Extensions of Billingsley's Theorems on Weak Convergence of Empirical Processes

Ken-ichi Yoshihara

0. Summary

In [4], Sen proved Theorems 22.1 and 22.2 of Billingsley [1] on the weak convergence of empirical distribution functions for sequences of ϕ-mixing random variables to appropriate Gaussian random functions under less stringent regularity conditions. In this note, we shall prove the same theorems under weaker conditions than Sen's ones.

1. The Main Result

Let $\left\{x_{j},-\infty<j<\infty\right\}$ be a strictly stationary ϕ-mixing sequence of random variables defined on a probability space (Ω, \mathscr{B}, P). Thus, $\left\{x_{j}\right\}$ satisfies the condition that

$$
\begin{equation*}
\sup _{A \in \mathbb{N}^{k}} \sin _{\infty \in \mathfrak{M}_{k+n}^{\infty}} \frac{1}{P(A)}|P(A \cap B)-P(A) P(B)|=\phi(n) \downarrow 0 \quad(n \rightarrow \infty) \tag{1}
\end{equation*}
$$

where \mathfrak{M}_{a}^{b} denotes the σ-algebra generated by events of the type

$$
\left\{\left(x_{i_{1}}, \ldots, x_{i_{k}}\right) \in E\right\}, \quad a \leqq i_{1}<\cdots<i_{k} \leqq b
$$

and E is a k-dimensional Borel set. Let

$$
c(u)= \begin{cases}1 & \text { if } u \geqq 0 \tag{2}\\ 0 & \text { if } u<0\end{cases}
$$

Assuming x_{i} has a continuous distribution function $F(u)$ and working with $x_{i}^{*}=F\left(x_{i}\right)$ for any i, we define the empirical distribution function by

$$
\begin{equation*}
F_{n}(t)=n^{-1} \sum_{i=1}^{n} c\left(t-x_{i}^{*}\right), \quad 0 \leqq t \leqq 1 \tag{3}
\end{equation*}
$$

In [1], Billingsley proved that the sequence $\left\{Y_{n}\right\}$ of random elements in $D[0,1]$ defined by

$$
\begin{equation*}
Y_{n}(t)=n^{\frac{1}{2}}\left[F_{n}(t)-t\right], \quad 0 \leqq t \leqq 1 \tag{4}
\end{equation*}
$$

converges weakly to a Gaussian random function under the condition $\sum n^{2} \phi^{\frac{1}{2}}(n)<\infty$. Recently, in [4], Sen proved that the same result holds even if the condition $\sum n^{2} \phi^{\frac{1}{2}}(n)<\infty$ is replaced by the condition $\sum n \phi^{\frac{1}{2}}(n)<\infty$. We show here that the latter condition $\sum n \phi^{\frac{1}{2}}(n)<\infty$ can be replaced by the condition
$\phi(n)=O\left(n^{-2}\right)$. We use the same notations and definitions in §22, [1]. Let

$$
\begin{equation*}
g_{t}\left(x_{i}^{*}\right)=c\left(t-x_{i}^{*}\right)-t, \quad 0 \leqq t \leqq 1, i \geqq 0 . \tag{5}
\end{equation*}
$$

Theorem. Suppose that $\left\{x_{n}\right\}$ is ϕ-mixing with $\phi(n)=O\left(n^{-2}\right)$, and suppose x_{0} has a continuous distribution function F on $[0,1]$. Then

$$
\begin{equation*}
Y_{n} \xrightarrow{\mathscr{D}} Y \tag{6}
\end{equation*}
$$

where Y_{n} is defined by (4) and Y is the Gaussian random function specified by

$$
\begin{equation*}
E\{Y(t)\}=0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
E\{Y(s) Y(t)\}=E\left\{g_{s}\left(x_{0}^{*}\right) g_{t}\left(x_{0}^{*}\right)\right\}+\sum_{k=1}^{\infty} E\left\{g_{s}\left(x_{0}^{*}\right) g_{t}\left(x_{k}^{*}\right)\right\}+\sum_{k=1}^{\infty} E\left\{g_{s}\left(x_{k}^{*}\right) g_{t}\left(x_{0}^{*}\right)\right\} \tag{8}
\end{equation*}
$$

These series converges absolutely and $P(Y \in C)=1$ (cf. Theorem 22.1 in [1] and Theorem 3.1 in [4]).

