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Some Inequalities for Randomly Stopped Variables
with Applications to Pointwise Convergence
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In this paper, first, we prove some inequalities for randomly stopped variables,
which arise naturally in the gambling theory, then we show that a theorem
of Chacon and some pointwise convergence theorems, which imply the sub-
martingale convergence theorem, are immediate consequences of these in-
equalities.

1. Introduction

Throughout this paper (2, #, P) is a probability space, {X,} a sequence of random
variables, {#,} an increasing sequence of sub o-fields of & to which {X,} is
adapted, X*=limsupX,, and X =liminfX . We recall that a mapping

11 Q->N*u{oo}={1,2,..., 0} is called a stopping time (with respect to {Z })

if P([r<o0])=1 and [t1<n]eZ, for each ne N*. We denote by T, the set of all

stopping times (with respect to {£,}) and by T, the set of all bounded stopping

times in T, . For any two stopping times t and ¢ in T, , we write 1 <1 if t(w) < t(w)

for all weQ With this natural partlal ordering, we write hm sup E(X) for
“inf { sup E(X,)}” and hm me(X) for “sup{ inf E(X)}”,j 0, 1.

seT; s=t,teT; seT; s=t,teT;
In Section 2 the followmg mequalmes for randomly stopped variables, which

arise naturally in the gambling theory, are proved: (1) if {X,} is umformly
integrable then lim sup E(X)=lim sup E(X)ZE(X*) and (2) if {X}|teT,} is

telg teTy

uniformly integrable then lim sup E(X) < lim sup E(X,)=E(X*). It is easy to see
teTo teTy

that Inequality (2) strengthens and generalizes the usual Fatou lemma and the
“Fatou equation” for randomly stopped variables obtained by Sudderth [5].
In Section 3 a new and simple proof of a theorem of Chacon [3] will be given as
an application of these inequalities. In Section 4 some pointwise convergence
theorems, which imply the submartingale convergence theorem, will be shown as
immediate consequences of these inequalitics. These pointwise convergence
theorems are parallel to that studied by Austin, Edgar, and Tulcea in [1], by
Baxter in [2].
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2. Some Inequalities

We start with the following lemma which is known to Sudderth.

(2.1) Lemma. Let {X }, T,, X* and X, be as defined above then we have the
Jollowing inequalities whenever all the expectations occuring in them are well-
defined.

(1) lim sup E(X)Z E(X™).
(2) lim TinfE(Xr)éE(X*).

Proof. Sudderth [5] proved this lemma by an application of Lévy’s martingale
convergence theorem, but a constructive proof is possible and we sketch it as
follows:

Step 1. Assume that X* is integrable and construct a sequence {Y,} of integrable
random variables with the following properties: (a) Y, <X* a.s. for all n=1,

(b) Y, —» X* a.s. and E(Y,)— E(X*) as n— 0, and (c) for each n=1, Z ;14
where a,>a,>--- and {4} is a measurable partition of Q.

Step 2. For each Yin the sequence {Y } (constructed in Step 1), each ¢>0, and
each stopping time 7 in 7}, construct a stopping time ¢ in 7] such that =t and
E(X)zE(Y)—¢. (For example, for each k=1, let ¢ =¢/[2(q, —a. )l 1, (w)=
inf{n|n=2max {t(w), N,_,} and X, (w)=aq,}, 7,(w)=c0 if no such n exists, weQ,
and let N, be the smallest positive integer such that P([N, <1, <®])<g,, Ny=1.
If we let t=min {r,|k=1}, then t=7 and E(X)=E(Y)—e¢.)

Step 3. If E(X*)=co, then, for each constant c, let X;=min{X,, c} for all n2>1.
Then limsup E(X, )>11m sup E(X9)z E{hm sup Xc}. Letting ¢—o0, we get

teT,

hmsup E(X)=E(X*)= oo

The proof of Lemma (2.1) now is complete since Inequality (1) is obvious if
E(X*)= — oo and Inequality (2) can be proved by the same argument.

