Differentiability Preserving Properties of a Class of Semigroups*

Chang C. Y. Dorea

Departamento de Matemática-IE, Universidade de Brasília
70,000-Brasília-DF, Brazil

It is well known that for a large class of Markov process the associated semigroup $T(t) f(x)=\int f(y) P(t, x ; d y)$ satisfies the Kolmogorov backward differential equation, that is, if $U(t, x)=T(t) f(x)$ then $\frac{\partial U}{\partial t}=\frac{1}{2} a(x) \frac{\partial^{2} U}{\partial x^{2}}+b(x) \frac{\partial U}{\partial x}$ and $\lim _{t \downarrow 0} U(t, x)=U(0, x)=f(x)$.

In this paper we are considering the opposite problem: given the diffusion and drift coefficients we study the differentiability preserving properties of the semigroup $T(t)$ having as infinitesimal generator $A=\frac{1}{2} a(x) \frac{\partial^{2}}{\partial x^{2}}+b(x) \frac{\partial}{\partial x}$. More specifically, for a large class of functions $a(x)$ and $b(x)$, we will prove for $k=0, \ldots, 3$ the existence of $T(t)$ such that $T(t): C^{k}(I) \rightarrow C^{k}(I)$ and the existence of a constant μ_{k} such that $|T(t) f|_{k} \leqq|f|_{k} \exp \left(\mu_{k} t\right)$ for $f \in C^{k}(I)$. Moreover an explicit expression of μ_{k} in terms of the coefficients $a(x)$ and $b(x)$ is obtained. As a side result we obtain the necessity of the boundary conditions imposed.

0. Introduction

Given functions $a(x)$ and $b(x)$ the problem of constructing a process $X(t)$ having $a(x)$ and $b(x)$ as diffusion and drift coefficients respectively has attracted much attention in recent years. The question of existence has been completely studied by Feller ([6, 7]), Dynkin [5] and Mandl [9]. The more delicate question of their importance to the study of diffusion approximations in genetics and numerical analysis, and in a general manner the question of their independent mathematical interest have been raised by Borovkov [1], Norman [10] and

[^0]Skorohod [11]. Specifically one wants to know to what extent the semigroup of operators $T(t)$ associated with the process $X(t)$ preserves the differentiability of the initial data. Special results were obtained by Brezis-Rosenkrantz-Singer [2], general results were obtained by Norman [10], who also raised the question of obtaining his theorems via semigroup method. By using a semigroup approach and under different conditions than those of Norman's (however including most of the examples of application), we obtain a slightly stronger result. Let I be a closed and bounded interval, $|f|=\sup _{x \in I}|f(x)|,|f|_{k}=\sum_{i=0}^{k}\left|f^{(i)}\right|$ and $C^{k}(I)=\left\{f: f^{(i)}\right.$ continuous in I for $i=0, \ldots, k\}$. For $k=0,1,2,3$ we show the existence of $T(t)$ and of a constant μ_{k} such that $T(t): C^{k}(I) \rightarrow C^{k}(I)$ and $|T(t) f|_{k} \leqq|f|_{k} \exp \left(\mu_{k} t\right)$ for $f \in C^{k}(I)$. Moreover an explicit expression of μ_{k} in terms of the coefficients $a(x)$ and $b(x)$ will be given, and as a side result we obtain the necessity of the boundary conditions imposed. For further applications of estimates such as $|T(t) f|_{3} \leqq$ $|f|_{3} \exp \left(\mu_{3} t\right)$ we refer the reader to Brezis-Rosenkrantz-Singer [3], Lax-Richtmyer [8] and Trotter [12].

We now present a brief sketch of the approach used. Let the linear operator A be defined by the relation $A f(x)=\lim _{t \downarrow 0} t^{-1}(T(t) f(x)-f(x))$ provided the limit on the right-hand side exists, A is called the infinitesimal generator of the semigroup $T(t)$. Comparing the definition of A with the Kolmogorov backward equation $\frac{\partial U}{\partial t}=\frac{1}{2} a(x) \frac{\partial^{2} U}{\partial x^{2}}+b(x) \frac{\partial U}{\partial x}$ where $U(t, x)=T(t) f(x)$ and $f \in C^{2}(I)$, we conclude that $A=\frac{a(x)}{2} \frac{d^{2}}{d x^{2}}+b(x) \frac{d}{d x}$. As examples of generators A that occur in application we have

$$
A=c x(1-x) \frac{d^{2}}{d x^{2}}+m(\bar{x}-x) \frac{d^{7}}{d x} \quad \text { on }[0,1]
$$

with $c>0, m \geqq 0,0<\bar{x}<1$.

$$
A=V x^{2}(1-x)^{2} \frac{d^{2}}{d x^{2}}+x(1-x) \frac{d}{d x} \quad \text { on }[0,1]
$$

with $V>0$.
The idea is to show that for $f \in C^{k}(I)$ and $\lambda>\mu_{k}$ (where μ_{k} is a prefixed constant) there exists a unique $F(\lambda, x) \in \mathscr{D}(A)$ satisfying $\lambda F(\lambda, x)-A F(\lambda, x)=f(x)$ and $\left(\lambda-\mu_{k}\right)|F(\lambda)|_{k} \leqq|f|_{k}$. Where $\mathscr{D}(A)$, the domain of operator A, will be determined by the boundary conditions (to be properly defined in Section 1 and the necessity of these conditions will be proved in Section 3). In addition one must show that $\mathscr{D}(A)$ is dense in $C^{k}(I)$ with respect to $|\cdot|_{k}$. These facts, once established, yield, as a consequence of the Hille-Yosida theorem, the existence of the semigroup $T(t)$ with infinitesimal generator A, moreover, we obtain the desired estimate $|T(t) f|_{k} \leqq|f|_{k} \exp \left(\mu_{k} t\right)$. We remark here that the basic ideas of our proofs were taken from [2].

In Section 1 preliminary results on the boundary behavior of $F(\lambda)$ is obtained. In Section 2 the differentiability preserving properties of the resolvent $(\lambda-A)^{-1}$
is studied $\left((\lambda-A)^{-1}\right.$ is such that $\left.F(\lambda)=(\lambda-A)^{-1} f\right)$. The maximum principle will be heavily used and growth functions will be introduced as a tool to obtain the results. In Section 3 the main theorems are stated and proved.

