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It is well known that for a large class of Markov process the associated semi- 
group T(t)f(x)= Sf(Y) P(t,x; dy) satisfies the Kolmogorov backward dif- 

~ U  1 02 U ~ U  
ferential equation, that is, if U(t, x)= T(t)f(x) then ~ = ~  a(x)~Xs-x2+b(x ) 8x 
and lim U(t, x)= U(O, x)=f(x). 

tJ.0 
In this paper we are considering the opposite problem: given the diffusion 

and drift coefficients we study the differentiability preserving properties of the 
8 2 8 

semigroup T(t) having as infinitesimal generator A= a(x)-JX~x2+b(x)~x. 

More specifically, for a large class of functions a(x) and b(x), we will prove 
for k=0  . . . . .  3 the existence of T(t) such that T(t): Ck(I)~ ck(I) and the 
existence of a constant #k such that [T(t)flk<lflkeXp(l~k t) for reCk(I). 
Moreover an explicit expression of /~k in terms of the coefficients a(x) and 
b(x) is obtained. As a side result we obtain the necessity of the boundary 
conditions imposed. 

O. Introduction 

Given functions a(x) and b(x) the problem of constructing a process X(t) having 
a(x) and b(x) as diffusion and drift coefficients respectively has attracted much 
attention in recent years. The question of existence has been completely studied 
by Feller ([6, 7]), Dynkin [5] and Mandl [9]. The more delicate question of 
their importance to the study of diffusion approximations in genetics and nu- 
merical analysis, and in a general manner the question of their independent 
mathematical interest have been raised by Borovkov [1], Norman [10] and 
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Skorohod [11]. Specifically one wants to know to what extent the semigroup of 
operators T(t) associated with the process X(t) preserves the differentiability of 
the initial data. Special results were obtained by Brezis-Rosenkrantz-Singer [2], 
general results were obtained by Norman [10], who also raised the question of 
obtaining his theorems via semigroup method. By using a semigroup approach 
and under different conditions than those of Norman's (however including most 
of the examples of application), we obtain a slightly stronger result. Let I be a 

k 

closed and bounded interval, ] f l = s u p  If(x)l, Iflk = ~ [f~i)l and Ck(I)={f:f (i) 
xe l  i~O 

continuous in I for i=  0 . . . . .  k}. For k = 0, 1, 2, 3 we show the existence of T(t) 
and of a constant Pk such that r(t):  Ok(I)--, Ok(I) and Ir(t)flk< If[k exp (/~k t) for 
f~ Ck(I). Moreover an explicit expression of/1 k in terms of the coefficients a(x) 
and b(x) will be given, and as a side result we obtain the necessity of the boundary 
conditions imposed. For further applications of estimates such as ]T(t)fl3< 
If[3 exp (#a t) we refer the reader to Brezis-Rosenkrantz-Singer [3], Lax-Richtmyer 
[8] and Trotter [12]. 

We now present a brief sketch of the approach used. Let the linear operator A 
be defined by the relation Af(x)=lim t l(r(t)f(x)-f(x)) provided the limit on 

t$o 
the right-hand side exists, A is called the infinitesimal generator of the semigroup 
T(t). Comparing the definition of A with the Kolmogorov backward equation 
8U 1 8 2 U 3U 
~t - 2  a(x) ~x2 + b(x) ~xx where U(t, x) = r(t)f(x) and f~ C2(I), we conclude 

a(x) d 2 d 
that A = 2 d x  2 t-b(x) . As examples of generators A that occur in application 

we have 
d 2 d 7 

A = c x ( 1 - x ) w - v + m ( 2 - x ) ~ -  on [0, 1] 

with c>0,  m>0,  0 < ~ <  1. 

d 2 d 
A = V x 2 ( 1 - x ) 2 ~ x 2 + X ( 1 - x ) ~  x on [0,1] 

with V > 0. 
The idea is to show that forfE Ck(I) and ;t > #k (where #k is a prefixed constant) 

there exists a unique F(2, x ) ~ ( A )  satisfying 2F(2, x)-AF(2,x)=f(x) and 
(2-#k)  IF(2)[k < [flk. Where @(A), the domain of operator A, will be determined 
by the boundary conditions (to be properly defined in Section 1 and the necessity 
of these conditions will be proved in Section 3). In addition one must show that 
~(A) is dense in Ck(I) with respect to i" [k. These facts, once established, yield, as 
a consequence of the Hille-Yosida theorem, the existence of the semigroup 
T(t) with infinitesimal generator A, moreover, we obtain the desired estimate 
[T(t)fik< IfLk exp (#k t). We remark here that the basic ideas of our proofs were 
taken from [2]. 

