {X~['c~ To} is uniformly integrabIe, then 

lim infE(X ) => tim inf E(Xz) = E(X.). 
~eTo z e T 1  

Proof. It suffices to prove (7). 

By Lemma(2.2), the uniform integrability of {X+lzeTo} implies that 
{X+lzeT1} is uniformly integrable. Hence all expectations occurring in In- 
equality (7) exist and are uniformly bounded above. By the uniform integrability 
~ 1 7 6  e>O, there isac~ S X+dP<e 

[ X 4  > c] 

for every z in T,. Hence E(X)< ~ X~dP+e for every z in T,. For each n > l ,  
I X 4  _-<c] 

c i c let X. = m n ( X ,  c) then {Xn} is adapted to {~n} and is uniformly bounded above 
_ X c by c. For each n > l ,  let Z . = s u p  k, then Z . $ m i n ( X * , c ) < X * ,  and by the 

k > n  

monotone convergence theorem lirn E(Z.) = E {rain (X*, c)} < E(X*). Also X~ < Z.  

for all t>n ,  hence E(Xt)<E(Xt)+e<E(Z.)+e for all t>n .  Therefore 
lira sup E(X) < lira {E(Z.) + e} < E(X*) + e and lira sup E(X) < lira {E(Z.) + e) < 

zeTo  n ~  zffT1 n~c~ 

E(X*) + e. Since e is arbitrary, lira sup E(X ) < E(X*) and lira sup E(X ) < E(X*). 
r e T o  ~ T 1  

By Lemma (2.1), lim~eT.xsup E(Xz) >= E(X* ). Hence lim~oSUp E(X ) < lira sup E(X ) = E(X *) 

and the proof of Theorem (2.2) now is complete. 

Remarks. 1. Since lira sup E(X,)< limsoU p E(X~) and lira infE(X~) => lira infE(X~) 
n ~  n ~  z ~ T o  

whenever all the expectations occurring in them are well-defined, Theorem (2.2) 
implies the usual Fatou lemma. 

2. It is worth noting that the sufficient condition for Theorem (2.2) is much 
stronger than that for Theorem (2.1). Example 1 below shows that the inequality 
of Theorem (2.2) is false even if {X} is uniformly integrable. Moreover, in general, 
there is no inequality related to "lira sup E(X,)" (lira infE(X,)) and "lira sup E(X)"  

z~ To rE To ze  T 1 

(lim infE(X)) (see Examples 1 and 2 below). 

Example 1. Modified double or nothing. Let VI, V 2 . . . .  be i.i.d, random variables 
= )=~,  I~ = 2 V~ 1/2... V, for all n > 1, and let l' o = 1. such that P(VI=O)=P(V 1 1 1 - , 

For each n>  1, let j(n) be the largest integer k such that 2k<n and let Z , =  Yj(,~. 
Let {U,} be a sequence of random variables such that P ( U , = I ) = 2 - ,  
P ( U , = 0 ) =  1 - 2  -k for 2k_<n<2 k+1, ~, U ,= I ,  and {U,} is independent of 

2 k ~ n < 2 k  +1 

{Z,}. Now let X =  U,Z n for all n>=l, then {X,} is uniformly integrable and 
{X+[zeT0} is not. Moreover, for each k = l ,  if we let t=n on the set I X > 0 ]  
for 2 k < n < 2  k+l and let t=2k+l - -1  otherwise. Then it is easy to see that t is a 
bounded stopping time in T o such that E(Xt)= 1. Hence lira sup E(X~)>= 1. Now 

ze  T O 

let z be the stopping time defined by r (w)=2 m-  1 if m=inf{klX~(w)=O for all 
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n such that 2 k- 1 < n < U} and z (w) = oo if no such m exists. It is easy to see that 
is in T~ and for any s in T~, z_-< s, then E(X~,) = 0. Therefore lira sup E(X)  > 1 > 0 = 

z~ To l imsup EtX~). 

