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It is well known that for a large class of Markov process the associated semi-

group T(t) f(x)={f(y) P(t,x; dy) satisfies the Kolmogorov backward dif-

oU 1 *uU ou

ferential equation, that is, if U(t, x)=T(t) f(x) then s a(x) (Tz—er(x) ™

and lil%n Ut, x)=U(0, x)=1(x). X x
t

In this paper we are considering the opposite problem: given the diffusion
and drift coefficients we study the differentiability preserving properties of the
- 1 0* 0

semigroup T(f) having as infinitesimal generator A=§ a(x)F+b(x)a—.

X X

More specifically, for a large class of functions a(x) and b(x), we will prove

for k=0, ...,3 the existence of T(t) such that T(¢): C*(I)— C*(I) and the

existence of a constant g, such that |T(t)f],<|f ], exp (g, t) for fe CKI).

Moreover an explicit expression of y, in terms of the coefficients a(x) and

b(x) is obtained. As a side result we obtain the necessity of the boundary
conditions imposed.

0. Introduction

Given functions a(x) and b(x) the problem of constructing a process X (¢) having
af{x) and b(x) as diffusion and drift coefficients respectively has attracted much
attention in recent years. The question of existence has been completely studied
by Feller ([6, 7]), Dynkin [5] and Mandl [9]. The more delicate question of
their importance to the study of diffusion approximations in genetics and nu-
merical analysis, and in a general manner the question of their independent
mathematical interest have been raised by Borovkov [1], Norman [10] and
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AMS (MOS) subject classifications (1973). Primary 60735, 607 60; Key words and phrases. Semigroup,
diffusion processes, degenerated second order differential operator, Hille-Yosida theorem



14 C.C.Y.Dorea

Skorohod [11]. Specifically one wants to know to what extent the semigroup of
operators T(¢) associated with the process X(t) preserves the differentiability of
the initial data. Special results were obtained by Brezis-Rosenkrantz-Singer [2],
general results were obtained by Norman [10], who also raised the question of
obtaining his theorems via semigroup method. By using a semigroup approach
and under different conditions than those of Norman’s (however including most
of the examples of application), we obtain a slightly stronger result. Let I be a

closed and bounded interval, | f|=sup |f(x)|, | f],= Z | f® and C¥I)={f:f®

xel

continuous in I for i=0, ..., k}. For k=0,1,2,3 we show the existence of T(¢)
and of a constant p, such that T(): CHI)— C"(I) and |T(t) f1, = f 1, exp (u, t) for
feC*(I). Moreover an explicit expression of g, in terms of the coefficients a(x)
and b(x) will be given, and as a side result we obtain the necessity of the boundary
conditions imposed. For further applications of estimates such as |T(f) f|;<
| f15 exp (u5 t) we refer the reader to Brezis-Rosenkrantz-Singer [ 3], Lax-Richtmyer
[8] and Trotter [12].

We now present a brief sketch of the approach used. Let the linear operator 4
be defined by the relation Af (x)=1til%1 t=1(T(t) f(x)—f (x)) provided the limit on

the right-hand side exists, A is called the infinitesimal generator of the semigroup
T(¢). Comparing the deﬁnition of A with the Kolmogorov backward equation

oUu 1 02U
=54 a(x) = Fs +b(x) where U(t,x)=T(@) f(x) and feC?*(I), we conclude

d? d
that 4 __(ix_) e +b(x ) - As examples of generators A that occur in application
we have
2 7

A=cx(l—x)—5 e +m(X—x) o> on [0, 1]

with ¢>0,m=0,0<x<1.
2
A=Vx3(1— x)2 e +x(1— x) —— on [0,1]

with V>0.

The idea is to show that for fe C¥(I) and 4>y, (where g, is a prefixed constant)
there exists a unique F(A,x)eP(A) satisfying AF{/, x)—AF(4,x)=f(x) and
A—p) IFI.=1f1,. Where Z(A), the domain of operator 4, will be determined
by the boundary conditions (to be properly defined in Section 1 and the necessity
of these conditions will be proved in Section 3). In addition one must show that
2(A) is dense in C*(I) with respect to |-|,. These facts, once established, yield, as
a consequence of the Hille-Yosida theorem, the existence of the semigroup
T(t) with infinitesimal generator A, moreover, we obtain the desired estimate
|T() f1,<|fl, exp (1, t). We remark here that the basic ideas of our proofs were
taken from [2].