1. Preliminary Results on the Boundary Behavior

As a general reference for this section see Mandl [9].
Let $I=\left[r_{0}, r_{1}\right]$ with $-\infty<r_{0}<0<r_{1}<+\infty$, let $a(x)$ and $b(x)$ be continuous functions defined on I with $a(x)>0$ on $\left(r_{0}, r_{1}\right)$. For $A=\frac{a(x)}{2} \frac{d^{2}}{d x^{2}}+b(x) \frac{d}{d x}$ we are concerned with the differentiability properties of the semigroup $T(t)$, this can be done by studying the resolvent $(\lambda-A)^{-1}$ which in turn reduces to the analysis of the solution $F(\lambda)$ of the differential equation (1) with initial data f and $\lambda>0$

$$
\begin{equation*}
\lambda F(\lambda)-A F(\lambda)=f \tag{1}
\end{equation*}
$$

A detailed analysis of Equation (1) is carried out in Mandl, in order to use his results we will express A as "Feller differential operator" $D_{m} D_{p}^{+}$.

$$
A=\frac{a(x)}{2} \frac{d^{2}}{d x^{2}}+b(x) \frac{d}{d x}=\frac{a(x)}{2} e^{-B(x)} \frac{d}{d x}\left(e^{B(x)} \frac{d}{d x}\right)=D_{m} D_{p}^{+}
$$

where for $x \in\left(r_{0}, r_{1}\right)$ we have:

$$
\begin{align*}
& B(x)=\int_{0}^{x} 2 b(y) a(y)^{-1} d y \\
& m(x)=\int_{0}^{x} 2 a(y)^{-1} e^{B(y)} d y ; \quad p(x)=\int_{0}^{x} e^{-B(y)} d y \tag{2}\\
& D_{p}^{+} f(x)=\lim _{y \rightarrow x^{+}} \frac{f(y)-f(x)}{p(y)-p(x)} \\
& D_{m} f(x)=\lim _{y \rightarrow x} \frac{f(y)-f(x)}{m(y)-m(x)}
\end{align*}
$$

provided the limit exists.
Remark 1. There is no loss of generality in assuming $0 \in\left(r_{0}, r_{1}\right)$, if not take $x_{0} \in$ $\left(r_{0}, r_{1}\right)$ and let x_{0} play the role of 0 . Whenever defined we can write $D_{p}^{+} f(x)=$ $e^{B(x)} f^{(1)}(x)$.

Now Equation (1) can be written as:

$$
\begin{equation*}
\lambda F(\lambda)-D_{m} D_{p}^{+} F(\lambda)=f . \tag{3}
\end{equation*}
$$

The general solution of the non-homogeneous Equation (3) is given by (for details see Mandl)

$$
\begin{equation*}
F(\lambda, x)=F_{0}(x)+c_{+} u_{+}(x)+c_{-} u_{-}(x) \tag{4}
\end{equation*}
$$

where $F_{0}(x)$ constitutes a solution of (3), $u_{+}(x)$ and $u_{-}(x)$ constitute a fundamental system of solutions of $\lambda w-D_{m} D_{p}^{+} w=0$ and c_{+}and c_{-}are constants.

Remark 2. (a) To simplify the notation we sometimes omit the dependence on λ in our symbolisms by writting $F=F(\lambda), u_{+}(x)=u_{+}(\lambda, x)$, etc.
(b) Let $u^{1}(x)=\int_{0}^{x} m(s) d p(s)$ and $v^{1}(x)=\int_{0}^{x} p(s) d m(s)$. It can be shown that if $u^{1}\left(r_{0}\right)=\infty$ then $u_{+}(x) \notin C(I)=C^{0}(I)$, hence the general solution of (3) is of the form $F=F_{0}+c_{-} u_{-}$with c_{-}possibly zero and no boundary conditions can be imposed at r_{0}. Similarly if $u^{1}\left(r_{1}\right)=\infty$ then $u_{-}(x) \notin C(I)$ and $F=F_{0}+c_{+} u_{+}$with no boundary conditions at r_{1}. Finally if $u^{1}\left(r_{i}\right)=\infty$ for $i=0,1$ then we have $F=F_{0}$. This leads us to a classification of the boundary points r_{i} as regular, entrance, exit and natural (Mandl pp. 24-25).

Boundary conditions will be imposed in case of regular or exit boundary to ensure uniqueness of solution $F(\lambda)$. Our conditions will be

$$
\begin{align*}
& D_{p}^{+} F\left(r_{i}\right)=0 \tag{5}\\
& \text { for } r_{i} \text { regular } \\
& D_{m} D_{p}^{+} F\left(r_{i}\right)=0
\end{align*} \text { for } r_{i} \text { exit. } . ~ \$
$$

Remark 3. (a) We shall denote by B.C. the boundary conditions (5). The condition $D_{m} D_{p}^{+} F\left(r_{i}\right)=0$ means adhesive boundary, that is, the process remains in the point r_{i} after having reached it. The condition $D_{p}^{+} F\left(r_{i}\right)=0$ means reflecting boundary.

We now prove a few results on the boundary behavior of $F(\lambda)$. The proofs of Proposition 1 and 2 will be omitted, they are straight forward (for details see [4]).

Proposition 1. Let $a, b \in C^{k}(I)$ and $a(x)>0$ on $\left(r_{0}, r_{1}\right)$ then
(a) $B, m, p \in C^{k+1}\left(r_{0}, r_{1}\right)$.
(b) $u_{+}, u_{-} \in C^{k+2}\left(r_{0}, r_{1}\right)$.
(c) if F is a solution of $\lambda F-D_{m} D_{p}^{+} F=f$ and $f \in C^{k}(I)$ then $F \in C^{k+2}\left(r_{0}, r_{1}\right)$.

Proposition 2. Let $a, b, f \in C(I)$ with $a(x)>0$ on $\left(r_{0}, r_{1}\right)$ and suppose F satisfies B.C. with $\lambda F-D_{m} D_{p}^{+} F=f$. Then
(a) $D_{m} D_{p}^{+} F\left(r_{i}\right)=0$ if r_{i} natural or exit.
(b) $D_{p}^{+} F\left(r_{i}\right)=0$ if r_{i} entrance or regular or natural with $m\left(r_{i}\right)$ finite.

Let Condition $k(k \geqq 1)$ be:
(a0) $I=\left[r_{0}, r_{1}\right],-\infty<r_{0}<r_{1}<+\infty$.
(a1) $a, b \in C^{k}(I)$.
(a2) $a(x)>0$ on $\left(r_{0}, r_{1}\right)$ and $a\left(r_{i}\right)=0$ for $i=0,1$.
(a3) $(-1)^{i} b\left(r_{i}\right) \geqq 0$ for $i=0,1$.
(a4) $B(x)$ converges as $x \rightarrow r_{i}$. The limit, $B\left(r_{i}\right)$, may be finite or infinite.
(a5) $\liminf _{x \rightarrow r_{i}} b(x) a^{(1)}(x) / a(x)>-\infty$ for $i=0,1$.
Remark 4. (a) Conditions (a4) and (a5) are satisfied if $a^{(1)}\left(r_{i}\right) \equiv 0$. For example, if $i=1, b(x) / a(x) \rightarrow k_{1}<\infty$ as $x \rightarrow r_{i}$, and $a^{(1)}(x) \rightarrow a^{(1)}\left(r_{1}\right)<0$. Condition (a4) holds if $b(x) \geqq 0$ near r_{i} (or $b(x) \leqq 0$ near r_{i}), since $B(x)$ is then monotonic near r_{i}.
(b) Condition (a 5) holds if $a(x)=\sum_{n=k}^{\infty} a_{n}\left(x-r_{i}\right)^{n}\left(k \geqq 1, a_{k} \neq 0\right)$ is analytic at r_{i}.

For $a(x) \sim a_{k}\left(x-r_{i}\right)^{k}$ and $a^{(1)}(x) \sim k a_{k}\left(x-r_{i}\right)^{k-1}$, so $a^{(1)}(x) / a(x) \sim k /\left(x-r_{i}\right)$ as $x \rightarrow r_{i}$. If $(-1)^{i} b\left(r_{i}\right)>0$ then $b(x) a^{(1)}(x) / a(x) \rightarrow \infty$, and if $b\left(r_{i}\right)=0, b(x) a^{(1)}(x) / a(x) \rightarrow$ $k b^{(1)}\left(r_{i}\right)$ as $x \rightarrow r_{i}$.
(c) The examples mentioned in the introduction satisfy the Condition k.