In Section 1 preliminary results on the boundary behavior of F(2) is obtained. 
In Section 2 the differentiability preserving properties of the resolvent ( 2 - A ) - 1  
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is studied ((2-A)-1 is such that F(2)= ( 2 -  A)- i f ) .  The maximum principle will 
be heavily used and growth functions will be introduced as a tool to obtain the 
results. In Section 3 the main theorems are stated and proved. 

1. Preliminary Results on the Boundary Behavior 

As a general reference for this section see Mandl [9]. 
Let I =  [%, rlJ with - o e  < r  o < 0 <  r 1 < + 0% let a(x) and b(x) be continuous 

a(x) d 2 d 
functions defined on 1 with a(x)>0 on fro, q). For A -  2 dx 2 +-b(X)~x we are 

concerned with the differentiability properties of the semigroup T(t), this can be 
done by studying the resolvent (2 -A)-1  which in turn reduces to the analysis 
of the solution F(2) of the differential equation (1) with initial data f and 2>  0 

2F(2) -AF(2)=f  (1) 

A detailed analysis of Equation (1) is carried out in Mandl, in order to use 
t "D D + his results we will express A as "Feller differential opera or m p - 

a(x) d 2 d 
A -  2 dxZ q-b(X)-dx - 

a(x) d [eB(:, ) d ]=D e - B(x) + 
- -  \ ~ !  m Dp 

2 dx I~.& / 

where for xe(r o, q) we have: 

x 

B(x) = S 2 b(y) a(y)- 1 dy 
0 

x x 

m(x)= ~2a(y) -1 e my) dy; p(x)= Se -my) dy (2) 
0 0 

f(y) - f ( x )  
D+ f (x)= lira 

y~x+ P(Y)-P(X) 

D m f(x)=lira f ( y ) - f ( x )  
,~x re (y ) -  re(x) 

provided the limit exists. 

Remark I. There is no loss of generality in assuming 0~(ro, rl) , if not take xo~ 
(r o, q) and let x o play the role of 0. Whenever defined we can write D+f(x)= 
eB(X) f O ) ( X ) .  

Now Equation (1) can be written as: 

2F(2)--D., D + F(2 )= f  (3) 

The general solution of the non-homogeneous Equation (3) is given by (for 
details see Mandl) 

F(2, x) = Fo(X) + e+ u+ (x) + e u_ (x) (4) 
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where Fo(X) constitutes a solution of (3), u+ (x) and u (x) constitute a fundamental 
system of solutions of ~tw-D, ,  D~ w--0 and c+ and c are constants. 

Remark 2. (a) To simplify the notation we sometimes omit the dependence on 2 
in our symbolisms by writting F = F(2), u+ (x)= u+ (2, x), etc. 

X X 

(b) Let ul(x)= ~m(s)dp(s) and vl(x)= ~p(s)dm(s). It can be shown that if 
0 o 

ul(ro)=Oo then u+(x)r176 hence the general solution of (3) is of the 
form F=Fo+C u with c possibly zero and no boundary conditions can be 
imposed at r o. Similarly if ul(rl)-- oo then u ( x ) r  and F = F o + c  + u+ with 
no boundary conditions at r 1. Finally if u 1 (ri) = ov for i = 0, 1 then we have F = F o . 
This leads us to a classification of the boundary points r i as regular, entrance, 
exit and natural (Mandl pp. 24-25). 

Boundary conditions will be imposed in case of regular or exit boundary to 
ensure uniqueness of solution F(2). Our conditions will be 

D;  F(ri)=O for r i regular 

D m O + F(rl) = 0 for r i exit. (5) 

Remark 3. (a) We shall denote by B.C. the boundary conditions (5). The condition 
D m D + F(ri)=O means adhesive boundary, that is, the process remains in the 
point r i after having reached it. The condition D+F(ri)=O means reflecting 
boundary. 

We now prove a few results on the boundary behavior of F()t). The proofs of 
Proposition 1 and 2 will be omitted, they are straight forward (for details see [4]). 

Proposition 1. Let a, b ~ ck ( I ) and a(x)>0 on (to, r l ) then 

(a) B, m,p~Ck+l(ro,  rl). 
(b) u+,u  ~ck+Z(ro, rl). 
(c) if  F is a solution of 2 F -  Dr, D + F = f  and f ~  ck(I) then F ~ C k+ 2 (to, rl). 