In Section 1 preliminary results on the boundary behavior of F(4) is obtained.
In Section 2 the differentiability preserving properties of the resolvent (1—A4)~*
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is studied ((A—A4)~! is such that F(1)=(.—A)~'f). The maximum principle will
be heavily used and growth functions will be introduced as a tool to obtain the
results. In Section 3 the main theorems are stated and proved.

1. Preliminary Results on the Boundary Behavior

As a general reference for this section see Mandl [9].
Let I=[r,, r,] with —oo<r,<0<r < + 00, let a(x} and b(x) be continuous
d> d
functions defined on I with a(x)>0 on (r,, r,). For Az%cl ﬁ—i—b(x) Ix we are
X
concerned with the differentiability properties of the semigroup T\(z), this can be
done by studying the resolvent (1—A)~! which in turn reduces to the analysis

of the solution F(1) of the differential equation (1) with initial data f and 1>0
AF(J)—AF(A)=f. 1)

A detailed analysis of Equation (1) is carried out in Mandl, in order to use
his results we will express 4 as “Feller differential operator” D, D

_a(x) d? d _ax) g d (B(x) d )_ +
A= et = T R T ) o

where for xe(ry, r,) we have:
B()= [250) a0y) ! dy
)= [2a0) 0 dy; - pl)=[e 2 dy @
s 10— tim L0/

yox+ P = p(x)
D f(x)=lim J)—fx)

y—x M) —m(x)
provided the limit exists.

Remark 1. There is no loss of generality in assuming Oe(r,, r,), if not take x,€
(ry, r,) and let x, play the role of 0. Whenever defined we can write Dj f(x)=
eB(x)f(l)(x)_

Now Equation (1) can be written as:

AF(A)=D, DS F())=f. (3)

The general solution of the non-homogeneous Equation (3) is given by (for
details see Mandl)

F(i, x)=Fy(x)+c u, (x)+c_u_(x) )
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where Fj(x) constitutes a solution of (3), u_ (x) and u_(x) constitute a fundamental
system of solutions of Aw—D,, Dy w=0and ¢, and c_ are constants.

Remark 2. (a) To simplify the notation we sometimes omit the dependence on 4
in our symbolisms by writting F=F(1), u (x)=u (4, x), etc.

(b) Let ul(x)= jm s)dp(s) and v*(x)= f p(s)dm(s). It can be shown that if

u'(ry)=o0 then u +(x)¢ C(I)= C°(I), hence the general solution of (3) is of the
form F=F,+c_u_ with ¢c_ possibly zero and no boundary conditions can be
imposed at r,. Similarly if u'(r,)=c0 then u_(x)¢ C(I) and F=F,+c_ u_ with
no boundary conditions at r,. Finally if u" (r)= oo for i=0, 1 then we have F=F,.
This leads us to a classification of the boundary points r; as regular, entrance,
exit and natural (Mandl pp. 24-25).
Boundary conditions will be imposed in case of regular or exit boundary to
ensure uniqueness of solution F(1). Our conditions will be

D; F(r)=0 for r,regular

. 5
D,D; F(r)=0 for r, exit. ©)

Remark 3. (a) We shall denote by B.C. the boundary conditions (5). The condition
D, D, F(r)=0 means adhesive boundary, that is, the process remains in the
point r; after having reached it. The condition D ; F(r)=0 means reflecting
boundary.

We now prove a few results on the boundary behavior of F(4). The proofs of
Proposition 1 and 2 will be omitted, they are straight forward (for details see [4]).

Proposition 1. Let a, be CX(I) and a(x)>0 on (r,, r,) then
(@) B,m,peC**(ry, 1y).
(b) Uyt eC*2(r,, 1))
(©) if F is a solution of AF —D,, D, F=f and fe C*(I) then Fe C**?(r,, r,).

Proposition 2. Let a, b, fe C(I) with a(x)>0 on (ro, r,) and suppose F satisfies B.C.
with AF—D, DY F=f Then

(@) D, D, F(r) 0 if v, natural or exit.
(b) DJr F (r) 0 if r, entrance or regular or natural with m(r,) flmte

Let Condmon k(k=1) be:

(a0) I=[ry, r], —0<ry<r; < +o00.