Proposition 3. If Condition 1 holds then:
(a) If r_{i} is regular or entrance or natural with $m\left(r_{i}\right)$ finite then $\lim _{x \rightarrow r_{i}} e^{B(x)}=0$.
(b) If r_{i} is exit or natural with $\left|m\left(r_{i}\right)\right|=\infty$ then $b\left(r_{i}\right)=0$.

Proof. Let's assume $r_{i}=r_{1}$.
(a) Since $a\left(r_{1}\right)=0$, in a neighborhood of r_{1} we have (say $x \geqq \xi$):

$$
a(x)=a^{(1)}\left(r_{1}\right)\left(x-r_{1}\right)+o\left(x-r_{1}\right)
$$

and $0<a(x) \leqq\left|a^{(1)}\right|\left(r_{1}-x\right)$. Since $\left|a^{(1)}\right|>0$ we have:

$$
\int_{0}^{x} \frac{2}{a(y)} d y \geq \int_{0}^{\xi} \frac{2}{a(y)} d y+\int_{\xi}^{x} \frac{2}{\left|a^{(1)}\right|\left(r_{1}-y\right)} d y \rightarrow \infty \quad \text { as } x \rightarrow r_{1}
$$

hence $\int_{0}^{x} \frac{2}{a(y)} d y \rightarrow \infty$ as $x \rightarrow r_{1}$ and we must have $\lim _{x \rightarrow r_{1}} e^{B(x)}=0$ since

$$
m\left(r_{1}\right)=\int_{0}^{r_{1}} \frac{2}{a(y)} e^{B(y)} d y
$$

is finite $\left(m\left(r_{1}\right)<\infty\right.$ by assumption when r_{1} is natural and $m\left(r_{1}\right)<\infty$ when r_{1} is entrance or regular (Mandl, p. 25)).
(b) By assumption $m\left(r_{1}\right)=\infty$ when r_{1} is natural and $m\left(r_{1}\right)=\infty$ when r_{1} is exit (Mandl, p. 25), now since $b\left(r_{1}\right) \leqq 0$ enough to show if $b\left(r_{1}\right)<0$ then $m\left(r_{1}\right)$ is finite. Let's assume $b\left(r_{1}\right)<0$, then there exists $\xi<r_{1}$ and $\alpha<0$ such that $b(x) \leqq \alpha$ if $x \geqq \xi$. Now $e^{B(x)}$ is decreasing for $x \geqq \xi$ since $B^{(1)}(x)=2 b(x) a(x)^{-1}<0$ for $x \geqq \xi$, hence $\frac{d e^{B(x)}}{d x}=\frac{2 b(x)}{a(x)} e^{B(x)}$ is integrable over $\left[\xi, r_{1}\right.$). Therefore $m^{(1)}(x)=\frac{1}{b(x)} \frac{d}{d x} e^{B(x)}$ is integrable over $\left[\xi, r_{1}\right)$ since $b(x)<0$ on $\left[\xi, r_{1}\right]$. So that

$$
m\left(r_{1}\right)=\int_{0}^{\xi} m^{(1)}(x) d x+\int_{\xi}^{r_{1}} \frac{1}{b(x)} \frac{d}{d x} e^{B(x)} d x<\infty
$$

Proposition 4. Let $f \in C^{1}(I), r_{i}$ be an exit or natural boundary with $\left|m\left(r_{i}\right)\right|=\infty$, $a^{(1)}\left(r_{i}\right) \neq 0$ and Condition 1 holds then $\lim _{x \rightarrow r_{i}} F^{(2)}(x)$ exists and finite provided F is such that $F \in C^{1}(I)$, satisfies the B. C. and $\lambda F-D_{m} D_{p}^{+} F=f$.

Proof. By hypothesis $a(x)>0$ on $\left(r_{0}, r_{1}\right)$ and $\lambda F-\frac{a}{2} F^{(2)}-b F^{(1)}=f$ on $\left(r_{0}, r_{1}\right)$, so we have on $\left(r_{0}, r_{1}\right)$

$$
F^{(2)}(x)=\frac{2}{a(x)}(\dot{\lambda} F(x)-f(x))-\frac{2 b(x)}{a(x)} F^{(1)}(x) .
$$

Now $\lim _{x \rightarrow r_{1}} \frac{2 b(x)}{a(x)} F^{(1)}(x)$ exists and finite since $F \in C^{1}(I)$ and $\lim _{x \rightarrow r_{i}} b(x) / a(x)$ is finite for Proposition 3 shows that $b\left(r_{i}\right)=0$ hence $\lim _{x \rightarrow r_{i}} b(x) / a(x)=b^{(1)}\left(r_{i}\right) / a^{(1)}\left(r_{i}\right)$ is finite. It remains to show $\lim _{x \rightarrow r_{i}} 2(\lambda F(x)-f(x)) / a(x)$ is finite. By hypothesis $a\left(r_{i}\right)=0$ and by Proposition $2 D_{m}{ }_{p}^{x \rightarrow r_{i}} D_{p}^{+} F\left(r_{i}\right)=\lambda F\left(r_{i}\right)-f\left(r_{i}\right)=0$, applying l'Hospital rule we have

$$
\lim _{x \rightarrow r_{i}} \frac{2}{a(x)}(\lambda F(x)-f(x))=2 \lim _{x \rightarrow r_{i}}\left(\lambda F^{(1)}(x)-f^{(1)}(x)\right) / a^{(1)}(x)
$$

finiṭe since $a^{(1)}\left(r_{i}\right) \neq 0 . \quad \square$

2. Study of the Resolvent $(\lambda-A)^{-1}$

Let the domain of the operator A be defined by $\mathscr{D}(A)=\mathscr{D}_{0} \cap \mathscr{D}_{1}$ where

$$
\begin{aligned}
& \mathscr{D}_{i}=\mathscr{D}=\{F: F \in C(I) \text { and } A F \in C(I)\} \text { if } r_{i} \text { is inaccessible, } \\
& \mathscr{D}_{i}=\left\{F: F \in \mathscr{D} \text { and } A F\left(r_{i}\right)=0\right\} \text { if } r_{i} \text { is exit, } \\
& \mathscr{D}_{i}=\left\{F: F \in \mathscr{D} \text { and } D_{p}^{+} F\left(r_{i}\right)=0\right\} \text { if } r_{i} \text { is regular. }
\end{aligned}
$$

For $k=0,1, \ldots$ let $\mathscr{D}_{k}(A)=\mathscr{D}(A) \cap C^{k}(I) \cap A^{-1} C^{k}(I)$. Let

$$
\begin{aligned}
& \mu_{0}=0 \\
& \mu_{1}=\left|b^{(1)}\right|, \\
& \mu_{2}=\left|\frac{a^{(2)}}{2}\right|+2\left|b^{(1)}\right|+\left|b^{(2)}\right|+N_{2}, \\
& \mu_{3}=\frac{1}{2}\left|a^{(3)}\right|+\frac{3}{2}\left|a^{(2)}\right|+\left|b^{(3)}\right|+4\left|b^{(2)}\right|+3\left|b^{(1)}\right|+N_{3}
\end{aligned}
$$

where $N_{2}=\max \left\{\zeta_{0}, \zeta_{1}\right\}$ and $N_{3}=\max \left\{-m_{0},-m_{1}, 0\right\}$ with $m_{i}=\inf _{x \in I_{i}} b(x) a^{(1)}(x) / a(x)$, $I_{0}=\left(r_{0}, 0\right), I_{1}=\left(0, r_{1}\right)$, and

$$
\zeta_{i}= \begin{cases}0 & \text { if } B\left(r_{i}\right)<\infty \text { or } m_{i} \geqq 0 \\ -m_{i} & \text { if } B\left(r_{i}\right)=\infty \text { and } m_{i}<0\end{cases}
$$