Proposition 2. Let a, b , f  ~ C(I) with a(x) > 0 on (to, rl ) and suppose F satisfies B. C. 
with 2 F -  O,, D + F = f  Then 

(a) D m D~ F(r i) = 0 if r i natural or exit. 
(b) O + F(ri)= 0 if r i entrance or regular or natural with m(r~) finite. 

Let  Condition k(k > 1) be: 
(a0) I = [r 0 , r l ] ,  - -  oo  < r 0 < r I < H- oo .  

(al) a, b~Ck(I). 
(a2) a(x)>0 on (r o, q)  and a(ri)=O for i=0,  1. 
(a3) ( -  1) ~ b(rl)>Ofor i=0,  1. 
(a4) B(x) converges as x ~ r i. The limit, B(ri), may be finite or infinite. 
(a 5) lim inf b(x) a(1)(x)/a(x) > - oe for i = O, 1. 

~ r  i 

Remark 4. (a) Conditions (a4) and (a5) are satisfied if a(')(ri)=-O. For example, if 
i=1,  b ( x ) / a ( x ) ~ k , < o e  as x ~ r  i, and a(1)(x)~a(1)(rl)<O. Condition (a4) holds 
if b(x)>O near r~ (or b(x)<O near Q, since B(x) is then monotonic near r i. 

(b) Condition (a5) holds if a(x)= ~ a , (x - r i ) " (k> 1, ak~0 ) is analytic at r i. 
n = k  
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For  a(x) ~ ak(X -- ri) k and a (A)(x) ~ k ak(X -- ri) ~- A, so a O)(x)/a(x) ~ k/(x - ri) as x ~ r i . 
If ( -  1) ib ( r / )>0  then b(x) a~  ~ ,  and if b(ri)=0, b(x) a(A)(x)/a(x)~ 
kb~ as x ~ r i. 

(c) The examples ment ioned in the in t roduct ion  satisfy the Condition k. 

Proposition 3. I f  Condition 1 holds then: 

(a) I f  r i is regular or entrance or natural with m(ri) finite then lira eB(~)=0. 
x ~ r i  

(b) I f  r i is exit or natural with Ira(r31 = ov then b(ri)=O. 

Proof Let's assume r i = r A. 

(a) Since a(h)= 0, in a ne ighborhood  of h we have (say x > 4): 

a(x) = #A )(h )(x -- rA) + o(x-- rl) 

and 0 < a(x) < l a~l)l (r A - x). Since l a~ I > 0 we have: 

x 2 ~ 2  x 2 
! - d ~ ) d Y > J  a~v)dY+ j d y ~  as X - - + r  A 

o tY) r I#A)I(q-Y)  

2 
hence .f dy ~ ~ as x ~ r I and we must  have lira e B~x) = 0  since 

b 

m(rA) = i ~  e B(y) dy 
o atY) 

is finite (m( r l )<m by assumption when r A is natural  and m ( q ) < m  when r A is 
entrance or regular (Mandl, p. 25)). 

(b) By assumption re(q)= m when q is natural  and re(r1)= m when q is exit 
(Mandl,  p. 25), now since b ( q ) < 0  enough to show if b ( q ) < 0  then re(q) is finite. 
Let's assume b(q) < 0, then there exists { < r 1 and ~ < 0 such that  b(x) < ~ if x > ~. 
Now e B~x) is decreasing for x > { since B~l)(x)= 2b(x)a(x)-A< 0 for x > {, hence 

deB{X) 2b(X)eB{~) is integrable over [{ ,h) .  Therefore  m{1)(x)= 1 d - -  - -  e B ( x )  i s  
dx a(x) b(x) dx 

integrable over [~, q) since b ( x ) < 0  on [~, rl]. So that 

r rl 1 d ei~X) dx < ~ .  
re (q)=  ~m~A)(x)dx+ S b(x) dx 

o 

Proposition 4. Let fECI(I ) ,  r i be an exit or natural boundary with [m(r.)]= ~ ,  
a~l)(ri)4:0 and Condition 1 holds then lim F~2)(x) exists and finite provided F is 

x ~ r i  

such that F ~ cA(I), satisfies the B. C. and 2 F -  DmD + F = f . 