(al) a, be C*(I).

(@2) a(x)>0on(r,, r,) and a(r)=0 for i=0, 1.

(a3) (—1) b(r)=0 fori=0, 1.

(a4) B(x) converges as x —r,. The limit, B(r,), may be finite or infinite.
(a5) lim inf b(x) a®(x)/a(x)> — oo for i=0, 1.

Remark 4. (a) Conditions (a4) and (a5) are satisfied if a"(r,)=0. For example, if
i=1, b(x)/a(x)—k, <o as x—r,, and aV(x) - aP(r;)<0. Condition (a4) holds
if b(x)=0 near r, (or b(x) <0 near r,), since B(x) is then monotonic near r,.

(b) Condition (a5) holds if a(x)= Y a,(x—r)'(k=1,a,%0) is analytic at r;.

n=k
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For a(x)~a,(x—r)f and a®(x)~ka,(x~r)k"1, so aV(x)/a(x) ~k/f(x—r) as x > r,.
f (=1)b(r)>0 then b(x)a™(x)/a(x)— o0, and if b(r)=0, b(x)a?V(x)/a(x)—
kbM(r)as x -,
(¢} The examples mentioned in the introduction satisfy the Condition k.

Proposition 3. If Condition 1 holds then:
(a) If r, is regular or entrance or natural with m(r,) finite then lim eB® =,

(b) If v, is exit or natural with |m(r,)| = oo then b(r,) =

Proof. Let’s assume r,=r,.
(a) Since a(r;)=0, in a neighborhood of r, we have (say x=¢):

a(x)=a®( ) (x—r)+olx—r)

and 0<a(x)< |a‘“|(r1 —x). Since |a(1)| >0 we have:

2
dy e dy—0o as xor
(j) G(J’) j j ¢ la (1)|( ) !
hence j@ dy—> 0 as x - r, and we must have lim ¢#® =0 since
0 x—ry

m(r,) = f _(») 0 dy

is finite (m(r;)< oo by assumption when r is natural and m(r)<oco when 7, is
entrance or regular (Mandl, p. 25)).

(b) By assumption m(r;)=co when r, is natural and m(r;)=co when r, is exit
(Mandl, p. 25), now since b(r;) <0 enough to show if b(r;) <O then m(r,) is finite.
Let’s assume b(r;) <0, then there exists £ <r, and x<0 such that b(x)<a if x=£&.
Now e2® is decreasing for x> ¢ since BY(x)=2b(x)a(x)~1 <0 for x=¢, hence
deP®  2b(x) poy . . . R

=——"¢%™ is integrable over [¢,r,). Therefore m"(x)=—- ——e®™ is .
dx a(x)

b(x) dx
integrable over [£, r;) since b(x)<0 on [£, 7, ]. So that

jm(l’(x)dx+jb( ) dd B dx < oo, 0

Proposition 4. Let fe C'(I), 1, be an exit or natural boundary with |m(r)|= o0
a®P(r)+0 and Condition 1 holds then lim F*)(x) exists and finite provided F is

xX—r;

such that Fe C'(I), satisfies the B.C. and AF —D, D F={.

Proof. By hypothesis a(x)>0 on (ry,r,) and ﬂvF—gF‘z)—bF“):f on (r,, 1), SO
we have on (1, ;)

P2 (P )—f(x))—%j)i)

(1)
) FP(x).
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2b(x)
(

Now lim ) F®(x) exists and finite since Fe C!(I) and lim b(x)/a(x) is finite

x—n X
for Proposition 3 shows that b(r;)=0 hence lim b(x)/a(x)=b"(r)/aV(r,) is finite.
It remains to show hm 2(AF(x)—- f(x))/a(x) 1s f1n1te By hypothesis a(r;)=0 and
by Proposition 2 D, D+ F(r)=2F(r)— f(r)=0, applying I'Hospital rule we have

hmﬁ(/“’ ()= fx)=21lim (AFO(x) = /O (x))/a®(x)

finige since a(r)+0. [

2. Study of the Resolvent (A —A4)~!

Let the domain of the operator A be defined by 2(4)=2,n P, where

@,=9={F: FeC(I) and AFe C(I)} if r, is inaccessible,
9;={F: FeZ and AF(r)=0} if r, is exit,
9,={F: FeZ and D F(r)=0} if r, is regular.