(2.1) Theorem. Let {X,}, T, T, X* and X be as defined above and suppose that
E(X)) is well-defined for all teT,, then

(3) If {X, } is uniformly integrable then lim sup E( r)glim sup E(X )z E(X™*).

teTo

4) If {X;} is uniformly integrable then lim 1nfE(X)<11rn me(X )SE(X,).
' Proof. It suffices to prove (3). Since {X } is uniformly integrable, E(X*) is well-
defined and E(X*)> —co. By Lemma 2.1, lim sup E(X)=E(X*). Hence it is

enough to show that lim sup E(X, )>11m sup E(X )

€Ty

First, we assume that hm sup E(X)=vis finite and show that lim sup E(X)zv.

teTo

Since sup E(X, )>11m sup E(X ) for all stopping times t in 17, for every ¢>0,

t=<t,7eTy
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we can and do choose a strictly increasing sequence {7,} from 7, such that
E(X,)>v—e¢ for all n>1. For each positive integer n, let X, ; X <y for
a11]>1 Then X;* 1X* as, X ,1X. as. asj— 0, and by the monotone con-
vergence theorem E(X+ )—»E(X*) "and E(X, )->E(X,)) as j— oo. Hence
there is a positive integer J such that E(X, )>v~20 if j>J Since {X} is
uniformly integrable and P([r <jP)—1 as j— oo, there is a positive integer J,
such that sup f X dP<e for all j=J,. Let J=max(J;,J,,n) and let 1,=

k [tn>
min (t,, J), then ¢, eT and

E(th =E(X )+E( Iy >J])>v—26—E(XfX[rn>J])>v~38.
Since {7} is strlctly increasing, t,>n for all n>1 and

lim sup E(X)lim inf E(X, )2 v—3e.

Since ¢ is arbitrary, lim sup E(X)zv.
Now suppose that hm sup E(X)=co. Then it is enough to show that
hm sup E(X,)=N for all posmve integers N. Since lim sup E(X )=co, for each

lEl

posmve integer N, there is a strictly increasing sequence {z,} of stopping times
in 7, such that E(X_ )>N+1 for all n>1. By the same technique used above,
we can and do construct a sequence {t,} of bounded stopping times in 7T, such
that £, =n and E(X,)>N for all n=1. Hence lim supE(X)>l1m me(X )>N

160

Letting N — o0, we get 11m sup E(X,)=o00 and the proof of Theorem 2.1 now is
complete.

For Theorem (2.2), we state a lemma which does not seem to have appeared
before.

(22) Lemma. Let {X,}, T, and T, be as defined above, then the following two
assertions are equivalent.

(5) {X.lteT,} is uniformly integrable.
(6) {X.lteT,} is uniformly integrable.

Proof The implication “(6)=>(5)” is obvious, we only prove the implication
“(5)=(6)". To prove it, it suffices to show that (a) su1p E(X )< and (b) for

each >0, there is a 6>0 such that sup f|X |<e for all AeF and P(4)<6.

1€T1

Since, for each 7 in T,, there exists a sequence {t,} in T, such that X, — X, as.
as k— oo and since {X {teT,} is uniformly 1ntegrable (@) and (b ) hold So
{X.l7eT;} is uniformly integrable.

Now we state and prove our second inequality which strengthens and gener-
alizes the usual Fatou lemma and Sudderth’s Fatou equation for randomly
stopped variables [5]. We replace dominace by an integrable random variable
(the assumption for Sudderth’s Theorem 2, [5]) with uniform integrability and
we also consider the class T, of bounded stopping times, which is not considered
by Sudderth.
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(2.2) Theorem. Let {X,}, T, Ty, X*, and X be as defined above, then

(7 If {X*|teT,} is uniformly integrable, then
lim sup E(X)<lim sup E(X)=E(X*).

(8) If {X[|teT,} is uniformly integrable, then
lim 1nfE(X)>hm me(X) E(X,).

reo

Proof. Tt suffices to prove (7).

By Lemma (2.2), the uniform integrability of {X*|teT,} implies that
{X1reT;} is uniformly integrable. Hence all expectations occurring in In-
equality (7) exist and are uniformly bounded above. By the uniform integrability

of {X|reT,}, for every e>0, there is a constant ¢>0 such that j X*tdP<e
[X# >c]

for every 7 in T,. Hence E(X,)< | X dP+¢ for every tin T,. For each nx1,
[x¢ 5

let X¢=min (X, c¢) then {X¢} is adapted to {Z,} and is uniformly bounded above
by c. For each n>1, let Z —supXk, then Z, | min(X*, ¢)<X*, and by the

monotone convergence theorem hm E(Z,)=E{min(X*, )} SE(X*). Also X;<Z,

for all tzn, hence E(X )<E(X“)+£<E(Z )+¢ for all t=n. Therefore
lim sup E(X)<11m {E(Z, )+8}<E(X*)+e and hm supE(X)< lim {E(Z)+e} =

(X *) +e. Slnce ¢ is arbitrary, 11m sup E(X)= E(X *) and 11m sup E(X VS E(X*).
By Lemma (2.1), hm 18up E(X)= E(X*) Hence 11m 1sup EX)= hm sup E(X)=E(X¥)
and the proof of Theorem (2.2) now is complete
Remarks. 1. Since lirrp_’so})lp E(X,)< lirlnE $up E(X,) and lirIB ionf E(X)z lipel Tinf E(X)

whenever all the expectations occurring in them are well-defined, Theorem (2.2)
implies the usual Fatou lemma.