Proof By hypothesis a ( x ) > 0  on (r o, q) and 2 F  --a2 F ( 2 ) - b F ~  on (r o, h), so 
we have on (r o, rl) 

F ~2)(x] = 2 (2 F ( x ) - f ( x ) ) -  2ba((~)) F ") (x). 
" "  a ( x )  
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Now ~ i m ~  F(1)(x) exists and finite since F E CI(I) and x~,lim b(x)/a(x) is finite 

for Proposition 3 shows that b(ri)=0 hence lim b(x)/a(x)= bm(ri)/am(ri) is finite. 
x ~ r i  

It remains to show lira 2(2F(x) - f (x ) ) /a (x )  is finite. By hypothesis a(r~)=0 and 
x ~ r i  

by Proposition 2 DmD ~ F(~)= 2F(r~)-f(r~)=0, applying l'Hospital rule we have 

~im a@x) (2 F(x)- f(x))= 2 ~im (2 Fro(x)- f~l)(x))la(1)(x) 

finite since am(Q#O. D 

2. Study of the Resolvent ( 2 -  A)- 1 

Let the domain of the operator A be defined by @(A)= N o ~ N 1 where 

N i = N = {F: FE C(I) and AFE C(I)} if r~ is inaccessible, 

Ni= {F: F e N  and AF(ri)=O } i fr  i is exit, 

Ni= {F: F e N  and D~- F(r/)=0} if r i is regular. 

For k=0 ,  1, ... let N k ( A ) = N ( A ) n  Ck( I )~A -1 ck(I). Let 

~to=0, 

#x = Ib(1)l, 

lar I #2 = ~ -  § 

~t 3 = ~ la(3)l + } la(Z)l + Ib(3) I + 4 Ibr + 3 Ib('l + N 3 

where N 2 = max {~o, (1 } and N 3 = max { - too, - ml, 0} with m i = inf b(x) am(x)/a(x), 
I o =(ro, 0), 11 =(0, q), and x~s, 

f0  if B(r/) < oo or m i > 0 
( i  

t -m~ if B(r~)=~ and m~<0, 

Let Condition 0 be: a, be C(I) with a (x)>0  on (to, q). 

Theorem k (k=0, 1, 2, 3). " I f  Condition k holds and fE  ck(I) then the equation 
2 F - A F = f has a unique solution F = (2 - A) -  l fE Nk(A ) provided 2 > #k, moreover, 
we have: 

IFIk = 1(2-- A) ~flk < 13qk()~- #k)- 1, 

Remark 5. (a) I f  Condition k (k = 0, 1, 2, 3) holds then #k iS well defined. (Note that 
mi>--  ~ ,  so 0 ~ ( i < ~ ) .  

(b) C~ C(I) and I.Io=1.1 . 
(c) Theorem 0 is a direct application of Theorem 2 (Mandl, p. 39) and Hille- 

Yosida theorem. 
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2.1. Proof of Theorem 1 

Theorem 0 ensures the existence and uniqueness of the solution F. Will show 
IF(a)[ < K s = If(a)l (2 - /~t)-  a since then by Theorem 0 we have: 

IF I1 = I(Z-A)-if[ 1 = IFI + [Fml =< [f[ 2-1 _1_ Ka 

=< Ifl Z- 1 + if(,i (Z-  I/'/1)-- a ~ Ifl* (2 -- ~,) -a 

Since a,b, f eCl ( I )  and a(x)>0 on (r0,q), by Proposition 1, we have 
FeC3(ro,q). To show [F~ enough to show pFm(x)l<Ka on ( ro ,q )and  
lira F(1)(x) exists for j =  0, 1 and 2 > / h .  The second part follows from the following 
x~rj 
lemma which will be proved at the end of this section. 

Lemma 1. For c~, fl, 7, f e C(I) with y(x) > 0 on (ro, q), let @ ~ C2(ro, q) and satisfying 

(,~ - -  00 ~/__/~ lit(a) _ ~) @(2) = f .  