Example 2. Negative double or nothing. Let { V,} be as defined in Example 1 and 
let X , = - 2 " V  1V2... V, for all n > l .  It is obvious that {X~+[z~T0} is uniformly 
integrable, hence, by Theorem(2.2), lira sup E(X~)=E(lim sup X,)=0.  But, by 

zET1 n ~ o  

the optional sampling theorem, E(X~)=E(X O= -  1 for all bounded stopping 
times z in T o. Hence lim supE(X~)= - 1 <lira supE(X~)=E(lim supX,)=0.  

z6To z~T1 n~oo 

Combining Theorems(2.1) and (2.2), we have the following equalities for 
randomly stopped variables. 

(2.3) Theorem. Let {X,}, To, T1, X*, and X ,  be as defined above, then 

(9) I f  both of {X~-} and {X+[ze To} are uniformly integrable then 

lim sup E(X) = lira sup E(X) = E(X*). 
Z~ TO zC TI 

(10) / f  both of {X~ + } and {X~ ]z e To} are uniformly integrable then 

lira infE(X~) = lim inf E(X~) = E(X.). 
t e T o  z~T1 

3. A Simple Proof of a Theorem of Chaeon 

In this section, a simple proof of the result stated as Theorem (3.1), due to Chacon 
[-3], will be given as an application of the inequalities for the class T o in Section 2. 
A pointwise convergence theorem and the submartingale convergence theorem 
follow immediately from this theorem 

(3.1) Theorem (Chacon). Let {X}, To, X*, and X .  be as defined above. Suppose 
that E(]X~[)< oo for all n> l and l iminfE(]X [)< oQ. Then 

(11) l imsupE(X~-X)>=E(X*-X, ) .  
z, tETo 

Furthermore, if there is a constant M such that sup E([X I)< M then X* and X ,  
are integrable. ~To 

Proof. By Lemma 1 of [1] and the BoreI-Cantelli lemma, we can choose two 
strictly increasing sequences {Zg} and {tk} of bounded stopping times such that 
X~k~X* a.s. and Xt --+X , a.s. as k ~  oo. Hence the second assertion follows 
immediately from Fatou's lemma and we need only prove (11). To prove (11), it 
suffices to show that: 

(12) sup E ( X - X t ) > E ( X * - X , ) .  
~, t~  To 

It is also easy to see that, under the assumption of the theorem, if sup E([ X~[) = 
r E To 

then sup E(X~-Xt)=oo.  Hence we can and do assume that supE(IX~[)<oo 
t ,  t~  T O z6 TO 

and by the previous argument, X* and X,  are integrable. 
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Let )~ be a positive constant, define an incomplete stopping time a as follows: 
a(w)=inf{nllX~(w)l>a}, a(w)=oo if no such n exists, w~Q. Let A = [ a < o o ] ,  
then X,  ^ ~ ZA --+ X ZA as n ~ oo. Hence, by the usual Fatou lemma and the fact that 
z ,=n /x  a is in T o for each n>  1, E(IXZAI)<_liminfE(IX~ ZAI)<supE(IX[)< oo. 

- -  - -  n ~ o o  n = ~ e T o  

Now, let Y= IX~ZAI +2ZAo and ~t~=X,~ for all n>  1, then E(Y)< oo and I g.I < Y 
for all n > 1. By Theorem (2.3), l imsup E(le~)= E(Y*) and lim~ roinfE(I~)= e(L), 
where Y*=lim sup Ie~ and I~,=lim inf Ie]. So sup E ( ~ -  ~;)>E(Y* - 1:,). Since 

n ~  n ~ c o  ~ , t e T  o 

the set {X~l 'cETo}={#; IzeTo}  is a subset of {X IzeT0}, sup E ( X - X t ) >  
e, t e  TO 

E(Y* - ~,). Letting ;t --+ oo, we get sup E(X~ - X~) > E(X* - X . )  and the proof of 
z, t~To 

Theorem (3.1) now is complete. 

(3.i) Corollary (Theorem 2 of [-1]). Suppose that {X,}, T O are as defined above 
and suppose that l iminfE(IX.])< oo. Consider the following two assertions. 

(i) The generalized sequence {E(X~)Iv~ To} converges. 

(ii) X converges pointwise almost surely on f2. 

Then (i) ~ (ii). 