2. It is worth noting that the sufficient condition for Theorem (2.2) is much
stronger than that for Theorem (2.1). Example 1 below shows that the inequality
of Theorem (2.2) is false even if { X } is uniformly integrable. Moreover, in general,
there is no inequality related to “linpG sup E(X)” (lilrlg Tinf E(X))and “lirg sup E(X)”

(lim Ijnf E(X) (see Examples 1 and 2 below).

Example 1. Modified double or nothing. Let V,,V,, ... be i.i.d. random variables
such that P(V,=0)=P(V,=1)=3, Y,=2"V, V...V, for all n=1, and let Y, —1
For each nx1, let j(n) be the largest integer k such that 2*<n and let Z,= Y,

Let {U} be a sequence of random variables such that P(U,= 1) 2- ;‘
P(U,=0)=1-2"%for 2*<n<2*+!, Y  U=1, and {U,} is independent of

2k=n<2k*1

{Z,}. Now let X,=U,Z, for all n=1, then {X,} is uniformly integrable and
{X|reT,} is not. Moreover, for each k=1, if we let t=n on the set [X,>0]
for 2*<n<2+! and let t=2F*! —1 otherwise. Then it is easy to see that ¢ is a
bounded stopping time in T;, such that E(X,)=1. Hence hm sup E(X,)=1. Now

let t be the stopping time defined by t(w)=2"—1 if m—mf {k|X (w)=0 for all
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n such that 2°"' <n<2*} and t(w)= o0 if no such m exists. It is easy to see that
tisin 7} and for any sin T}, 1<, then E(X )=0. Therefore lim sup E(X )= 1>0=
lim sup E(X ). weto

Example 2. Negative double or nothing. Let {V,} be as defined in Example 1 and
let X,=-2"V,V,...V for all n=1. It is obvious that {X *|teT,} is uniformly
integrable, hence, by Theorem (2.2), hm 1 Sup EX)= (hm supX )=0. But, by

the optional sampling theorem, E(X,)= E(X )=—1 for all bounded stopping
times 7 in T,. Hence lim sup E(X )= —1<lim sup E(X)=E(lim sup X,)=0.

Combining Theorems (2.1) and (2.2), we have the following equalities for
randomly stopped variables.

(2.3) Theorem. Let {X,}, T,, T;, X*, and X_ be as defined above, then
(9) If both of {X} and {X*|teT,} are uniformly integrable then
lim sup E(X)=Ilim sup E(X)=E(X™).

(10) If both of {X*} and {X|teT,} are uniformly integrable then
lim me(X) limTinfE(Xr):E(X*).

teTy

3. A Simple Proof of a Theorem of Chacon

In this section, a simple proof of the result stated as Theorem (3.1), due to Chacon
[3], will be given as an application of the inequalities for the class T; in Section 2.
A pointwise convergence theorem and the submartingale convergence theorem
follow immediately from this theorem

(3.1) Theorem (Chacon). Let {X,}, T, X*, and X_ be as defined above. Suppose
that E(}X,|)<oco for all n=1 and lim inf E(}X |)< co. Then

(1) limsup E(X, - X)Z E(X* - X).

Furthermore, if there is a constant M such that sup E(| X )< M then X* and X,
are integrable. weTo

Proof. By Lemmal of [1] and the Borel-Cantelli lemma, we can choose two
strictly increasing sequences {t,} and {t,} of bounded stopping times such that
X, —X* as and X, > X, as. as k—co. Hence the second assertion follows
immediately from Fatow’s lemma and we need only prove (11). To prove (11), it
suffices to show that:

(12) sup E(X,—X)ZEX*-X)).