Then for 2>  Ic~l and i=0,  I we have lim ~(x) exists finite or infinite. 
x ~ r i  

Now F~ C3(ro, q) and 2 F - A F = f  so on (r o, q) we have 

/ a (~) \ a F(3) = f(1). (2-b(a))F `1)- ~ - + b  ) F(2)-~ (6) 

Lemma 1 applied to equation (6) gives us the existence of lim F(1)(x) for j =  0, l. 
X ~ r j  

To show [Fm(x)l < K s maximum principle can be applied to (6) provided the maxi- 
mum occurs at some interior point. For example, if maximum of F (1) occurs at 
x o e(r o, q) then (6) holds with F(2)(Xo)= 0 and F(3)(x0)< 0 therefore 

a(xo) 
2 F(3)(x~ > 0 

and for 2 >/~1: 

(2 - b(1)(Xo)) F (1) (Xo) < f(1)(Xo) ' 
Fro(x) < FO)(Xo)_-< l f(1)[ (2 - [b(1)l)- 1 = K1 " 

Similarly if maximum of - F  (1) occurs at s o, rl) then applying maximum 
principle we get F(1)(x) > F(')(2o) > - K 1 which yields IF (1) (x)l < K,  on (r o, q). But 
maximum principle cannot be directly applied when maximum does not occur 
at an interior point. We now introduce auxiliary function ~b t which depends on 
certain growth function g defined according to the boundary behavior of F (1). 
The pro@f of Theorem 1 will be devided into two parts: first we study the properties 
of the auxiliary function ~b~, 1 and then the maximum principle applied to ~b, 1 
completes the proof. 



20 C . C . Y .  Dorea  

2.1.1. The Auxiliary Function 4~., 1 

(a) 
(b) 

(c) 
at 0). 

(d) 

Under  the hypothesis of Theorem 1 and for e > 0 we define 

[F!l)(x)/(l + sgo(x)e -B(x)) t o < X < 0  

(~,a(x)=lF(i)(x)/(l+~gl(x)e -R(~)) 0 < x < r  1 (7) 

| max F~ + e gi(0)) x = 0 
~ i = 0 , 1  

where 
1 if r~ is entrance or  regular 

gi(x) = Im(x)[ if r/is natural  or exit 

notice e Bm)=l and we can write q ~ , ~ = F m / l + e g e  -B where g =  1 or Iml. Now 
qS, 1 as above defined has the following propert ies:  

q~., i e C a ((r o, rl) \ {0}). 

lira ~b ~(x)= 0 for i =  O, 1. 
x ~ r i  , 

~b, t attains a max imum on [r  o, rl] (even though q~,, may  be not  cont inuous 

q~, 1 satisfies on {(r o, rl) \ {0}} the differential equat ion 

~q~, 1 ~--(1) d.-,,#h(2) __f(l ) (8) 
-}-/J Os, 1 - -  /' "r'e, 1 - - J  

with a = ; L -  b (1) + s 2 e - ' g  and ? = - 2 ( 1  + ~ g e - ' ) .  

To  prove this: 

(a) We have FeC3(ro, q), m and Becg(ro, q) by Proposi t ion 1, hence 
geC2((ro, q) ' -{0})  therefore qS~,leC2((ro, q ) \ { 0 } )  since g e - ' > 0  for x=F0. 

(b) Let's assume r~ = r  1. 
If q is entrace or regular then we have g(x) = 1 for 0 < x < q and 

I _F(i)(x) < D +F(x) -~0 
]q~g,l( X ) ] =  l + e e - B ( x ) = - - ~ - -  a s  x - - ~ r  1 

since D~ F(ri) = 0 by Proposi t ion 2. 
If q is natural  or exit we have g(x)=  re(x) for 0 < x < r 1 

F")(x)  I _ [D .  + r ( x )  l 
kb~,l(x)[= l +sm(x) e-Btx)l ~= em(x~Y- 

so it is enough to show lim D;F(x)/m(x)=O. If r 1 is natural  with re(r1) finite 
X ~ r l  

then there is nothing to prove since D~- F ( r l )=  0 by Proposi t ion 2. So let's assume 
m(rl) = oo. Let  0 < x i < x 2 < r 1 , since D; F(x) and re(x) are cont inuous and differen- 
tiable on [x 1, x2] we have by the Cauchy generalized mean value theorem 

D + F ( x 2 ) -  D + F(xx) _ (D~_ r ( x ) ) ( 1 )  = Dm D; F(x) 
re(x2)-- m(xl) (re(x)) (1) 
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for some  xE(x1, x2). By Proposition 2, lim DmD ~ F(x )=D, ,D  + F(q)=0 .  So given 
X ~ r l  

c5 > 0 there exists ~ such that for ~ < x 1 < x 2 < r 1 we have 

8 ~5 
3 < (D+ F ( x 2 ) - D +  F(xl))/(m(x2) - re(x1))<3 

now, for fixed x 1 let x 2 ~ q,  then we must have re(x2) --+ oo, since we are assuming 
re(r1)= oo. So for X 2 large enough we have ID + F(xl) / (m(x2)-m(xl) ) l  <6/3. This 
implies 

28 
> ID + F(x2)/(m(x2)-  re(x1))] > [D + F ( x a ) / m ( x 2 ) l ~  --* O. 