For k=0,1, ... let @,(4)=2(4) C*(I)~A~* CX(I). Let

Ho =0,
py = b,
(2)
py=|—5|+2P|+ b+ N,,

3 =751aP|+3aP [+ B+ 416+ 3 bV + N,

where N, =max {{,, {;} and Ny =max {—m,, —m,, 0} with m, = inf b(x)aV(x)/a(x),
I,=(r,,0), ,=(0,r,), and xeli
[ = 0 if B(r)<oo or m;=0
) —m, if B(r)=00 and m,<0,

Let Condition 0 be: a, be C(I) with a(x)>0 on (r,, 7).
Theorem k (k=0,1,2,3). “If Condition k holds and fe C*¥(I) then the equation

AF — AF = f has a unique solution F =(1— A)~' fe @,(A) provided ). > p, , moreover,
we have:

IFly=1A— )~ S (A—p) 1"

Remark 5. (a) If Condition k (k=0, 1,2, 3) holds then p, is well defined. (Note that
m;> — o0, so 0L {;<o0).

(b) C°t)=C() and |*|y=1"|-

(¢) Theorem 0 is a direct application of Theorem 2 (Mandl, p.39) and Hille-
Yosida theorem.
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2.1. Proof of Theorem 1

Theorem 0 ensures the existence and uniqueness of the solution F. Will show
IFOI<K, =|f®|(A—u,)"* since then by Theorem 0 we have:

IFl, =~ 4)~ Sl = F|+ [FOI < /127 + K,
U1 )T S Gy~

Since a,b,feCY(I) and a(x)>0 on (r,,r,), by Proposition 1, we have
FeC3(ry,1,). To show [FP|<K, enough to show [FP(x)|<K, on (r,,r) and
lim F(x) exists for j=0, 1 and 4> p, . The second part follows from the following

x—r)

lemma which will be proved at the end of this section.

Lemma 1. For a, B, y, fe C(I) with y(x)>0 on (ry, 1,), let Y€ C(r,, 1,) and satisfying

(A=) =By —yyp?=1.

Then for 2> o and i=0, 1 we have lim y(x) exists finite or infinite.

XFi

Now Fe C?(r,, 1) and AF—AF=f so0 on (r,, ;) we have
| a® a
(2—bW)FO _ (——+b) FO_Spor- o ©)
2 2

Lemma 1 épplied to equation (6) gives us the existence of lim F®V(x) for j=0, 1.

To show [F!(x)| £ K, maximum principle can be applied to (6) iorovided the maxi-
mum occurs at some interior point. For example, if maximum of F® occurs at
X, €(7,, ;) then (6) holds with F®(x,,)=0 and F®(x,) <0 therefore

_ M F(3)(x0) =0

and for A>p, :

(A— bm(xo))Fm (xo) =_<-f(1)(x0),
FOG) S FO(x ) S [fV (A= pD]) - =K, .

Similarly if maximum of —F® occurs at X,e(r,,r,) then applying maximum
principle we get FV(x)= FY(x,)= — K, which yields [F®(x)| <K, on (r,, ). But
maximum principle cannot be directly applied when maximum does not occur
at an interior point. We now introduce auxiliary function ¢, ; which depends on
certain growth function g defined according to the boundary behavior of F.
The proof of Theorem 1 will be devided into two parts: first we study the properties
of the auxiliary function ¢, ; and then the maximum principle applied to ¢, ,
completes the proof.
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2.1.1. The Auxiliary Function ¢, ,
Under the hypothesis of Theorem 1 and for £>0 we define

FOX) 1 +egy(x)e P®)  ry<x<0
P, 1 ()= FO)/(1 +eg,(x)e *)  O<x<r )
max FO0)/(1 +eg,(0) x=0
where
1 if r, is entrance or regular
80= {|m(x)| if 7 is natural or exit

notice e #?=1 and we can write ¢, , =F"/1+ege® where g=1 or |[m|. Now
¢, | as above defined has the following properties:

@) ¢, 1€ C*((ro, ) {0}).

(b) lim ¢, 1(0)=0for i=0, 1.

(c) ¢, ,attains a maximum on [7,, 7, ] (even though ¢, , may be not continuous
at 0).