Let Condition 0 be: $a, b \in C(I)$ with $a(x)>0$ on $\left(r_{0}, r_{1}\right)$.
Theorem $\mathbf{k}(k=0,1,2,3)$. "If Condition k holds and $f \in C^{k}(I)$ then the equation $\lambda F-A F=f$ has a unique solution $F=(\lambda-A)^{-1} f \in \mathscr{D}_{k}(A)$ provided $\lambda>\mu_{k}$, moreover, we have:

$$
|F|_{k}=\left|(\lambda-A)^{-1} f\right|_{k} \leqq|f|_{k}\left(\lambda-\mu_{k}\right)^{-1} "
$$

Remark 5. (a) If Condition $k(k=0,1,2,3)$ holds then μ_{k} is well defined. (Note that $m_{i}>-\infty$, so $0 \leqq \zeta_{i}<\infty$).
(b) $C^{0}(I)=C(I)$ and $\left|:\left.\right|_{0}=|\cdot|\right.$.
(c) Theorem 0 is a direct application of Theorem 2 (Mandl, p. 39) and HilleYosida theorem.

2.1. Proof of Theorem 1

Theorem 0 ensures the existence and uniqueness of the solution F. Will show $\left|F^{(1)}\right| \leqq K_{1}=\left|f^{(1)}\right|\left(\lambda-\mu_{1}\right)^{-1}$ since then by Theorem 0 we have:

$$
\begin{aligned}
|F|_{1} & =\left|(\lambda-A)^{-1} f\right|_{1}=|F|+\left|F^{(1)}\right| \leqq|f| \lambda^{-1}+K_{1} \\
& \leqq|f| \lambda^{-1}+\left|f^{(1)}\right|\left(\lambda-\mu_{1}\right)^{-1} \leqq|f|_{1}\left(\lambda-\mu_{1}\right)^{-1} .
\end{aligned}
$$

Since $a, b, f \in C^{1}(I)$ and $a(x)>0$ on (r_{0}, r_{1}), by Proposition 1, we have $F \in C^{3}\left(r_{0}, r_{1}\right)$. To show $\left|F^{(1)}\right| \leqq K_{1}$ enough to show $\left|F^{(1)}(x)\right| \leqq K_{1}$ on $\left(r_{0}, r_{1}\right)$ and $\lim _{x \rightarrow r_{j}} F^{(1)}(x)$ exists for $j=0,1$ and $\lambda>\mu_{1}$. The second part follows from the following lemma which will be proved at the end of this section.

Lemma 1. For $\alpha, \beta, \gamma, f \in C(I)$ with $\gamma(x)>0$ on $\left(r_{0}, r_{1}\right)$, let $\psi \in C^{2}\left(r_{0}, r_{1}\right)$ and satisfying

$$
(\lambda-\alpha) \psi-\beta \psi^{(1)}-\gamma \psi^{(2)}=f
$$

Then for $\lambda>|\alpha|$ and $i=0,1$ we have $\lim _{x \rightarrow r_{i}} \psi(x)$ exists finite or infinite.
Now $F \in C^{3}\left(r_{0}, r_{1}\right)$ and $\lambda F-A F=f$ so on $\left(r_{0}, r_{1}\right)$ we have

$$
\begin{equation*}
\left(\lambda-b^{(1)}\right) F^{(1)}-\left(\frac{a^{(1)}}{2}+b\right) F^{(2)}-\frac{a}{2} F^{(3)}=f^{(1)} . \tag{6}
\end{equation*}
$$

Lemma 1 applied to equation (6) gives us the existence of $\lim _{x \rightarrow r_{j}} F^{(1)}(x)$ for $j=0,1$. To show $\left|F^{(1)}(x)\right| \leqq K_{1}$ maximum principle can be applied to (6) provided the maximum occurs at some interior point. For example, if maximum of $F^{(1)}$ occurs at $x_{0} \in\left(r_{0}, r_{1}\right)$ then (6) holds with $F^{(2)}\left(x_{0}\right)=0$ and $F^{(3)}\left(x_{0}\right) \leqq 0$ therefore

$$
-\frac{a\left(x_{0}\right)}{2} F^{(3)}\left(x_{0}\right) \geqq 0
$$

and for $\lambda>\mu_{1}$:

$$
\begin{aligned}
& \left(\lambda-b^{(1)}\left(x_{0}\right)\right) F^{(1)}\left(x_{0}\right) \leqq f^{(1)}\left(x_{0}\right), \\
& F^{(1)}(x) \leqq F^{(1)}\left(x_{0}\right) \leqq\left|f^{(1)}\right|\left(\lambda-\left|b^{(1)}\right|\right)^{-1}=K_{1} .
\end{aligned}
$$

Similarly if maximum of $-F^{(1)}$ occurs at $\tilde{x}_{0} \in\left(r_{0}, r_{1}\right)$ then applying maximum principle we get $F^{(1)}(x) \geqq F^{(1)}\left(\tilde{x}_{0}\right) \geqq-K_{1}$ which yields $\left|F^{(1)}(x)\right| \leqq K_{1}$ on $\left(r_{0}, r_{1}\right)$. But maximum principle cannot be directly applied when maximum does not occur at an interior point. We now introduce auxiliary function $\phi_{\varepsilon, 1}$ which depends on certain growth function g defined according to the boundary behavior of $F^{(1)}$. The proof of Theorem 1 will be devided into two parts : first we study the properties of the auxiliary function $\phi_{\varepsilon, 1}$ and then the maximum principle applied to $\phi_{\varepsilon, 1}$ completes the proof.

2.1.1. The Auxiliary Function $\phi_{\varepsilon, 1}$

Under the hypothesis of Theorem 1 and for $\varepsilon>0$ we define

$$
\phi_{\varepsilon, 1}(x)= \begin{cases}F^{(1)}(x) /\left(1+\varepsilon g_{0}(x) e^{-B(x)}\right) & r_{0}<x<0 \tag{7}\\ F^{(1)}(x) /\left(1+\varepsilon g_{1}(x) e^{-B(x)}\right) & 0<x<r_{1} \\ \max _{i=0,1} F^{(1)}(0) /\left(1+\varepsilon g_{i}(0)\right) & x=0\end{cases}
$$

where

$$
g_{i}(x)= \begin{cases}1 & \text { if } r_{i} \text { is entrance or regular } \\ |m(x)| & \text { if } r_{i} \text { is natural or exit }\end{cases}
$$