2. Basic Lemmas

Let $\left\{z_{i}\right\}$ be stationary and ϕ-mixing with $E z_{i}=0, E z_{i}^{2}=\tau, P\left(\left|z_{i}\right|>1\right)=0$ and

$$
\begin{equation*}
E\left|z_{i}\right| \leqq c \tau \quad(c<\infty) \tag{9}
\end{equation*}
$$

It is clear that (9) holds when the z_{i} are Bernoullian variables, centered at expectation. Let $S_{0}=0$ and

$$
S_{m}=z_{1}+\cdots+z_{m}, \quad m \geqq 1
$$

In what follows, by the letter K, we shall denote any quantity (not always the same) which is bounded in absolute value.

Lemma 1. If $\phi(j)=O\left(j^{-2}\right)$ and (9) holds, then for all m sufficiently large

$$
\begin{equation*}
E S_{m}^{4} \leqq K m^{2}(\log m)^{2} \tau \tag{10}
\end{equation*}
$$

Proof. We follow the proof of Lemma 2.1 in [4]. We denote by \sum_{m} the summation over all $i, j, k \geqq 0$ for which $i+j+k \leqq m$, and let $\sum_{m}^{(1)}, \sum_{m}^{(2)}$ and $\sum_{m}^{(3)}$ be respectively the components of \sum_{m} for which $i \geqq(j, k), j \geqq(i, k)$ and $k \geqq(i, j)$. Then, we have

$$
\begin{equation*}
E S_{m}^{4} \leqq 24 m\left\{\sum_{m}^{(1)}+\sum_{m}^{(2)}+\sum_{m}^{(3)}\right\}\left|E z_{0} z_{i} z_{i+j} z_{i+j+k}\right| \tag{11}
\end{equation*}
$$

Since $\phi(j)=O\left(j^{-2}\right)$,

$$
\begin{equation*}
\sum_{j=1}^{m}(j+1)^{2} \phi(j) \leqq K m \quad \text { and } \quad \sum_{j=1}^{m} \phi^{\frac{1}{2}}(j) \leqq K \log m \tag{12}
\end{equation*}
$$

So, using (9), (12) and the assumption that $P\left(\left|z_{i}\right|>1\right)=0$, we have the following inequalities:

$$
\begin{align*}
& \sum_{m}^{(1)}\left|E z_{0} z_{i} z_{i+j} z_{i+j+k}\right| \leqq 2 \sum_{m}^{(1)} \phi(i) E\left|z_{0}\right| \\
& \quad \leqq K \tau \sum_{i=1}^{m}(i+1)^{2} \phi(i) \leqq K \tau m, \tag{13}
\end{align*}
$$

$$
\begin{align*}
& \sum_{m}^{(2)} \mid E z_{0} z_{i} z_{i+j} z_{i+j+k} \mid \\
& \leqq \sum_{m}^{(2)}\left|E z_{0} z_{i} E z_{0} z_{k}\right|+2 \sum_{m}^{(2)} \phi(j)\left|E z_{0} z_{i}\right| \\
& \leqq K \tau^{2} \sum_{m}^{(2)} \phi^{\frac{1}{2}}(i) \phi^{\frac{1}{2}}(k)+K \tau \sum_{m}^{(2)} \phi(j) \tag{13}\\
& \leqq K m \tau^{2}\left(\sum_{i=1}^{m} \phi^{\frac{1}{2}}(i)\right)^{2}+K \tau\left(\sum_{j=1}^{m}(j+1)^{2} \phi(i)\right) \\
& \leqq K m(\log m)^{2} \tau \\
& \sum_{m}^{(3)}\left|E z_{0} z_{i} z_{i+j} z_{i+j+k}\right| \\
& \leqq 2 \sum_{m}^{(3)} \phi(k) E\left|z_{0}\right| \leqq K \tau \sum_{m}^{(3)} \phi(k) \\
& \leqq K \tau \sum_{k=1}^{m}(k+1)^{2} \phi(k) \leqq K m \tau .
\end{align*}
$$