(d) ¢, , satisfies on {(ry,7)~{0}} the differential equation

ad,  +BPL e =1 ®)

with a=4—bP+eie Bgand y= —g(l +ege™®).

To prove this:
(a) We have FeC3(ry,n), m and BeC?(ry,r) by Proposition 1, hence
ge C((ry, 1) ~{0}) therefore ¢, ;€ C*((r,, 1)~ {0}) since ge ">0 for x=+0.
(b) Let’s assume r,=r;.
If r, is entrace or regular then we have g(x)=1 for 0<x<r, and
FO(x) D} F(x)
14ge B® 3

-0 as x—n

e, 1 ()| =

since D, F(r;)=0 by Proposition 2.
If r, is natural or exit we have g(x)=m(x) for 0 <x<r,
FO(x) DY F(x)

1+ em(x)eB® sm(x)

|9, ()=

so it is enough to show lim D F(x)/m(x)=0. If r, is natural with m(r,) finite
then there is nothing to prove since D F(r;)=0 by Proposition 2. So let’s assume
m(r;)= 0. Let 0<x, <x,<r,, since D, F(x) and m(x) are continuous and differen-

tiable on [x,, x,] we have by the Cauchy generalized mean value theorem

D F(x,)—D; F(x,) (D} F(x)®
mix)—m(x,)  (mG)P

=D, D; F(x)
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for some xe(x,, x,). By Proposition 2, lim D, D F(x)=D, D, F(r;)=0. So given

6> 0 there exists & such that for £ <x, <x, <r, we have
d 0
—§<(D; F(xz)_D;r F(x1))/(m(xz)-m(x1))<§

now, for fixed x, let x, —r,, then we must have m(x,) — 00, since we are assuming
m(r)= 0. So for x, large enough we have |D; F(x,)/(m(x,)—m(x,))|<d/3. This
implies

?> D Fx)/(m(x,)—m(x )| > D, F(x,)/m(x,)l,, ., —0.

(c) By (a) and (b) we conclude ¢, , continuous on {[r,7;]1~{0}} although
¢, , may be not continuous at 0 it will attain a maximum on [r,, r;] since at 0 it is
defined by the largest value and ¢, ,(07) and ¢, ,(0~) exist.

(d) A routine calculation shows (d). [

Next the maximum principle will be applied to ¢, ; in order to complete the
proof, but if the maximum is at x =0 the principle cannot be applied. We will then
make use of the following lemma which will be proved at the end of this section.

Lemma 2. Let’s assume [1,, [, 1< (ry, 17).
(i) YyeClry, 1),
(ii) £(x)20 on 1y, 1,1, and g(:x)>0 on {(r.1,)— [l 1, 13-

For ¢>0 let ¢,(x)=y(x)/(1+eg(x)). If a maximum of ¥ does not occur in
[ly. 1], then there is an &, >0 such that, for all e<g,, ¢, does not have a positive
maximum on [I,, ] ].

2.1.2. The Maximum Principle

We will show
FO(x)<K, for xe(ry,n) and A>pu, )

then exactly the same reasoning applied to —F® (that is, replace F® by —F®
in the definition of ¢, ;) completes the proof. To prove (9) if a maximum of F©®
occurs at some interior point the maximum principle applied to (6) gives us (9).
If not we use the function ¢, ;. It suffices to show for ¢ small enough we have
¢, ((x)=K, on [ry, ] for A>pu,. Then for xe(ry, r,) we have

. FO
lim ¢, , (x)=lim (). -
g—0

P <K, .
ew0 1+eg(x)e =K,

Now assuming F® does not have an interior maximum, in particular there
exists an interval Oe[l,, !, ]<=(r,,r,) such that F® does not have maximum on
[ly, ], now by Lemma 2 there exists g >0 such that for all e<e, the function
¢, , will not have a positive maximum on [/, /;], in particular ¢, , will not have
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a positive maximum at x=0 for e<e¢,. Now let 0 <e<eg, we will show ¢, , (x) <K,
and this completes the proof. There are three cases to study:

If ¢, , has a maximum at x=0 then ¢, ,(x)=<¢, ;(0)<0=K,.

If qﬁs , has a maximum at one of the boundaries then ¢, I(x)— hm P, ,(x)=
0=K,.

