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The classical (~ebygev inequality leads to an inequality for martingales which 
is often called the Kolmogorov  inequality. It is shown here that many gener- 
alized 0ebygev inequalities for random variables lead in a similar way to 
martingale inequalities, and that the corresponding martingale inequality is 
sharp when the (~eby~ev inequality is. 

1. The Main Result 

Let R be the set of real numbers and let ~ be the collection of Borel subsets of R. 
As is customary, set R ~~ = R  x R x ... and let No~ be the product o--field .~ x ~ .... 
Let )( i ,  X 2 . . . .  be the coordinate process on R ~176 It is convenient here to regard 
a martingale as being a probabili ty measure P on No~ under which the process 
{Xn} is a martingale in the usual sense. There is no loss of generality since every 
martingale on an abstract probabili ty space has a distribution for which {Xn} is 
a martingale. 

Next let �9 be a set of Borel functions from R to R and suppose every member  
of �9 is either convex or concave. Let r be a mapping from �9 to R. Associate 
with �9 and r the class C =  C(~, r) of all probabili ty measures p on ~ such that, 
for every ~0E4~, (p is integrable with respect to p and ~odp<r(cp). Finally, let 
M = M(C) be the collection of all probabili ty measures P on N~ such that {X,} 
is a martingale under P and, such that, for every n >  1, the distribution of Xn 
under P is in C. 

Theorem 1. I f  B ~ ,  then 

sup P {X, ~ B for some n} = sup P {X 1 ~ B} 
P~M P c M  

= sup p(B). (1) 
peC 
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Proof The second equality in (1) is trivial and it is obvious that the right-hand- 
side of the first equality is no larger than the left. It remains to prove the reverse 
inequality. 

For x = ( x l , x  2 .... )eR a, let 

t(x)=least n (if any) such that x,~B, 
= oo if there is no such n. 

Then, for every P, 

P{X ~B for some n}=P{t<oo} 

= lim P {t < n} 
t l ~ o o  

= lira P{XtA,~B }. 
~ t ~ a o  

The proof will be finished once it is shown that, for P~M, the distribution of 
Xt A, under P is in C and this latter fact is a consequence of the lemma below. 

A stopping variable is a mapping s from R ~176 to the positive integers such that, 
for every n, the event {s < n} is measurable with respect to {X1, ..., X}.  

Lemma 1. I f  P~M and s is a bounded stopping variable, then the distribution of 
X S under P is in C. 

Proof of Lemma 1. Let r Suppose first that ~o is concave. Then {q0(X )} is a 
supermartingale under P [3, V.T. 6, p. 79] and S~O(Xs)dP<~cP(Xi)dP<r(cp), 
where the first inequality is by the optional sampling theorem [3, V.T 9, p. 80] 
and the second is by definition of M. Suppose next that r is convex. Then {rp(X,)} 
is a submartingale under P [3, V.T 6, p. 79] and, if m is a positive integer such that 
s<m, then again by the optional sampling theorem and the definition of M, 
~(p(Xs)dP<~cp(Xm)dP<r(cp). This completes the proof of the lemma and of 
Theorem 1. 

Theorem 1 can be viewed as another reflection of the idea of bold play for 
gambling problems used in [1]. If a gambler, who seeks to attain a fortune in B, 
is allowed to select a martingale in the class M, then, according to Theorem 1, 
he can come as near as is possible to reaching his goal at the first stage of play. 

It is easy to check that the supremum in (1) is equal to 

sup P{for some n and all k>n, XkeB } 
P E M  

and also equal to 

sup P { X e B  for infinitely many n}. 
P e M  

Roughly, the reason is that, after reaching B, the process can be stopped and thus 
remain in B from then on. This suggests the following generalization of Theorem 1. 

Theorem 2. I f  ~/ is a nonnegative, Borel function on R, then 

sup ~ {lim sup 0(X,)} dP = sup ~ {lim inf ~(X,)} dP 
P ~ M  n P ~ M  n 

= sup j' 0 (Xl) de (2) 
P ~ M  

=sup ~Odp. 
pEC 



Generalized Kolmogorov Inequalities 69 

Since Theorem 2 is not used in the examples of the next section, its proof is 
omitted. A proof can be based on the preceeding ideas together with Fatou's 
lemma and [5, Theorem 1]. Like Theorem 1, Theorem 2 has an interpretation 
for gambling problems. In fact, if ~ is bounded and is regarded as being a utility 
function and if {X} is viewed as the sequence of successive fortunes of a gambler, 
then ~ {lira sup ~(X,)} dP is the utility associated with the strategy P by Dubins 

and Savage [6, Theorem 3.2]. 
Remarks. 1. The results and their proofs remain valid if in the first paragraph 
of this section the real line R is replaced by any Borel subset S of R, ~ is taken 
as the collection of Borel subsets of S and X1, X 2 . . . .  is the coordinate process 
on the product space S ~ The processes considered are then those whose state- 

space is S. In particular when S is taken to be a compact interval, then, as suggested 
by the referee, Theorem 1 can be used to obtain sharp inequalities for uniformly 
bounded martingales. 