Thus, (10) follows from (11) through (13), and the proof is completed.
Let $q=\left[n^{\frac{5}{6}}\right]$, and $h=[n / 2 q]$. Further, let

$$
\begin{aligned}
& v_{i}=\sum_{j=1}^{q} z_{2 i q+j} \quad(i=0, \ldots, h-1), \\
& \bar{v}_{i}=\sum_{j=1}^{q} z_{(2 i+1) q+j} \quad(i=0, \ldots, h-1), \\
& v_{h}=S_{n}-\sum_{i=0}^{h-1} v_{i}-\sum_{i=0}^{h-1} \bar{v}_{i} .
\end{aligned}
$$

Lemma 2. There exists a number $\gamma>0$ such that for all n sufficiently large

$$
\begin{equation*}
\max \left(E\left(\sum_{i=0}^{h} v_{i}\right)^{4}, E\left(\sum_{i=0}^{h-1} \bar{v}_{i}\right)^{4}\right) \leqq K\left(n^{2-\gamma} \tau+n^{2} \tau^{2}\right) \tag{14}
\end{equation*}
$$

Proof. We shall evaluate the following quantity:

$$
\begin{align*}
E\left(\sum_{i=0}^{h} v_{i}\right)^{4}= & E\left(\sum_{i=0}^{h-1} v_{i}\right)^{4}+4 E\left(\left(\sum_{i=0}^{h-1} v_{i}\right)^{3} v_{h}\right) \\
& +6 E\left(\left(\sum_{i=0}^{h-1} v_{i}\right)^{2} v_{h}^{2}\right)+4\left(\left(\sum_{i=0}^{h-1} v_{i}\right)^{3} v_{h}\right)+E v_{h}^{4} \tag{15}
\end{align*}
$$

Since $E v_{h}^{4} \leqq K E v_{0}^{4}$ for all n sufficiently large, so, by Lemma 1 (p. 170) in [1],

$$
\begin{align*}
\left|E\left(\left(\sum_{i=0}^{h-1} v_{i}\right)^{3} v_{h}\right)\right| & \leqq \sum_{j=2 h q+1}^{n}\left|E\left(\left(\sum_{i=0}^{h-1} v_{i}\right)^{3} z_{j}\right)\right| \\
& \leqq \sum_{j=1}^{\infty} 2 \phi(j) E\left|\sum_{i=0}^{h-1} v_{i}\right|^{3} \leqq K\left\{E\left(\sum_{i=0}^{n-1} v_{i}\right)^{4}\right\}^{\frac{3}{4}} \tag{16}\\
\left|E\left(\left(\sum_{i=0}^{h-1} v_{i}\right) v_{h}^{3}\right)\right| & \left.\leqq \sum_{i=0}^{h-1} \mid E v_{i} v_{h}^{3}\right\} \\
& \leqq 2 \sum_{i=1}^{h} \phi^{\frac{1}{4}}((2 i-1) q)\left(E v_{0}^{4}\right)^{\frac{1}{4}}\left(E v_{h}^{4}\right)^{\frac{3}{4}} \leqq K h q^{-\frac{1}{2}} E v_{0}^{4},
\end{align*}
$$

$$
\begin{equation*}
E\left(\left(\sum_{i=0}^{h-1} v_{i}\right)^{2} v_{h}^{2}\right) \leqq 2 \phi^{\frac{1}{2}}(q)\left(E\left(\sum_{i=0}^{h-1} v_{i}\right)^{4}\right)^{\frac{1}{2}}\left(E v_{h}^{4}\right)^{\frac{1}{2}} . \tag{16}
\end{equation*}
$$

Now, we consider $E\left(\sum_{i=0}^{h-1} v_{i}\right)^{4}$. As in the proof of Lemma 1,

$$
\begin{equation*}
E\left(\sum_{i=0}^{h-1} v_{i}\right)^{4} \leqq 24 h \sum_{h-1}\left|E v_{0} v_{i} v_{i+j} v_{i+j+k}\right| \tag{17}
\end{equation*}
$$