notice $e^{-B(0)}=1$ and we can write $\phi_{\varepsilon, 1}=F^{(1)} / 1+\varepsilon g e^{-B}$ where $g=1$ or $|m|$. Now $\phi_{\varepsilon, 1}$ as above defined has the following properties:
(a) $\phi_{\varepsilon, 1} \in C^{2}\left(\left(r_{0}, r_{1}\right) \backslash\{0\}\right)$.
(b) $\lim _{x \rightarrow r_{i}} \phi_{\varepsilon, 1}(x)=0$ for $i=0,1$.
(c) $\phi_{\varepsilon, 1}$ attains a maximum on $\left[r_{0}, r_{1}\right]$ (even though $\phi_{\varepsilon, 1}$ may be not continuous at 0).
(d) $\phi_{\varepsilon, 1}$ satisfies on $\left\{\left(r_{0}, r_{1}\right) \backslash\{0\}\right\}$ the differential equation

$$
\begin{equation*}
\alpha \phi_{\varepsilon, 1}+\beta \phi_{\varepsilon, 1}^{(1)}+\gamma \phi_{\varepsilon, 1}^{(2)}=f^{(1)} \tag{8}
\end{equation*}
$$

with $\alpha=\lambda-b^{(1)}+\varepsilon \lambda e^{-B} g$ and $\gamma=-\frac{a}{2}\left(1+\varepsilon g e^{-B}\right)$.
To prove this:
(a) We have $F \in C^{3}\left(r_{0}, r_{1}\right), m$ and $B \in C^{2}\left(r_{0}, r_{1}\right)$ by Proposition 1 , hence $g \in C^{2}\left(\left(r_{0}, r_{1}\right) \backslash\{0\}\right)$ therefore $\phi_{\varepsilon, 1} \in C^{2}\left(\left(r_{0}, r_{1}\right) \backslash\{0\}\right)$ since $g e^{-B}>0$ for $x \neq 0$.
(b) Let's assume $r_{i}=r_{1}$.

If r_{1} is entrace or regular then we have $g(x)=1$ for $0<x<r_{1}$ and

$$
\left|\phi_{\varepsilon, 1}(x)\right|=\left|\frac{F^{(1)}(x)}{1+\varepsilon e^{-B(x)}}\right| \leqq\left|\frac{D_{p}^{+} F(x)}{\varepsilon}\right| \rightarrow 0 \quad \text { as } x \rightarrow r_{1}
$$

since $D_{p}^{+} F\left(r_{1}\right)=0$ by Proposition 2.
If r_{1} is natural or exit we have $g(x)=m(x)$ for $0<x<r_{1}$

$$
\left|\phi_{\varepsilon, 1}(x)\right|=\left|\frac{F^{(1)}(x)}{1+\varepsilon m(x) e^{-\boldsymbol{B}(x)}}\right| \leqq\left|\frac{D_{p}^{+} F(x)}{\varepsilon m(x)}\right|
$$

so it is enough to show $\lim _{x \rightarrow r_{1}} D_{p}^{+} F(x) / m(x)=0$. If r_{1} is natural with $m\left(r_{1}\right)$ finite then there is nothing to prove since $D_{p}^{+} F\left(r_{1}\right)=0$ by Proposition 2. So let's assume $m\left(r_{1}\right)=\infty$. Let $0<x_{1}<x_{2}<r_{1}$, since $D_{p}^{+} F(x)$ and $m(x)$ are continuous and differentiable on $\left[x_{1}, x_{2}\right]$ we have by the Cauchy generalized mean value theorem

$$
\frac{D_{p}^{+} F\left(x_{2}\right)-D_{p}^{+} F\left(x_{1}\right)}{m\left(x_{2}\right)-m\left(x_{1}\right)}=\frac{\left(D_{p}^{+} F(x)\right)^{(1)}}{(m(x))^{(1)}}=D_{m} D_{p}^{+} F(x)
$$

for some $x \in\left(x_{1}, x_{2}\right)$. By Proposition 2, $\lim _{x \rightarrow r_{1}} D_{m} D_{p}^{+} F(x)=D_{m} D_{p}^{+} F\left(r_{1}\right)=0$. So given $\delta>0$ there exists ξ such that for $\xi<x_{1}<x_{2}<r_{1}$ we have

$$
-\frac{\delta}{3}<\left(D_{p}^{+} F\left(x_{2}\right)-D_{p}^{+} F\left(x_{1}\right)\right) /\left(m\left(x_{2}\right)-m\left(x_{1}\right)\right)<\frac{\delta}{3}
$$

now, for fixed x_{1} let $x_{2} \rightarrow r_{1}$, then we must have $m\left(x_{2}\right) \rightarrow \infty$, since we are assuming $m\left(r_{1}\right)=\infty$. So for x_{2} large enough we have $\left|D_{p}^{+} F\left(x_{1}\right) /\left(m\left(x_{2}\right)-m\left(x_{1}\right)\right)\right|<\delta / 3$. This implies

$$
\frac{2 \delta}{3}>\left|D_{p}^{+} F\left(x_{2}\right) /\left(m\left(x_{2}\right)-m\left(x_{1}\right)\right)\right|>\left|D_{p}^{+} F\left(x_{2}\right) / m\left(x_{2}\right)\right|_{x_{2} \rightarrow r_{1}} \rightarrow 0 .
$$

(c) By (a) and (b) we conclude $\phi_{\varepsilon, 1}$ continuous on $\left\{\left[r_{0}, r_{1}\right] \backslash\{0\}\right\}$ although $\phi_{\varepsilon, 1}$ may be not continuous at 0 it will attain a maximum on $\left[r_{0}, r_{1}\right]$ since at 0 it is defined by the largest value and $\phi_{\varepsilon, 1}\left(0^{+}\right)$and $\phi_{\varepsilon, 1}\left(0^{-}\right)$exist.
(d) A routine calculation shows (d). $]$

Next the maximum principle will be applied to $\phi_{\varepsilon, 1}$ in order to complete the proof, but if the maximum is at $x=0$ the principle cannot be applied. We will then make use of the following lemma which will be proved at the end of this section.

Lemma 2. Let's assume $\left[l_{0}, l_{1}\right] \subset\left(r_{0}, r_{1}\right)$.
(i) $\psi \in C\left(r_{0}, r_{1}\right)$,
(ii) $g(x) \geqq 0$ on $\left[l_{0}, l_{1}\right]$, and $g(x)>0$ on $\left\{\left(r_{0}, r_{1}\right)-\left[l_{0}, l_{1}\right]\right\}$.

For $\varepsilon>0$ let $\phi_{\varepsilon}(x)=\psi(x) /(1+\varepsilon g(x))$. If a maximum of ψ does not occur in [$\left.l_{0}, l_{1}\right]$, then there is an $\varepsilon_{1}>0$ such that, for all $\varepsilon<\varepsilon_{1}, \phi_{\varepsilon}$ does not have a positive maximum on $\left[l_{0}, l_{1}\right]$.