z,1eTq
Itis also easy to see that, under the assumption of the theorem, if sup E(X.)=

then sup E(X —X)=cc. Hence we can and do assume that sup E(IX )< oo

T,teTg teTo
and by the previous argument, X* and X are integrable.
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Let / be a positive constant, define an incomplete stopping time o as follows:
o(w)=inf{n]|X (w)|=4a}, c(w)=00 if no such n exists, weQ. Let A=[oc< 0],
then X, _x,— X, x,as n— co. Hence, by the usual Fatou lemma and the fact that
t,=nAcisin Tj for each n=1, E(| X,y ) Sliminf E(|X_ y,l)Ssup E(| X [)< co.

n— o0 teTg

Now, let Y=|X_x,|+/xand Y,=X, _foralln=1,then E(Y)<ooand |Y,|SY
for all n=1. By Theorem (2.3), limgup E(Y)=E(Y*) and IimTinfE(Yr)zE(Y*),

where Y*=limsup ¥, and Y, =liminfY,. So sup E(Y,—Y)=E(Y*-Y,). Since

n— n— 0 T,teT
the set {X , |teTy}={Y |teT,} is a subset of ferlreTo}, sup E(X,—X)=
T,te T,
E(Y*—Y,). Letting A — o0, we get sup E(X,—X)2E(X*-X) anc; the proof of
t,teTo

Theorem (3.1) now is complete.

(3.1) Corollary (Theorem 2 of [1]). Suppose that {X,}, T, are as defined above
and suppose that lim inf E(| X, ) < oo. Consider the following two assertions.

(i) The generalized sequence {E(X )|teT,} converges.

(ii) X, converges pointwise almost surely on Q.

Then (i)=>(ii).
(3.2) Corollary (the Submartingale Convergence Theorem). Suppose that {X,}
is a sequence of L,-bounded random variables adapted to the increasing sequence
{Z} of o-fields. Suppose that E(X, ||Z)=X, as. for all n=1. Then X, con-
verges almost surely to a finite limit.

Remark. Theorem (3.1) and Corollary (3.1) also hold under any one of the follow-
ing two conditions.

(i) sup E(X )< o0.

(i) sup E(X, )< .

4. Pointwise Convergence

The connection between almost sure convergence of a sequence of random
variables and convergence of certain related expectations has been studied in
[1, 2] and [4]. In this section we will give three criteria for almost sure con-
vergence of a sequence of random variables. Finally, we will extend the main
theorem of [2] as an application of the inequalities in Section 2.

(4.1) Theorem. Let {X,}, T, T,, X*, and X be as defined above. Suppose that
Y is a non-negative integrable random variable such that |X |ZY for all nz1.
Then the following three statements are equivalent

(i) X, converges a.s. to a finite limit.
(ii) The generalized sequence {E(X )|t T,} is convergent.
(iii) The generalized sequence {E(X )|teT,} is convergent.
Proof. By Theorem (2.3), lim sup E(X)=Ilim sup E(X)=E(X*)and lim Tinf EX)=
teTo teTy weTo

lim Tinf E(X)=E(X,). So the theorem now is obvious.
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Remark. Theorem (4.1) is an extension of Corollary I in [1] and Sudderth’s
Example [5] is related to Theorem (4.1).

For each positive constant ¢ and each random variable ¥, let Y¢=c if Y >,
Yo=—cif Y<-—c,and Y°=Yif —cSYV=Ze. |
(4.2) Theorem. Let {X }, T,, T,, X*, and X, be as defined above. Suppose that
lim gle(lX,J)< . Then the following three statements are equivalent.

(i) X, converges almost surely 1o a finite limit.
(i) im{ lLm { sup E(X{—X9}}=0.

c—m tow,tely t,azt t,aeTy
(i) im{ lm { sup E(X‘—X%)}}=0.
e~ 1-0w,teT; t,o2Tt,0eT)

Proof. Since, for each positive constant ¢, lim sup E(X{)=Ilim sup E(X9)=
E(lim sup X¢) and limTinfE(Xf)=1imTinfE(X§):E(lim inf X¢). Hence
n—0 1eTp zeT) - oG

lim { sup EX~X9}= lim { sup E(X‘—X9)

t—»,1eTy t,ozt;t,06Ty 1=, teTy t, 021 oeTy
=E{lim sup X —lim ioan;}
no "

for all ¢>0. But it is easy to see that {limsup X¢—lim inf X7} 1(X*~X,) as

R— 00

¢— 0. By the monotone convergence theorem,

im{ lim { sup E(X‘—X9}}

oo T—om,tely t,oZtt,oeTy

=lim{ lim { sup E(X;-X)} =E(X*-X,).
c—0 t=ow,teT; t,62tt,0eT;

The implications (i)=-(ii) and (ii)=-(iii) now are abvious. But if we have (i),
then E(X*—X,)=0, i, P(X*+X,)=0. By the usual Fatou lemma, we have
E(liminf]X,|) <lim InfE(|X,)<o. So X converges almost surely to a finite

n— 00 n—co

limit and the proof of Theorem (4.2) now is complete.