If (/55, , has a maximum at some x, ,&{(r,, ;) {0}} then the maximum principle
can be applied since at x, , (8) holds with

(]58)1 (xo, s):()’ (]5532)1 (xo, s)éo,
g(xo J)>0, alx, ,)>0,
hence

(1) (1)
6, (99, (g )5 < U

(xo g) _j-—lh

=K, for A>p,. 0

2.2. Proof of Theorems 2 and 3

The proofs are similar to Theorem 1. Hwere we present a quick sketch (for details
see [4]).

Proof of Theorem 2. It suffices to show for 1>y, and &, =@+ b2 F®
IFPISK,=10,1(2—p,) "
Equation (6) becomes
(g_ﬁ_zbm) FO (@) FO_Lp@—s .
2 2
¢, , is defined as in (7) with F® in place of F* and
2e8/g(x)  if lim e B®=0
. 2{ 2/a(x) ot;err\:vise.

We will show that the lim ¢, ,(x)=0 for i=0, 1. Let’s assume r,=r,

|9,, () S1”PFD (x)/e g, (x)]

there are two cases to study:

~B(x) _

Case 1. If r, is natural with m(r}< co or entrance of regular then lim e 0

(by Proposition 3), also 2F(2)—/1F bF® _f therefore 11rn a(x)I;‘;’r(lx) is finite
so that we have l‘f’i ¢, ,(x)=0.

Case 2. If r, is natural with m(r,)= co or exit then b(r;)=0 (by Proposition 3) and
AF (r,)=0 (by Proposition 2). Now 2F(Z)—AF bF® so that hm (2) FA(x)=0

(notice Fe C'(I) by Theorem 1). Therefore lim ¢, ,(x)=
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We have an equivalent equation to (8) where

a@
oc=/1—7~2b(1’+8ge‘B(l—b(1)) if g=2/a,
a® baV )
) opm *B( _2pW ) if 02 B
o=4 3 bV +ege P |A-2b"+ F if g _e

Proof of Theorem 3.1t is enough to show for 4> u, that
IFOIS K =105 (A—p,y)~"
where

a®
S,=fO+ (T_,_ 31,(2)) FO L3 M)
Equation (6) becomes

(l—%a‘z)—3b‘1’)F‘3’—(%a(”er)F(‘”—g FO=5,.

¢, 5 is defined as in (7) with F® in place of F and

X—pi

{Z/a(x) if lim #®=0
gi\X)=

2im(x)|//a{x)  otherwise.

We will show lim ¢, ;(x)=0 for i=0, 1. Let’s assume r,=r, . First notice that for
4> i, by Theorem 2 Fe C*(I) hence lim ﬁzi) F®Xx) exists and is finite. Now

|6, s (NS IFP(x)/eg (x)e ")

Case 1. If g, =2/a then the result follows since lim e~ 3™ = oo.

X—P1
Case 2. If g, =2mja it suffices to prove m(x)e~ ™ — o0 as x —»r,. If lim e~ #* 40

then there is nothing to prove since m(y)=oco (by Proposition 3); otherwise
applying ’'Hospital rule we have

m(x)
(D

lim [m(x)e~ 2| = lim =

X=¥ x—r

=1Ilim
X—¥

b(x)

since b(r;)=0 by Proposition 3.
We have an equivalent equation to (8) where

a=A—3a?-3bV4ce Bgp

()2 1)
and p=J—a®—2pw 4@V @b
2a a
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2.3. Proof of Lemma 1 and Lemma 2

Proof of Lemma 1. Suppose r,=r, (the case when r,=r, is similar). If y is mono-
tonic in a neighborhood of r; then the lim y/(x) exists and is finite or infinite. If

X~r
not, then there exists £ <7 such that ¢ has infinitely many local maximums and
local minimums on [, ). Let {x;}2; be such that lim x,=r,. For A>|a, given

i— o0

¢>0choose X, such that { <X, <r, and

f6) )
A—ualr) A—a(x)

Let

<e for xel[X,y,1].