2.1.2. The Maximum Principle

We will show

$$
\begin{equation*}
F^{(1)}(x) \leqq K_{1} \quad \text { for } x \in\left(r_{0}, r_{1}\right) \text { and } \lambda>\mu_{1} \tag{9}
\end{equation*}
$$

then exactly the same reasoning applied to $-F^{(1)}$ (that is, replace $F^{(1)}$ by $-F^{(1)}$ in the definition of $\phi_{e, 1}$) completes the proof. To prove (9) if a maximum of $F^{(1)}$ occurs at some interior point the maximum principle applied to (6) gives us (9). If not we use the function $\phi_{\varepsilon, 1}$. It suffices to show for ε small enough we have $\phi_{\varepsilon, 1}(x) \leqq K_{1}$ on $\left[r_{0}, r_{1}\right]$ for $\lambda>\mu_{1}$. Then for $x \in\left(r_{0}, r_{1}\right)$ we have
$\lim _{\varepsilon \rightarrow 0} \phi_{\varepsilon, 1}(x)=\lim _{\varepsilon \rightarrow 0} \frac{F^{(1)}(x)}{1+\varepsilon g(x) e^{-B(x)}}=F^{(1)}(x) \leqq K_{1}$.
Now assuming $\dot{F}^{(1)}$ does not have an interior maximum, in particular there exists an interval $0 \in\left[l_{0}, l_{1}\right] \subset\left(r_{0}, r_{1}\right)$ such that $F^{(1)}$ does not have maximum on [$\left.l_{0}, l_{1}\right]$, now by Lemma 2 there exists $\varepsilon_{1}>0$ such that for all $\varepsilon<\varepsilon_{1}$ the function $\phi_{\varepsilon, 1}$ will not have a positive maximum on $\left[l_{0}, l_{1}\right]$, in particular $\phi_{\varepsilon, 1}$ will not have
a positive maximum at $x=0$ for $\varepsilon<\varepsilon_{1}$. Now let $0<\varepsilon<\varepsilon_{1}$ we will show $\phi_{\varepsilon, 1}(x) \leqq K_{1}$ and this completes the proof. There are three cases to study:

If $\phi_{\varepsilon, 1}$ has a maximum at $x=0$ then $\phi_{\varepsilon, 1}(x) \leqq \phi_{\varepsilon, 1}(0) \leqq 0 \leqq K_{1}$.
If $\phi_{\varepsilon, 1}$ has a maximum at one of the boundaries then $\phi_{\varepsilon, 1}(x)=\lim _{x \rightarrow r_{i}} \phi_{\varepsilon, 1}(x)=$ $0 \leqq K_{1}$.

If $\phi_{\varepsilon, 1}$ has a maximum at some $x_{0, \varepsilon} \in\left\{\left(r_{0}, r_{1}\right) \backslash\{0\}\right\}$ then the maximum principle can be applied since at $x_{0, \varepsilon}$ (8) holds with

$$
\begin{aligned}
& \phi_{\varepsilon, 1}^{(1)}\left(x_{0, \varepsilon}\right)=0, \quad \phi_{\varepsilon, 1}^{(2)}\left(x_{0, \varepsilon}\right) \leqq 0, \\
& g\left(x_{0, \varepsilon}\right)>0, \quad a\left(x_{0, \varepsilon}\right)>0,
\end{aligned}
$$

hence

$$
\phi_{\varepsilon, 1}(x) \leqq \phi_{\varepsilon, 1}\left(x_{0, \varepsilon}\right) \leqq \frac{\left|f^{(1)}\right|}{\alpha\left(x_{0, \varepsilon}\right)} \leqq \frac{\left|f^{(1)}\right|}{\lambda-\mu_{1}}=K_{1} \quad \text { for } \quad \lambda>\mu_{1}
$$

2.2. Proof of Theorems 2 and 3

The proofs are similar to Theorem 1. Hwere we present a quick sketch (for details see [4]).
Proof of Theorem 2. It suffices to show for $\lambda>\mu_{2}$ and $\delta_{2}=f^{(2)}+b^{(2)} F^{(1)}$

$$
\left|F^{(2)}\right| \leqq K_{2}=\left|\delta_{2}\right|\left(\lambda-\mu_{2}\right)^{-1} .
$$

Equation (6) becomes

$$
\left(\lambda-\frac{a^{(2)}}{2}-2 b^{(1)}\right) F^{(2)}-\left(a^{(1)}+b\right) F^{(3)}-\frac{a}{2} F^{(4)}=\delta_{2}
$$

$\phi_{\varepsilon, 2}$ is defined as in (7) with $F^{(2)}$ in place of $F^{(1)}$ and

$$
g_{i}(x)= \begin{cases}2 e^{B(x)} / a(x) & \text { if } \lim _{x \rightarrow r_{i}} e^{-B(x)}=0 \\ 2 / a(x) & \text { otherwise }\end{cases}
$$

We will show that the $\lim _{x \rightarrow r_{i}} \phi_{\varepsilon, 2}(x)=0$ for $i=0,1$. Let's assume $r_{i}=r_{1}$

$$
\left|\phi_{\varepsilon, 2}(x)\right| \leqq\left|e^{B(x)} F^{(2)}(x) / \varepsilon g_{1}(x)\right|
$$

there are two cases to study:
Case 1. If r_{1} is natural with $m\left(r_{1}\right)<\infty$ or entrance of regular then $\lim _{x \rightarrow r_{1}} e^{-B(x)}=\infty$ (by Proposition 3), also $\frac{a}{2} F^{(2)}=\lambda F-b F^{(1)}-f$ therefore $\lim _{x \rightarrow r_{1}} a(x) F^{(2)}(x)$ is finite so that we have $\lim _{x \rightarrow r_{1}} \phi_{\varepsilon, 2}(x)=0$.
Case 2. If r_{1} is natural with $m\left(r_{1}\right)=\infty$ or exit then $b\left(r_{1}\right)=0$ (by Proposition 3) and $A F\left(r_{1}\right)=0$ (by Proposition 2). Now $\frac{a}{2} F^{(2)}=A F-b F^{(1)}$ so that $\lim _{x \rightarrow r_{1}} \frac{a(x)}{2} F^{(2)}(x)=0$ (notice $F \in C^{1}(I)$ by Theorem 1). Therefore $\lim _{x \rightarrow r_{1}} \phi_{\varepsilon, 2}(x)=0$.

We have an equivalent equation to (8) where

$$
\begin{array}{ll}
\alpha=\lambda-\frac{a^{(2)}}{2}-2 b^{(1)}+\varepsilon g e^{-B}\left(\lambda-b^{(1)}\right) & \text { if } g=2 / a, \\
\alpha=\lambda-\frac{a^{(2)}}{2}-2 b^{(1)}+\varepsilon g e^{-B}\left(\lambda-2 b^{(1)}+\frac{b a^{(1)}}{a}\right) & \text { if } g=\frac{2}{a} e^{B} .
\end{array}
$$

Proof of Theorem 3. It is enough to show for $\lambda>\mu_{3}$ that

$$
\left|F^{(3)}\right| \leqq K_{3}=\left|\delta_{3}\right|\left(\lambda-\mu_{3}\right)^{-1}
$$

where

$$
\delta_{3}=f^{(3)}+\left(\frac{a^{(3)}}{2}+3 b^{(2)}\right) F^{(2)}+b^{(3)} F^{(1)}
$$

Equation (6) becomes

$$
\left(\lambda-\frac{3}{2} a^{(2)}-3 b^{(1)}\right) F^{(3)}-\left(\frac{3}{2} a^{(1)}+b\right) F^{(4)}-\frac{a}{2} F^{(5)}=\delta_{3} .
$$

$\phi_{\varepsilon, 3}$ is defined as in (7) with $F^{(3)}$ in place of $F^{(1)}$ and

$$
g_{i}(x)= \begin{cases}2 / a(x) & \text { if } \lim _{x \rightarrow r_{i}} e^{B(x)}=0 \\ 2|m(x)| / a(x) & \text { otherwise }\end{cases}
$$