3 

(c) By (a) and (b) we conclude ~b~, 1 continuous on {Jr 0, q]  \{0}} although 
r 1 may be not continuous at 0 it will attain a maximum on [r o, r~] since at 0 it is 
defined by the largest value and r 1(0 +) and r 1(0-) exist. 

(d) A routine calculation shows (d). 

Next the maximum principle will be applied to ~ ,  1 in order to complete the 
proof, but if the maximum is at x = 0 the principle cannot be applied. We will then 
make use of the following lemma which will be proved at the end of this section. 

Lemma 2. Let's assume [1o, 11] ~(r0, q)- 

(i) ~ e  C(ro, q), 

(ii) g(x)>0 on [/o, 11], and g(x)> 0 on {(r o, r l ) - [ Io , /1]}-  

For  e > 0  let O~(x)=O(x)/(l+eg(x)).  If a maximum of O does not occur in 
[/o, Ill, then there is an e I > 0 such that, for all e < e l, ~b does not have a positive 
maximum on [-/o, 11]- 

2.1.2. The Maximum Principle 

We will show 

F(1)(x)<K1 for x~(ro, r 1) and 2>/11 (9) 

then exactly the same reasoning applied to - F  (1) (that is, replace F (~) by - F  (1) 
in the definition of r 1) completes the proof. To prove (9) if a maximum of F ~ 
occurs at some interior point the maximum principle applied to (6) gives us (9). 
If not we use the function ~b~, 1- It suffices to show for e small enough we have 
(ps, I(X) ~ K1 on [r o, q]  for 2>#1.  Then for xE(r o, rl) we have 

lim q~, 1 (x) = lim F {1}(x) 
~ o  ~ o  1 + eg(x)e -B(x) = F(a)(x) < KI" 

Now assuming p(1) does not have an interior maximum, in particular there 
exists an interval 0~[-/o, /1It( to,  rl) such that F (1) does not have maximum on 
[/o, 11], now by Lemma2  there exists q > 0  such that for all e<e ,  the function 
~b~,, will not have a positive maximum on [-/o, l~], in particular r 1 will not have 
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a positive max imum at x = 0 for e < sa, N o w  let 0 < e < e I we will show qS, 1 (x)<  Ka 
and this completes the proof. There  are three cases to study: 

If r has a maximum at x = 0  then (o~,l(x)<O~,l(O)<O<K 1. 
If r 1 has a maximum at one of the boundar ies  then q5 l (x )=  lira q5 l (x )=  

0-< K 1 . ~ ~' 
If ~b~, ~ has a max imum at some Xo, ~ { ( r  o, r 1) \ {0}} then the maximum principle 

can be applied since at Xo, ~ (8) holds with 

4(1) ) o, <0 ,  g, l ' -  O,g = 

g(Xo,~)>O, a(Xo, ~)>0, 

hence 

Lf(')[ < If")l - K  for 2 > # 1 .  [] 
r162176 ~ =) ' -~1 -  1 

2.2. Proof of Theorems 2 and 3 

The proofs are similar to Theorem 1. Hwere  we present a quick sketch (for details 
see [4]). 

Proof of Theorem 2. It suffices to show for 2 > # 2  and 62=f(2)+b(2)F(1) 

IF(2) I =<K 2 = 1621(2 - # 2 )  -1. 

Equat ion  (6) becomes 

a(2) 
2_~_2bmt]  t7(2) (r,(1)• a~(4)_.~ 

~b 2 is defined as in (7) with F (z) in place of F (1) and 

gi(x)=f2eB(X)/a(x) if lim e-B(~)=0 
I x~ri  

2/a(x) otherwise. 