Remarks. 1. Theorem (4.2) is conceptually interesting because, almost sure con-
vergence is shown to be equivalent to a certain kind of first moment convergence,
with only the mild regularity condition lim inf E(X, )< oo assured.

n-—oo

2. Theorem (4.2) is similar to Theorem 2 of [1] since both of them are con-
cerned the pointwise convergence in terms of expectations. But we consider the
classes T, and 7;, and truncation moments in Theorem (4.2} and Austin, Edgar,
and Tulcea only consider the class T;, and first moments in Theorem 2 of [1].

Let », be the class of all functions ¢ such that ¢(x)=c if x<a, O(x)=d if
x2b, and ¢p(x)=c+[(x—a)(d—c)/(b—a)] il a<x<b, where a,b, ¢, d are finite
constants and a<b, ¢<d.

(4.3) Theorem. Let {X,}, T, T;, X*, and X, be as defined above and suppose
that lim inf E(|.X |) < co, then the following three statements are equivalent.
(1) X, converges a.s. to a finite limit.
(i) For all ¢ in n, the generalized sequence {E(¢(X))|1€T,} is convergent.
(i) For all ¢ in n, the generalized sequence {E(¢(X))|t€T,} is convergent.
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Proof. Since each ¢ in n, is a non-decreasing function, lim sup ¢(X )=
d(im sup X,) and lim inf ¢ (X,)= ¢(lim inf X,). Since, for all ¢ in n,, ($X,)}
is unlformly bounded by Theorem (2 3), hm sup E{p(X )}—hm sup E{p(X )} =

{hl}"‘j}fp #(X,)} and hm 1nfE{¢( )}-llm 1nfE{¢>(X) {hm 1nf¢>( )} for

all¢pinn,. The imphcatlons (1) (ii) and (i1) = (111) now are 0bv1ous Now we show
that (iii) = (i). By the proceeding argument, we get E{¢(X*)} = E{limsup ¢(X,)} =
lim sup E{¢(X)} and E{¢(X,)}=E{liminf$(X,)} =1imTinfE{¢(Xr)} for all ¢
in #, . By (iii), we get E{¢(X*)} = E{¢(X )} for all ¢ in #, . Since #, is a separating
class, we get P{X*#+X_}=0. Now, by the usual Fatou lemma, X, converges
a.s. to a finite limit and the proof of Theorem (4.3) now is complete.

In the remainder of this section, let (@, % P) be a probability space, {Z} an
increasing sequence of sub o-fields of & S a compact metric space, and {X,} a
sequence of S-valued random variables adapted to {Z}. Let ¢ be the metric
on S and C(S) be the set of all real-valued continuous functions defined on S.
The following is another application of the inequalities in Section 2 to the point-
wise convergence which is a generalization of the main theorem of [2].

(44) Theorem. The following three statements are equivalent:
(i) X, converges pointwise almost surely on Q.
(i) For all ¢ in C(S), the generalized sequence {E(¢(X,))|te T} is convergent.
(iii) For all ¢ in C(S), the generalized sequence {E(p(X.))|t€T}} is convergent.

Remark. The equivalence of (i) and (i) is Baxter’s main result and we extend it
to the class T,.

Proof. Since S is compact, for each ¢ in C(S), {¢(X,)} is uniformly bounded.
By Theorem (2.3), for each ¢ in C(S), lim supE{q)(X )}=1im supE{<p(X )} =

E{hm sup ¢(X,)} and hm 1nfE{(p(X )}—hm 1nfE{(p(X) {hm 1nfqo( D)

Hence the implications (1):>(11) and (11)=>(111) are obvious. Now we show that
(iii) = (i). By the proceeding argument and (iii), for each ¢ in C(S), ¢(X,) con-
verges pointwise almost surely on £. Now, choose a dense set of points {z,} in §
and define ¢; in C(S) by @;(x)=04(x, z,) for each j=1. Then there is a set Q, =Q
such that P(Q2,)=1 and ¢;(X,(w)) converges as n— oo for each we(2, and for
all j=1. By the compactness of S, it follows easily that X (w) converges for each
wef2, and the proof of Theorem (4.4) now is complete.
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