2. If every function in ~b is convex (concave) increasing, then Theorems 1 
and 2 remain true if, in the definition of M, "martingale" is replaced by "sub- 
(super)-martingale." The proofs are easily modified. 

2. Some Applications 

In this section Theorem 1 is applied to some known 0ebygev-type inequalities 
for real-valued random variables and the corresponding inequalities for martin- 
gales are obtained. 

Examples 1 and 1' present sharp upper bounds on the probability that an 
Ll-bounded martingale ever leaves an open interval. Examples 2 and 2' provide 
analogous results for Lz-bounded martingales. The classical L 1 and L 2 forms of 
Kolmogorov's inequality are special cases of Examples 1' and 2' respectively. 
In addition, these Examples also lead to one-sided versions of the Kolmogorov 
inequality, some of which seem to be new. Finally, Example 3 considers the class 
of all martingales {2(,} such that for each n, the Laplace transform of x, is majorized 
by the Laplace transform of the standard normal distribution. Such martingales 
may conveniently be called subnormal. Example 3 provides an upper bound on 
the probability that a subnormal martingale will ever exit from an open interval. 
A symmetric as well as a one-sided version of the inequality is also derived for 
this case. 

Example 1. Fix a positive number c and consider the class C of all probability 
measures p on (R, ~)  with mean 0 and absolute first moment not exceeding c. 
Let b and a be positive numbers. Then according to an inequality due to Glasser 
[2, p. 4813, 

{(11)t p~cSUpp{(-~176 1,2 b + a  ' (3) 
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To adapt (3) to an application of Theorem 1, take �9 = {q) , q)+, q~l} where ~0+ (x) = 
x=-~o_(x )  and ~01(x)=lxl; set r(q~_)=0=r(~0+) and r((Pl)=c, and let B=  
( -  ~ ,  - b] w [a, + oo), Then apply Theorem 1 to (3) to obtain 

supP{Xn__<-b or Xn>a for some n}=min  1, 5 \b a]J (4) 

where M=M(C) is the collection of all probability measures on (R ~, N~) under 
which the coordinate process {X} is a martingale with mean 0 and L j-norm 
bounded by c. 

Thus if {Xn, n>  1} is any Ll-bounded martingale with mean zero, then 

P r o b { X , < - b  or X,>a for some n}< 5 \b a! supElX~l. (5) 

Letting b tend to + ~ in (5) yields a one-sided version 

Prob {sup X > a} < 2~ sup E ]X~], (6) 
4 

which holds for martingales with mean zero. 

Example 1'. This example differs from the preceeding one only in that the as- 
sumption of mean zero made there is omitted. Formally, let c > 0  and take C 
to be the class of all p with absolute first moment no larger than c. Let b and a be 
positive numbers. The role played by (3) in Example 1 is here played by 

wcSUpp{(-~ + oe)} = rain {1, c }  (7) 

where m=min{a,b}. Since the indicator function of {x:x<-b or x>a} is 
dominated by m-l[x], it follows that the right-hand-side of (7) majorizes the 
left. In fact, the supremum in (7) is attained by a p with support { - b, 0} if b = m 
and {0, a} if a = m. (We were led to (7) by the general result of Karlin and Studden 
[2, Theorem 2.1, p. 472].) Apply Theorem 1 with ~b= {~0} where (p(x)= tx[ and 
with r(q0)=c to get 

Prob {X,~ - b  or X,,>a for some n}<lsupE]X,,[. (8) 
m 

Set a=b in (8) to obtain the classical Kolmogorov inequality. Let b approach 
+ oe in (8) to obtain the well-known inequality 

1 
Prob {sup X,,>a} <--a sup E [X,I. (9) 

In contrast to (5) and (6), which require the martingale {X,} to have mean zero, 
(8) and (9) hold for all Ll-bounded martingales. 

Example 2. Replace the condition on the first absolute moment of p in Example 1 
by a similar condition on the second moment. That is, consider the class C of 
all p with mean 0 and variance at most c. Again, let b and a be fixed positive 
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numbers and set m=min  {b, a}. By Selberg's inequality [-2, p. 475], 

sup p { ( -  o% - b ]  u [a, + oo)} = 1 if ab<=c 
pEC 

(b - a) 2 + 4 c 
- ab-m2<_2c<2ab (10) (b + a) 2 

C 
2c < a b - m  2. 

m2+c 

Abbreviate the right-hand-side of (10) by U(a, b, c). Then Theorem 1 with the 
obvious ~b, r and B, yields 

sup P { X <  - b  or X~>a for some n} --- U(a, b, c), (11) 
PEM 

where M = M(C). Thus, for any L2-bounded mean zero martingale, 

Prob {X,=< - b  or X,>a  for some n}< U(a, b, sup EX~). (12) 

Bert Fristedt helped us to discover (12). 
C 

As b-~ + o% U reduces to U(a, + oo, c)= U(a, c )= j -+c .  Hence, for martin- 
gales {X,} with mean zero, 