We will show $\lim _{x \rightarrow r_{i}} \phi_{\varepsilon, 3}(x)=0$ for $i=0$, 1 . Let's assume $r_{i}=r_{1}$. First notice that for $\lambda>\mu_{2}$ by Theorem $2 F \in C^{2}(I)$ hence $\lim _{x \rightarrow r_{1}} \frac{a(x)}{2} F^{(3)}(x)$ exists and is finite. Now

$$
\left|\phi_{\varepsilon, 3}(x)\right| \leqq\left|F^{(3)}(x) / \varepsilon g_{1}(x) e^{-B(x)}\right| .
$$

Case 1. If $g_{1}=2 / a$ then the result follows since $\lim _{x \rightarrow r_{1}} e^{-B(x)}=\infty$.
Case 2. If $g_{1}=2 m / a$ it suffices to prove $m(x) e^{-B(x)} \rightarrow \infty$ as $x \rightarrow r_{1}$. If $\lim _{x \rightarrow r_{1}} e^{-B(x)} \neq 0$ then there is nothing to prove since $m\left(r_{1}\right)=\infty$ (by Proposition 3); otherwise applying l'Hospital rule we have

$$
\lim _{x \rightarrow r_{1}}\left|m(x) e^{-B(x)}\right|=\lim _{x \rightarrow r_{1}}\left|\frac{m^{(1)}(x)}{\left(e^{B(x)}\right)^{(1)}}\right|=\lim _{x \rightarrow r_{1}}\left|\frac{1}{b(x)}\right|=\infty
$$

since $b\left(r_{1}\right)=0$ by Proposition 3.
We have an equivalent equation to (8) where

$$
\alpha=\lambda-\frac{3}{2} a^{(2)}-3 b^{(1)}+\varepsilon e^{-B} g \rho
$$

and $\rho=\lambda-a^{(2)}-2 b^{(1)}+\frac{\left(a^{(1)}\right)^{2}}{2 a}+\frac{a^{(1)} b}{a}$.

2.3. Proof of Lemma 1 and Lemma 2

Proof of Lemma 1. Suppose $r_{i}=r_{1}$ (the case when $r_{i}=r_{0}$ is similar). If ψ is monotonic in a neighborhood of r_{1} then the $\lim _{x \rightarrow r_{1}} \psi(x)$ exists and is finite or infinite. If not, then there exists $\xi<r_{1}$ such that ψ has infinitely many local maximums and local minimums on $\left[\xi, r_{1}\right.$). Let $\left\{x_{i}\right\}_{i=1}^{\infty}$ be such that $\lim _{i \rightarrow \infty} x_{i}=r_{1}$. For $\lambda>|\alpha|$, given $\varepsilon>0$ choose \tilde{x}_{0} such that $\xi<\tilde{x}_{0}<r_{1}$ and

$$
\left|\frac{f\left(r_{1}\right)}{\lambda-\alpha\left(r_{1}\right)}-\frac{f(x)}{\lambda-\alpha(x)}\right|<\varepsilon \quad \text { for } x \in\left[\tilde{x}_{0}, r_{1}\right] .
$$

Let

$$
\begin{aligned}
& A=\left\{x_{M}: x_{M} \in\left[\tilde{x}_{0}, r_{1}\right) \text { and } x_{M} \text { is a local maximum of } \psi\right\}, \\
& B=\left\{x_{m}: x_{m} \in\left[\tilde{x}_{0}, r_{1}\right) \text { and } x_{m} \text { is a local minimum of } \psi\right\} .
\end{aligned}
$$

Then we have:

$$
\begin{aligned}
& \psi\left(x_{M}\right) \leqq \frac{f\left(x_{M}\right)}{\lambda-\alpha\left(x_{M}\right)} \leqq \frac{f\left(r_{1}\right)}{\lambda-\alpha\left(r_{1}\right)}+\varepsilon, \\
& \psi\left(x_{m}\right) \geqq \frac{f\left(x_{m}\right)}{\lambda-\alpha\left(x_{m}\right)} \geqq \frac{f\left(r_{1}\right)}{\lambda-\alpha\left(r_{1}\right)}-\varepsilon
\end{aligned}
$$

moreover,

$$
\begin{aligned}
& \limsup _{x_{i} \rightarrow r_{1}} \psi\left(x_{i}\right) \leqq \sup _{x_{M} \in A} \psi\left(x_{M}\right) \leqq \frac{f\left(r_{1}\right)}{\lambda-\alpha\left(r_{1}\right)}+\varepsilon \\
& \liminf _{x_{i} \rightarrow r_{1}} \psi\left(x_{i}\right) \leqq \inf _{x_{m} \in B} \psi\left(x_{m}\right) \leqq \frac{f\left(r_{1}\right)}{\lambda-\alpha\left(r_{1}\right)}-\varepsilon
\end{aligned}
$$

and this completes the proof. \square
Proof of Lemma 2. First notice that $\phi_{\varepsilon}(x)$ and $\psi(x)$ will always have the same sign since $g(x) \geqq 0$. By hypothesis maximum of ψ not on $\left[l_{0}, l_{1}\right]$ so there exists $x_{0} \notin\left[l_{0}, l_{1}\right]$ and $\delta>0$ such that $\psi\left(x_{0}\right)>\psi(x)+\delta$ for $x \in\left[l_{0}, l_{1}\right]$. Let $K=\sup _{x \in\left[l_{0}, l_{1}\right]} \psi(x)$ then K is finite. If $K \leqq 0$ then $\psi(x) \leqq 0$ on $\left[l_{0}, l_{1}\right]$ so that $\phi_{\varepsilon}(x) \leqq 0$ on $\left[l_{0}, l_{1}\right]$ hence ϕ_{ε} cannot have a positive maximum on $\left[l_{0}, l_{1}\right]$. If $K>0$ let $\varepsilon_{1}=\left\{\delta / 2 K g\left(x_{0}\right)\right\}$. Suppose for some $\varepsilon<\varepsilon_{1}$, ϕ_{ε} has a positive maximum at some $x_{1},{ }_{\varepsilon} \in\left[l_{0}, l_{1}\right]$ then $\phi_{\varepsilon}\left(x_{0}\right) \leqq \phi_{\varepsilon}\left(x_{1, \varepsilon}\right)$ and $\psi\left(x_{0}\right) \leqq \psi\left(x_{1, \varepsilon}\right)+\varepsilon g\left(x_{0}\right) \psi\left(x_{1, \varepsilon}\right)$, but for $\varepsilon<\varepsilon_{1}$ we have $\varepsilon g\left(x_{0}\right) \psi\left(x_{1, \varepsilon}\right) \leqq \frac{\delta}{2}$, this implies $\psi\left(x_{0}\right)<\psi\left(x_{1, \varepsilon}\right)+\frac{\delta}{2}$ (contradiction).

3. Main Theorem. The Converse

Main Theorem. If condition 3 holds then there exists a strongly continuous semigroup $T(t)$ in $C^{3}(I)$ whose infinitesimal generator is A with domain $\mathscr{D}_{3}(A), T(t)$: $C^{3}(I) \rightarrow C^{3}(I)$ and there exists a constant μ_{3} independent of t and f such that for $f \in C^{3}(I)$ we have $|T(t) f|_{3} \leqq|f|_{3} \exp \left(\mu_{3} t\right)$.