We will show that the lira ~ ,  2 (x )=0  for i=0 ,  1. Let 's assume r~=r 1 
X~Fi 

[~b 2(x)] =< ]em~)F(Z)(x)/egl (x)[ 

there are two cases to study: 

Case 1. If r 1 is natural  with re(r1)< Go or entrance of regular then lira e B(x)= oD 
x~rl  

(by Proposi t ion 3), also a-F(E)=2F-bFm-f therefore lim a(x)F(2)(x) is finite 
x ~ r l  

so that  we have lira q5 2(x)= 0. 
X~rl 

Case 2. If r 1 is natural  with re (q)=  oe or exit then b(q)=O (by Proposi t ion 3) and 

a ~ i m ~  AF(q)--- 0 (by Proposi t ion 2). Now ~ F (2) = A F -  bF (1~ so that  F(2)(x) = 0 

(notice F e  C a (1) by Theorem 1). Therefore  lira 4 ) 2 ( x ) =  0. 
X~rl 
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We have an equivalent  equat ion  to (8) where 

a (2) 
= 2 - - ~ - - -  2b m + ege-~(2 - b m) 

a(2) (1) / ha( l ) \  
~ = 2 - T - 2 b  + e g e - B ~ 2 - 2 b ~  - )  

if g = 2 / a ,  

if g=_2 eB" 
a 

Proof of Theorem 3. It is enough to show for 2 > #3 that  

IF(3)I < K3 = 1631(2- P3)- 1 

where 

(~3 = f(3) + (-a~--t- g b(2) ) F(2) + b(3) F (1). 

Equat ion  (6) becomes  

()~ -- 38(2) -- 3 b (1)) F (3)-  (3a(1) + b)F  (4) - 2 F(s) = c~3" 

qS, 3 is defined as in (7) with F (3)  in place of  F m and 

I2/a(x) 

gi(x) = t 2 ]m(x)l/a(x) 

if lira eB(~)=O 
x~ri 

otherwise. 

We will show lira ~b, 3 (x )=0  for i = 0 ,  1. Let 's  assume r / = q .  First  notice that  for 
x~ri ~ )  

2 > #2 by T h e o r e m  2 F ~  C2(I) hence lira F(3)(x) exists and is finite. N o w  
x~rl 

[~be, 3 (x)] =< ]F(3)(x)/g gl (x) e- B(x) I . 

Case 1. If  gl = 2/a then the result follows since lira e B(~) = oo. 
x ~ ' l  

Case 2. If gl = 2 m/a it suffices to prove  re(x) e- B(x) ~ oe as x ~ q .  If  lira e - B(~)4= 0 
x~r 1 

then there is nothing to prove  since re (q)=  oe (by Propos i t ion  3); otherwise 
applying l 'Hospi ta l  rule we have 

,. I m ( , ( x )  L ,. 1 
lim [m(x)e-B(x)[ = nm ~ = n m  

since b ( q ) = 0  by Propos i t ion  3. 
We have an equivalent  equat ion  to (8) where 

= ,'[ - -  3 a ( 2 )  - -  3 b m + e e -  ~g p 

)~ - -  a (2) - -  2 b m + (a(1))2 q a(1) b 
and p = 2 a - -  a 
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2.3. Proof of Lemma 1 and Lemma 2 

Proof of Lemma 1. Suppose r i = q  (the case when r /=r o is similar). If ~ is mono- 
tonic in a neighborhood of r 1 then the lim O(x) exists and is finite or infinite. If 

not, then there exists ~ < q such that ~ has infinitely many local maximums and 
local minimums on [~, q). Let {x/}/~ 1 be such that lira x i = q .  For 2 >  ]el, given 

i~oo 

a > 0 choose Xo such that ~ < Xo < r, and 

/ (q)  f(x)  
2-~(r l )  ,~-~(x) <~ for x e [ ~ o , q ] .  

Let 

A = {Xg: Xve  [Xo, rl) and x M is a local maximum of ~}, 

B = {x,,: Xme[2 o, q) and x m is a local minimum of ~}. 

Then we have: 

O(xM)<_ - f(XM) < f(rt) 
2 -  ~(XM) = 2 -  ~( r , )  ~- e ,  

~l(Xm) > f(Xm) > f (r l )  
= 2 -  ~(Xm) = 2 -  ~ ( q )  e 

moreover, 

lim sup O(xi)< sup tP(xv)<__ f (q)  
~, . . . .  , ~ A  ,Z-- ~(rx) 

f (h)  
lim~,~,infO(x,) < i n f  ~(x~) < 2_c~(rl) 

and this completes the proof. [~ 

w - b e ,  

-g  

Proof of  Lemma 2. First notice that ~b~(x) and O(x) will always have the same sign 
since g(x)>0. By hypothesis maximum of ~ not on [/o, 11] so there exists 
Xo•[/o, 11] and 6 > 0  such that q,(Xo)>tfi(x)+6 for xe[lo,  ll]. Let K =  sup O(x) 