< sup EX2, 
Prob {sup X n > a} = a2 + sup EX d" (13) 

Example 2'. Here, as in Example 1', the mean zero assumption is dropped to 
obtain sharp bounds for all L2-bounded martingaIes. The notation here is the 
same as in Example i '  except that C is the set of p with second moment no larger 
than c and ~ =  {(p} where ~o(x)=x 2. The Cebygev result corresponding to (7) is 

s u p p { ( - o o , - b ] u [ a , + o o ) } = m i n  1,~72 . (14) 
pEC 

The proof of (14) is similar to that of (7). By Theorem 1, 

1 
Prob {X < - b or X > a for some n} =< m- ~ sup EX, 2 (15) 

for every L2-bounded martingale {X}. Two well-known results can be obtained 
from (15) by taking a=b for one and letting b tend to + oo for the other. 

Example 3. Suppose p is a probability measure on (R, ~)  whose Laplace trans- 
form 2p (C)= ~e C~ dp (x) is finite for all real c. Bernstein's inequality 

p {( - oo, - b] u [a, + ~)} < inf e-~ - c) + inf e- ca2v(c ) (16) 
c>0 c>0 

is not hard to verify, or else its proof can be found, for example in [4, p. 86]. 
Consider now the class C =  C a of all p for which 2p is majorized by some 

fixed function 2. Then when 2p is replaced by 2 on the right-hand-side of (16), an 
upper bound for the entire class Cx is obtained. Since for each c, the function 
%" x--,e ~ is convex, Theorem 1, with ~b={cpc" c=~0} and r: ~o ~2(c), applies 
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to obtain the corresponding martingale inequality for the class Mx=M(Cx). 
An interesting upper bound (17) is thus obtained from (16) by taking 2 (c)= eC~/2 = 
the Laplace transform of the standard normal distribution. 

b 2 a 2 

sup P{Xn<= - b  or Xn>=-a for some n} <=e-T +e -~.  (17) 
P~M.~ 

The symmetric form of (17) as well as its one-sided version can be obtained as 
in the previous examples. 

3. A Gambling Problem 

As already hinted earlier, we were motivated to conjecture the various bounds 
of Section 2 by the idea of bold-play for subfair gambling problems. 

To establish, for example, the bound in (13), one might proceed as follows. 
Consider a gambler with positive fortune x and total variance-allowance of 
c > 0, who wishes to attain the fortune 0 by means of a sequence of fair bets whose 
total variance does not exceed c. How should he play so as to maximize his 
chance of attaining the goal and what is then that chance as a function of x and c? 
As soon as one conjectures that it is optimal for the gambler to use up his entire 
variance on a single fair bet, one is led to believe, from the one-sided Cebygev 
inequality ((10) with b = 0  and a ~  Go), that Q(x, c)=c(x 2 +c) -1 is the maximal 
probability of attaining the goal. One then may try to verify this conjecture, 
using Theorem 2.12.1 of [1], by proving that the function 

c 
Q(x,C)-x2 +c, x>O 

1, x ~ 0  

is excessive at every (x, c), for every gamble with mean x and variance at most c; 
that is, by proving 

E Q ( x  + Z ,  c - E Z  2) "< Q(x,  c) (18) 

for all x, all c > 0 and all random variables Z, with EZ = 0 and EZ 2 < c. 
Initially this approach was attempted, but we were unable to find a direct 

proof of (18). On the other hand, since Example 2 shows that Q is indeed the 
optimal utility (the "U of the house" in the terminology of [1]) for this gambling 
problem, it follows from Theorem 2.14.1 of [1] (which is a general version of the 
so called "optimality principle" of dynamic programming), that Q is in fact 
excessive and thus (18) holds. This idea can be used to generate some Cebygev- 
type inequalities from the Kolmogorov-type examples of Section 2. 

Example 4. Specialize (18) to x =  1, c = 2  and Z > -  1 with EZ=O and EZ a= 1, 
to obtain 

1 2 
E 

1 +(1 + Z)~ < ~  ' 
(19) 



Generalized Kolmogorov Inequalities 73 

Set 1 + Z = X, then X is an arbitrary non-negative random variable with mean 1 
and variance 1. Thus any such random variable X satisfies 

1 2 
E ~ _ <  5 (20) 

We do not know how to prove (20) directly. Trying to maximize the left hand side 
of (20) over two-point distributions for X, tO which the problem can be reduced 
by some general principles, leads to a polynomial of degree 6 which we were 
unable to reduce. Alternatively, fitting a parabola on top of the graph of 0__<x~ 
(l+x2) -1, seems likewise unmanageable. Looking at some computer data for 
the problem, Burt Fristedt has correctly guessed that the bound 2/3 in (20) is 
attained by the two-point distribution 

10+} 
It is perhaps curious to notice that the distances of the values of this X from its 
mean, are the Fibbonaci numbers (1/5• 1)/2. 
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