Proof. Let $G=A-\mu_{3}, \lambda^{\prime}=\lambda-\mu_{3}, \mathscr{D}(G)=\mathscr{D}_{3}(A)$, we will show that G satisfies the conditions of Hille-Yosida theorem, then it follows that there exists a strongly continuous contraction semigroup $\{S(t), t \geqq 0\}$ in $C^{3}(I)$ whose infinitesimal generator is G, moreover, $|S(t) f|_{3} \leqq|f|_{3}$ for $f \in C^{3}(I)$. Now let $T(t)=S(t) \exp \left(\mu_{3} t\right)$, then $\{T(t), t \geqq 0\}$ is a strongly continuous semigroup in $C^{3}(I)$ and the infinitesimal generator of $T(t)$ is $G+\mu_{3}=A$, also, since $T(t)=S(t) \exp \left(\mu_{3} t\right)$ and $|S(t) f|_{3} \leqq|f|_{3}$ we have $T(t): C^{3}(I) \rightarrow C^{3}(I)$ and $|T(t) f|_{3} \leqq|f|_{3} \exp \left(\mu_{3} t\right)$ for $f \in C^{3}(I)$.
(a) $\mathscr{D}(G)$ is dense in $C^{3}(I)$ with respect to $|\cdot|_{3}$. Enough to show $\mathscr{D}(A) \supset C^{2}(I)$. Now $\mathscr{D}(A)=\mathscr{D}_{0} \cap \mathscr{D}_{1}$ will show $\mathscr{D}_{i} \supset C^{2}(I)$ for $i=0,1$. There are three cases:
(i) if r_{i} is inaccessible we have $\mathscr{D}_{i}=\mathscr{D} \supset C^{2}(I)$.
(ii) if r_{i} is an exit we need to show that $A f\left(r_{i}\right)=0$ for $f \in C^{2}(I)$. Now $b\left(r_{i}\right)=0$ by Proposition 3 and $a\left(r_{i}\right)=0$, so

$$
A f\left(r_{i}\right)=\lim _{x \rightarrow r_{i}}\left\{\frac{a(x)}{2} f^{(2)}(x)+b(x) f^{(1)}(x)\right\}=0
$$

(iii) if r_{i} is regular we need to show $D_{p}^{+} f\left(r_{i}\right)=0$ for $f \in C^{2}(I)$. Now $\lim _{x \rightarrow r_{i}} e^{B(x)}=0$ by Proposition 3 , hence $D_{p}^{+} f\left(r_{i}\right)=0$.
(b) For $\lambda^{\prime}>0$ and $f \in C^{3}(I)$ the equation $\lambda^{\prime} F-G F=f$ has a unique solution $F \in \mathscr{D}(G)$.

It follows from the fact that $(\lambda-A) F=f$ has a unique solution $F \in \mathscr{D}_{3}(A)=\mathscr{D}(G)$ provided $\lambda>\mu_{3}$ that is $\lambda^{\prime}>0$, and $\lambda^{\prime} F-G F=(\lambda-A) F$.
(c) $|F|_{3} \leqq|f|_{3} \lambda^{-1}$ for $f \in C^{3}(I)$.

From Theorem 3 we have for $\lambda^{\prime}>0$

$$
|F|_{3}=\left|(\lambda-A)^{-1} f\right|_{3} \leqq|f|_{3} /\left(\lambda-\mu_{3}\right)=|f|_{3} / \lambda^{\prime} .
$$

And this completes the proof. \square
Remark 6. The preceding theorem can be generalized: "For $k=0,1,2,3$, if Condition k holds then there exists a strongly continuous semigroup $T(t)$ in $C^{k}(I)$ whose infinitesimal generator is A with domain $\mathscr{D}_{k}(A)$. Moreover, $T(t): C^{k}(I) \rightarrow C^{k}(I)$ and there exists μ_{k} independent of t and f such that for $f \in C^{k}(I)$ we have

$$
|T(t) f|_{k} \leqq|f|_{k} \exp \left(\mu_{k} t\right) . "
$$

Now we will prove the necessity of the boundary conditions $D_{p}^{+} F\left(r_{i}\right)=0$ and $A F\left(r_{i}\right)=0$.

The Converse Theorem. If the Main Theorem is true then:
(a) $D_{p}^{+} F\left(r_{i}\right)=0$ if r_{i} is regular.
(b) $A F\left(r_{i}\right)=0$ if r_{i} is an exit.

Proof. (a) if r_{i} is regular then $\lim _{x \rightarrow r_{i}} e^{B(x)}=0$ by Proposition 3, also $F \in C^{2}(I)$ by the Main Theorem, so $D_{p}^{+} F\left(r_{i}\right)=0$.
(b) if r_{i} is an exit then $b\left(r_{i}\right)=0$ by Proposition $3, a\left(r_{i}\right)=0$ by hypothesis and $F \in C^{2}(I)$, so $A F\left(r_{i}\right)=0$. \quad

Acknowledgement. I am greatly indebted to my advisor W. Rosenkrantz for suggesting the problem and his encouragement in the course of this work. I also wish to thank M.F. Norman for pointing out several improvements and corrections.

References

1. Borokov, A. A.: Theorems on the convergence to Markov diffusion processes. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 16, 47-76 (1970)
2. Brezis, H., Rosenkrantz, W., Singer, B.: On a degenerate elliptic-parabolic equation occurring in the theory of probability. Comm. Pure Appl. Math. 24, 395-416 (1971)
3. Brezis, H., Rosenkrantz, W., Singer, B. : An extension of Khintchine's estimate for large deviations to a class of Markov chains converging to a singular diffusion. Comm. Pure Appl. Math. 24, 705-726 (1971)
4. Dorea, C.C.Y.: Differentiability preserving properties of a class of semigroups occurring in the theory of probability. Ph. D. thesis, University of Massachusetts (1975)
5. Dynkin, E.B.: Markov Processes, vol. I. New York: Academic Press 1965
6. Feller, W.: The parabolic differential equation and the associated semigroups of transformations. Ann. of Math. 55, 468-519 (1952)
7. Feller, W.: Generalized second order differential operators and their lateral conditions. Illinois J. Math. 1, 459-504 (1957)
8. Lax, P.D., Richtmeyer, R.D.: Survey of the stability of finite difference equations. Comm. Pure Appl. Math. 9, 267-293 (1956)
9. Mandl, P.: Analytical treatment of one-dimensional Markov processes. Die Grundlehren der Math. Wissenschaften, Band 151, Academia, Prague. New York: Springer 1968
10. Norman, M.F.: Diffusion approximation of Non-Markovian processes. Annals of Prob. 3, 358-364 (1975)
11. Skorohod, A.V., Gichman, I.I.: Introduction to the theory of random processes. Moscow: Nauka 1965 [in Russian]
12. Trotter, H.F.: Approximations of semigroups of operators. Pacific J. Math. 8, 887-919 (1958)

[^0]: * This paper is a revised version of the author's Ph. D. dissertation at University of Massachusetts under W.Rosenkrantz
 AMS (MOS) subject classifications (1973). Primary 60J35, 60J60; Key words and phrases. Semigroup, diffusion processes, degenerated second order differential operator, Hille-Yosida theorem