(3.2) Corollary (the Submartingale Convergence Theorem). Suppose that {X,} 
is a sequence of Ll-bounded random variables adapted to the increasing sequence 
{~,~} of a-fields. Suppose that E(X+II~,~)>X" a.s. for all n>l .  Then X,  con- 
verges almost surely to a finite limit. 

Remark. Theorem (3.1) and Corollary (3.1) also hold under any one of the follow- 
ing two conditions. 

(i) sup E(X. +) < oo. 

(ii) sup E(X])  < oo. 

4. Pointwise Convergence 

The connection between almost sure convergence of a sequence of random 
variables and convergence of certain related expectations has been studied in 
[1, 2] and [4]. In this section we will give three criteria for almost sure con- 
vergence of a sequence of random variables. Finally, we will extend the main 
theorem of [-2] as an application of the inequalities in Section 2. 

(4.1) Theorem. Let {X,}, To, T1, X*, and X .  be as defined above. Suppose that 
Y is a non-negative integrable random variable such that IX, l < Y f o r  all n>l .  
Then the following three statements are equivalent 

(i) X,  converges a.s. to a finite limit. 

(ii) The generalized sequence {E(X~)lz ~ r o} is convergent. 

(iii) The generalized sequence {E(X~)lz~ r 1} is convergent. 

Proof. By Theorem (2.3), lim sup E(X ) = lim~ ~ rlsup E(X~) = E(X*) and lim~ roinfE(X~)= 

lim infE(X~)= E(X,). So the theorem now is obvious. 
r e  T1 
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Remark. Theorem(4.1) is an extension of Corollary 1 in [1] and Sudderth's 
Example [5] is related to Theorem (4.1). 

For each positive constant c and each random variable I,, let yc=  c if Y > c, 
y c = _ c  if Y < - c ,  and yc=  Yif - c <  Y<_c. 

(4.2) Theorem. Let {X}, To, T1, X*, and X ,  be as defined above. Suppose that 
lim infE(JX I)< or. Then the following three statements are equivalent. 

(i) X n converges almost surely to a finite limit. 
(ii) lira { lira { sup E(X~-X;)}}=O. 

c ~ c o  z ~ , z ~ T o  t,  c r > r ; t ,  t YeTo  

(iii) lim{ lira { >sup E(X;-X;)}}=O.  

Proof. Since, for each positive constant c, lim supE(X~)=limsupE(XS)= 
z E T o  ~ T 1  

E(lim sup X c) and lim infE(X~)= lira infE(X~)= E(lim infX~). Hence 
n~oO t '~To "cET 1 n ~ o o  

lim { sup E(Xt--X~')}= lim {t sup E ( X 2 - X ; )  } 
r ~  ~ , ~ E T 0  t, c r > r ; t , ~ s T  o ~ o O , ~ E T 1  , ~ ; t , ~ T 1  

= E~lim sup X ~-  lim inf XC~ 
k n ~ o ~  n ~l~o~ n )  

u ~ " in fX~}T(X*-X, )  as for all c>O. But it is easy to see that {liras p X . - h m  
t l ~ o ~  n~o3~ 

c ~ oo. By the monotone convergence theorem, 

lim{ lim { sup E(Xt-X;)}}  
c ~ c r  z ~ c o , z ~ T  0 t , a > = . c ; t . ~ T o  

= X c lira { lira { sup E(X[ -  ~)}}=E(X*-X~) .  
c ~ o o  r ~ o o , l : f f T l  t , ~>=r ; t ,  f f ~ T l  

The implications (i)~(ii) and (ii)~(iii) now are abvious. But if we have (iii), 
then E(X*-X , )=O,  i.e., P(X*+X,)=O. By the usual Fatou lemma, we have 
E(liminflX~l)<lim)ffE(IX~l)<oo.~ ~ So X n converges almost surely to a finite 

limit and the proof of Theorem (4.2) now is complete. 

Remarks. 1. Theorem (4.2) is conceptually interesting because, almost sure con- 
vergence is shown to be equivalent to a certain kind of first moment convergence, 
with only the mild regularity condition l iminfE(IX,])< ov assured. 

2. Theorem (4.2) is similar to Theorem 2 of [1] since both of them are con- 
cerned the pointwise convergence in terms of expectations. But we consider the 
classes T O and T~, and truncation moments in Theorem (4.2) and Austin, Edgar, 
and Tulcea only consider the class T O and first moments in Theorem 2 of [1]. 