It follows from the fact $\phi(m)=O\left(m^{-2}\right)$ that if $(i, j, k) \geqq 1$ then

$$
\begin{align*}
& \left|E v_{0} v_{i} v_{i+j} v_{i+j+k}\right| \\
& \leqq\left|E v_{0} v_{i} E v_{0} v_{k}\right|+2 \phi^{\frac{1}{2}}((2 j-1) q)\left\{E\left(v_{0} v_{i}\right)^{2} E\left(v_{0} v_{k}\right)^{2}\right\}^{\frac{1}{2}} \\
& \leqq 4\left(E v_{0}^{2}\right)^{2} \phi^{\frac{1}{2}}((2 i-1) q) \phi^{\frac{1}{2}}((2 k-1) q) \\
& +2 \phi^{\frac{1}{2}}((2 j-1) q)\left\{\left(E v_{0}^{2}\right)^{2}+2 \phi^{\frac{1}{2}}((2 i-1) q) E v_{0}^{4}\right\}^{\frac{1}{2}} \tag{18}\\
& \text { - }\left\{\left(E v_{0}^{2}\right)^{2}+2 \phi^{\frac{1}{2}}((2 k-1) q) E v_{0}^{4}\right\}^{\frac{1}{2}} \\
& \leqq K E v_{0}^{4}\left\{\phi^{\frac{1}{2}}((2 i-1) q) \phi^{\frac{1}{2}}((2 k-1) q)+\phi^{\frac{1}{2}}((2 j-1) q)\right\} \\
& \leqq K q^{-1} E v_{0}^{4}\left\{\frac{1}{(2 i-1)(2 k-1)}+\frac{1}{2 j-1}\right\} .
\end{align*}
$$

Similarly, for $i \geqq 1$

$$
\begin{align*}
&\left|E v_{0}^{3} v_{i}\right| \leqq 2 \phi^{\frac{1}{2}}((2 i-1) q) E v_{0}^{4} \leqq K q^{-\frac{1}{2}} E v_{0}^{4}, \\
& E v_{0}^{2} v_{i}^{2} \leqq\left(E v_{0}^{2}\right)^{2}+2 \phi^{\frac{1}{2}}((2 i-1) q) E v_{0}^{4} \leqq\left(E v_{0}^{2}\right)^{2}+K q^{-1} E v_{0}^{4}, \\
&\left|E v_{0}^{2} v_{i} v_{i+j}\right| \leqq 2 \phi^{\frac{1}{2}}((2 j-1) q)\left(E v_{0}^{2}\right)^{2}+2 \phi^{\frac{1}{2}}((2 i-1) q) E v_{0}^{4} \leqq K q^{-1} E v_{0}^{4} \quad(j \geqq 1), \tag{19}\\
& \max \left(\left|E v_{0}^{2} v_{i}^{2} v_{i+j}\right|,\left|E v_{0} v_{i} v_{i+j}^{2}\right|\right) \leqq 2 \phi^{\frac{2}{2}}((2 i-1) q) E v_{0}^{4} \leqq K q^{-\frac{3}{2}} E v_{0}^{4} \quad(j \leqq 0) .
\end{align*}
$$

So from (18), (19) and the definitions of q and h, we have

$$
\begin{align*}
& \sum_{h}\left|E v_{0} v_{i} v_{i+j} v_{i+j+k}\right| \leqq E v_{0}^{4}+\sum_{i=1}^{h-1}\left\{\left|E v_{0}^{3} v_{i}\right|+\left|E v_{0} v_{i}^{3}\right|+E v_{0}^{2} v_{i}^{2}\right\} \\
& \quad+\sum_{j=1}^{h-1} \sum_{i=1}^{h-j-1}\left\{\left|E v_{0}^{2} v_{i} v_{i+j}\right|+\left|E v_{0} v_{i}^{2} v_{i+j}\right|+\left|E v_{0} v_{i} v_{i+j}^{2}\right|\right\} \\
& \quad+\sum_{(i, j, k) \geqq 1}\left|E v_{0} v_{i} v_{i+j} v_{i+j+k}\right| \tag{20}\\
& \\
& \leqq K\left\{\left(1+q^{-\frac{1}{2}} h+q^{-1} h^{2} \log h\right) E v_{0}^{4}+h\left(E v_{0}^{2}\right)^{2}\right\} \\
& \\
& \leqq K\left\{E v_{0}^{4}+h\left(E v_{0}^{2}\right)^{2}\right\} .
\end{align*}
$$