x~[lo, It] 
then K is finite. If K < 0  then ~ (x )<0  on [1o, ll] so that ~b~(x)<0 on I-/o, 11] hence 
~b cannot have a positive maximum on [lo, 11]. If K > 0  let q={6 /2Kg(xo )  }. 
Suppose for some e < q ,  ~b has a positive maximum at some x 1, ~[10,11] then 

q~(Xo)<~b~(xl,~) and q*(Xo)<~O(x~,~)+~g(Xo)~(xl,~), but for e <e  t we have 
6 

e g(Xo) O(xa, ~) < ~, this implies O(Xo) < O(xa, ~) + ~ (contradiction). rl 

3. Main Theorem. The Converse 

Main Theorem. If condition 3 holds then there exists a strongly continuous semi- 
group T(t) in C3(I) whose infinitesimal generator is A with domain ~3(A), T(t): 
C3(I) ~ C3(I) and there exists a constant P3 independent of t and f such that for 
f e  C3(I) we have [T(t)f[ 3 < [f13 exp (#3 t). 
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Proof Let G=A-]23, 2'=JL-]23, ~(G)=~3(A) ,  we will show that G satisfies the 
conditions of Hille-Yosida theorem, then it follows that there exists a strongly 
continuous contraction semigroup {S(t),t>O} in C3(I) whose infinitesimal 
generator is G, moreover, [S(t)f[ 3 < If[3 for f~  C3(I). Now let r(t)=S(t)exp(]23 t), 
then { T(t), t > 0} is a strongly continuous semigroup in C3(I) and the infinitesimal 
generator of r(t) is G+]23 = A, also, since T(t)= S(t)exp(]23 t) and [S(t)fl3 < If[3 
we have T(t): C3(I) --+ C3(I) and [T(t)f[3 < [f[3 exp(]23 t) for f~  C3(I). 

(a) @(G) is dense in C3(1) with respect to 1ol3. Enough to show N(A)~ C2(I). 
Now ~ ( A ) = ~ o  c~ ~ 1 will show ~ C2(I) for i=0,  1. There are three cases: 

(i) if r i is inaccessible we have @ i = ~  C2(I). 
(ii) if r i is an exit we need to show that A f ( Q = 0  for f e  C2(I). Now b(Q=0 by 

Proposition 3 and a(r~)= 0, so 

a(x) (2) X -}- A f ( ~ ) = l i m { - ~ - f  ( ) b(x)fm(x)}=O. 

(iii) if r/is regular we need to show Dp-f(ri)=0 for f e  C2(I). Now lim eS(X)=0 
by Proposition 3, hence Dp + f(r/)= 0. x~r~ 

(b) For 2 '>0  and feC3(I) the equation 2 ' F - G F = f  has a unique solution 
FeD(G). 

It follows from the fact that ( 2 - A ) F  = f has a unique solution F e 9 3 (A)= ~(G) 
provided 2>#3 that is 2 '>0,  and 2 ' F - G F = ( 2 - A ) F .  

(C) [f13-<lf[3,~-i for fc=C3(I). 
From Theorem 3 we have for 2 '> 0 

IFI3 = 1(2 - A)- lf]3 =< Ifl 3/(R - - ] 2  3) = [fl3/R'. 

And this completes the proof. [q 

Remark 6. The preceding theorem can be generalized: "For  k = 0, 1, 2, 3, if Con- 
dition k holds then there exists a strongly continuous semigroup T(t) in ck(I) 
whose infinitesimal generator is A withdomain ~k(A ). Moreover, T(t): ck(I) ~ ck(I) 
and there exists #k independent of t and f such that for f 6  ck(I) we have 

I T(t)flk <= [fig exp (]2k t)." 

Now we will prove the necessity of the boundary conditions D~-F(Q= 0 and 
AF(~)=0.  

The Converse Theorem. I f  the Main Theorem is true then: 
(a) D + F(r i )=0/ f r / i s  regular. 
(b) AF(r / )=0/ f r / i s  an exit. 

Proof (a) if r~ is regular then lim eB(X)=0 by Proposition 3, also FE cz(I) by the x~rl 
Main Theorem, so D~ F(ri)=O. 

(b) if r~ is an exit then b(r~)--0 by Proposition 3, a(r~)=0 by hypothesis and 
F~C2(I), so AF(~)=0. 
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