A={xy: x,€[%,, 1) and x,, is a local maximum of ¥},
B={x,: x,€[X,,r;) and x,, is a local minimum of y/}.
Then we have:
fo) . S()
A—a(xy) = A—a(r)
o S o )

lﬂ(xM)§

+é,

lﬁ(xm) = /I—oc(xm) = '1"0((7‘1) _
moreover,

lirf j:lp Y(x)=< xsuEAlp(xM) < ; { (;1(1 ) e,

liglqirnfl//(xi) = inefB ¥(x,) < ,IJ: (;1(),, ) .,

and this completes the proof. []

Proof of Lemma 2. First notice that ¢,(x) and y(x) will always have the same sign
since g(x)=0. By hypothesis maximum of ¥ not on [/, /;] so there exists
xo€[ly, ;] and 8> 0 such that y(x,)>(x)+6 for xe[l,,1,]. Let K= sup (x)

xeflo, L]

then K is finite. If K <0 then y(x)<0 on [I,, ;] so that ¢ (x)<0 on [,,,] hence
¢, cannot have a positive maximum on [l,,[,]. If K>0 let & ={6/2K g(x,)}.
Suppose for some e<e,, ¢, has a positive maximum at some x,, ,€[l,,/,] then
G, (x) =P (x; ) and Yxo)Sw(xg )+eg(xo)¥(x, ), but for e<e we have

d
eg(x)¥(x, ,) gg, this implies ¢(x,) <¥(x; )+ 5 (contradiction). [

3. Main Theorem. The Converse

Main Theorem. If condition 3 holds then there exists a strongly continuous semi-
group T(t) in C*(I) whose infinitesimal generator is A with domain Z,(A4), T(?):
C3(I)— C3(I) and there exists a constant u, independent of ¢ and f such that for
feC3(I) we have |T(6) f|; = |f1;exp (u51)-
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Proof. Let G=A— i, X' =1—u,, D(G)=2,(A), we will show that G satisfies the
conditions of Hille-Yosida theorem, then it follows that there exists a strongly
continuous contraction semigroup {S(1),t=0} in C*(I) whose infinitesimal
generator is G, moreover, |S(¢) fl;<|f]; for fe C3(I). Now let T(t)=S(t)exp(u;t),
then {T(¢), t =0} is a strongly continuous semigroup in C3(I) and the infinitesimal
generator of T(f) is G+ uy =4, also, since T(t)=S()exp(ust) and [S(O)f1;=1f15
we have T(1): C3(I)> C*(I) and |T(t)f|; = |f|sexp(u, ) for fe C3 ().

(2) 2(G) is dense in C*(I) with respect to |+|,. Enough to show 2(4)> C*(I).
Now Z(4)=9,n %, will show 2,> C*(I) for i=0, 1. There are three cases:

(i) if r, is inaccessible we have 9,=2 > C*(I).

(i) if , is an exit we need to show that Af(r,)=0 for fe C?(I). Now b(r)=0 by
Proposition 3 and a(r) =0, so

A= lm { ) o >+b<x>f“>(x)}

(iii) if r, is regular we need to show D, f(r)=0 for fe C*(I). Now lim =0
by Proposmon 3, hence D+ fr)= o

(b) For A'>0 and fe C"’(I) the equation /'F—GF={ has a unique solution
Fe2(G).

It follows from the fact that (1— A) F = f has a unique solution F € Z,(4)= Z(G)
provided A>pu, thatis A'>0, and A'F —GF=(A—A)F.

(©) IFl; =134 for fe C3(I).

From Theorem 3 we have for 1'>0

Fly= 12— A) " fly Z1f /00— p3) = 1f13/7 .
And this completes the proof. [J

Remark 6. The preceding theorem can be generalized: “For k=0, 1,2, 3, if Con-
dition k holds then there exists a strongly continuous semigroup T(t) in C*(I)
whoseinfinitesimal generator is A with domain %, (4). Moreover, T(t): C¥(I)— CXI)
and there exists y, independent of ¢ and f such that for fe C*(I) we have

TOS =S lexply).”

Now we will prove the necessity of the boundary conditions D, F(r;)=0 and
AF(r)=0.
The Converse Theorem. If the Main Theorem is true then:

(@) D, F(r)=0ifr, is regular.

(b) AF(r)=01ifr, is an exit.
Proof. (a) if r, is regular then lim ¢ =0 by Proposition 3, also Fe C*(I) by the

Main Theorem, so D, F(r)=0.

(b) if r, is an exit then b(r)=0 by Proposition 3, a(r)=0 by hypothesis and
FeC*(I),s0 AF(r)=0. [
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