As $E v_{0}^{2}=q \tau(1+o(1))$ (cf. Theorem 1.6 in [2]), so from (17), (20) and Lemma 1, we have

$$
\begin{equation*}
E\left(\sum_{i=0}^{h-1} v_{i}\right)^{4} \leqq K\left\{h q^{2}(\log q)^{2} \tau+h^{2} q^{2} \tau^{2}\right\} \leqq K\left\{n^{\frac{17}{7}} \tau+n^{2} \tau^{2}\right\} \tag{21}
\end{equation*}
$$

On the other hand, $E\left(\sum_{i=0}^{h-1} \bar{v}_{i}\right)^{4}=E\left(\sum_{i=0}^{h-1} v_{i}\right)^{4}$. Thus, (14) with $\gamma=\frac{1}{7}$ is obtained from (15), (16) and (21).

3. Proof of Theorem

Let
and

$$
Y_{n}^{\prime}(t)=\frac{1}{\sqrt{n}}\left\{\sum_{i=0}^{h-1} \sum_{j=1}^{q} g_{t}\left(x_{2 i q+j}^{*}\right)+\sum_{j=2 i q+j}^{n} g_{t}\left(x_{j}^{*}\right)\right\}
$$

$$
Y_{n}^{\prime \prime}(t)=\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} \sum_{j=1}^{q} g_{t}\left(x_{(2 i+1) q+j}^{*}\right)
$$

Let $z_{j}=g_{t}\left(x_{j}^{*}\right)-g_{s}\left(x_{j}^{*}\right)(0 \leqq s \leqq t \leqq 1)$ and put

$$
\begin{aligned}
v_{i} & =\sum_{j=1}^{q} z_{2 i q+j}
\end{aligned}(i=0,1, \ldots, h), ~\left(i^{\prime}=0,1, \ldots, h-1\right) .
$$

Since z_{j} is a Bernoullian variable, (9) holds with $c=2$ and $E z_{j}=0$,

$$
E z_{j}^{2}=(t-s)(1-t+s) \leqq t-s
$$

Hence, it follows from Lemma 2 that for all n sufficiently large

$$
\max \left(E\left(\sum_{i=0}^{h} v_{i}\right)^{4}, E\left(\sum_{i=0}^{h-1} \bar{v}_{i}\right)^{4}\right) \leqq K\left\{n^{2-\gamma}(t-s)+(t-s)^{2}\right\}
$$

where $0 \leqq s \leqq t \leqq 1$ and $0<\gamma \leqq \frac{1}{7}$. Therefore, if $\varepsilon(0<\varepsilon<1)$ is a fixed number such that
we have

$$
\frac{\varepsilon}{n} \leqq t-s,
$$

$$
\begin{align*}
\max & \left(E\left|Y_{n}^{\prime}(t)-Y_{n}^{\prime}(s)\right|^{4}, E\left|Y_{n}^{\prime \prime}(t)-Y_{n}^{\prime \prime}(s)\right|^{4}\right) \\
& \leqq K\left\{\frac{(t-s)^{1+\gamma}}{\varepsilon^{\gamma}}+(t-s)^{2}\right\} \tag{22}\\
& \leqq K\left(\frac{1}{\varepsilon^{\gamma}}+1\right)(t-s)^{1+\gamma}
\end{align*}
$$