Let r h be the class of all functions ~b such that ~b(x)=c if x<a, ~b(x)=d if 
x>b, and c~(x)=c+[(x-a)(d-c)/(b--a)] if a<x<b,  where a,b,c,d are finite 
constants and a<b, c<d. 

(4.3) Theorem. Let {X}, To, T1, X*, and X ,  be as defined above and suppose 
that lim infE([X~[)< oo, then the following three statements are equivalent. 

(i) X, converges a.s. to a finite limit. 

(ii) For all ~ in Vli the generalized sequence {E(4~(X~))I z~ T o} is convergent. 

(iii) For all ~ in rll the generalized sequence {E(d?(X~))lze T1} is convergent. 
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Proof. Since each q5 in t h is a non-decreasing function, l imsup~b(X)= 
n ~ o ~  

qS(limsupX) and l iminfq~(X)=4~(l iminfX).  Since, for all q~ in ~1, {~b(X,)} 
n ~ c o  n ~ c < 3  / ~ o o  

is uniformly bounded, by Theorem (2.3), lira sup E{~b(X)}=lim sup E{~b(X)}= 
ze To ze TI 

E{lim sup ~b(X)} and lira infE{~b(X)} =lim infE{~b(X)} = E{lim inf~b(X~)} for 
n ~ c o  z ~ T o  zET1  n ~ o o  

all q5 in t h . The implications (i) ~ (ii) and (ii) ~ (iii) now are obvious. Now we show 
that Off) ~ (i). By the proceeding argument, we get E{~b(X*)} -- E{lim ~ p  ~b(X~)} = 

lira supE{qS(X~)} and E{~b(X,)} =E{lim inf~b(X~)} =lira infE{q~(X)} for all ~b 
z ~ T 1  n ~ o o  z ~ T i  

in t/1 . By (iii), we get E{q~(X*)} = E{~b(X,)} for all q~ in t h . Since r h is a separating 
class, we get P { X * ~ X , } = O .  Now, by the usual Fatou lemma, X~ converges 
a.s. to a finite limit and the proof of Theorem (4.3) now is complete. 

tn the remainder of this section, let (f2, ~ P) be a probability space, {J~} an 
increasing sequence of sub ~-fields of ~,, S a compact metric space, and {X,} a 
sequence of S-valued random variables adapted to {~}.  Let 6 be the metric 
on S and C(S) be the set of all real-valued continuous functions defined on S. 
The following is another application of the inequalities in Section 2 to the point- 
wise convergence which is a generalization of the main theorem of [2]. 

(4.4) Theorem. The following three statements are equivalent: 

(i) X n converges pointwise almost surely on ~2. 

(ii) For all q) in C(S), the generalized sequence {E(~o(X))]ze To} is convergent. 

(iii) For all q) in C(S), the generalized sequence {E(~0(X))lze T~} is convergent. 

Remark. The equivalence of  (i) and (ii) is Baxter's main result and we extend it 
to the class T 1 . 

Proof. Since S is compact, for each q) in C(S), {q)(X~)} is uniformly bounded. 
By Theorem(2.3), for each (p in C(S), limsupE{qo(X)}=limsupE{q~(X)}=~r~ 

E{lim sup q0(X,)} and lim infE{q~(X)} =liminfE{~0(X)}=E{liminf~0(X~)}. 
n ~  ~ s T o  z ~ Z i  n ~ o 3  

Hence the implications (i)~(ii) and (ii)~(iii) are obvious. Now we show that 
(iii)~(i). By the proceeding argument and (iii), for each ~p in C(S), ~p(X) con- 
verges pointwise almost surely on f2. Now, choose a dense set of points {z~} in S 
and define ~pj in C(S) by r z~) for each j__> 1. Then there is a set f21 _ ~  
such that P(f21)= 1 and ~pj(X (w)) converges as n--> ~ for each w~f21 and for 
all j >  1. By the compactness of S, it follows easily that X(w)  converges for each 
w~f21 and the proof of Theorem (4.4) now is complete. 
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