Assume now that p is a number satisfying $\varepsilon / n \leqq p$. Since

$$
\begin{aligned}
& Y_{n}(s+i p)-Y_{n}(s) \\
&=\left\{Y_{n}^{\prime}(s+i p)-Y_{n}^{\prime}(s)\right\}+\left\{Y_{n}^{\prime \prime}(s+i p)-Y_{n}^{\prime \prime}(s)\right\} \\
&=\sum_{j=1}^{i}\left\{Y_{n}^{\prime}(s+j p)-Y_{n}^{\prime}(s+(j-1) p)\right\}+\sum_{j=1}^{i}\left\{Y_{n}^{\prime \prime}(s+j p)-Y_{n}^{\prime \prime}(s+(j-1) p)\right\} \\
&(i=1, \ldots, m)
\end{aligned}
$$

where m is a positive integer, so by (22) and Theorem 12.2 in [1],

$$
\begin{aligned}
& P\left(\max _{i \leqq m}\left|Y_{n}(s+i p)-Y_{n}(s)\right| \geqq \lambda\right) \\
& \quad \leqq P\left(\max _{i \leqq m}\left|Y_{n}^{\prime}(s+i p)-Y_{n}^{\prime}(s)\right| \geqq \frac{\lambda}{2}\right)+P\left(\max _{i \leqq m}\left|Y_{n}^{\prime \prime}(s+i p)-Y_{n}^{\prime \prime}(s)\right| \geqq \frac{\lambda}{2}\right) \\
& \quad \leqq \frac{32 K}{\lambda^{4}}\left(\frac{1}{\varepsilon^{\gamma}}+1\right)(m p)^{1+\gamma}
\end{aligned}
$$

Thus, as (22.20) in [1], we have

$$
\begin{equation*}
P\left(\sup _{s \leqq t \leqq s+m p}\left|Y_{n}(t)-Y_{n}(s)\right| \geqq 4 \varepsilon\right) \leqq \frac{K_{0}}{\varepsilon^{4}}\left(\frac{1}{\varepsilon^{\gamma}}+1\right)(m p)^{1+\gamma} \tag{23}
\end{equation*}
$$

if

$$
\begin{equation*}
\frac{\varepsilon}{n} \leqq p<\frac{\varepsilon}{\sqrt{n}} . \tag{24}
\end{equation*}
$$

Now, we choose δ so that $K_{0} \delta^{\gamma} \varepsilon^{-4}\left(1+\varepsilon^{-\gamma}\right)<\eta$, where $\eta>0$ is an arbitrarily given number. From (23) it will follow that

$$
\begin{equation*}
P\left(\sup _{s \leqq t \leqq s+\delta}\left|Y_{n}(t)-Y_{n}(s)\right| \geqq 4 \varepsilon\right)<\eta \delta, \tag{25}
\end{equation*}
$$

provided there exist a p and an integer m such that (24) holds and $m p=\delta$. But this is equivalent to the existence of an integer m with

$$
\frac{\delta}{\varepsilon} \sqrt{n}<m \leqq \frac{\delta}{\varepsilon} n
$$

which is true for all sufficiently large n. The rest of the proof is identical to the proof of Theorem 22.1 in [1] and hence, is omitted.

Remark. By Lemma 2, we can prove that the conclusion of Theorem 22.2 in [1] holds, even if the condition $\sum n^{2} \phi^{\frac{1}{2}}(n)$ is replaced by the condition $\phi(n)=O\left(n^{-2}\right)$. This is an extension of Sen's result in [4].

References

1. Billingsley, P.: Convergence of probability measures. New York: Wiley (1968)
2. Ibragimov, I. A.: Some limit theorems for stationary processes. Theory Probability Appl. 7, 349-382 (1962)
3. Oodaira, H., Yoshihara, K.: The law of the iterated for stationary processes satisfying mixing conditions. Kodai Math. Sem. Rep. 23, 311-334 (1971)
4. Sen, P.K.: A note on weak convergence of empirical processes for sequences of ϕ-mixing random variables. Ann. Math. Statist. 42, 2131-2133 (1971)

Ken-ichi Yoshihara
Yokohama National University
Department of Mathematics
Faculty of Engineering
Ohoka-machi, Minami-ku
Yokohama
Japan

(Received August 4, 1973 ; in revised form January 1, 1974)

