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Extensions of Billingsley's Theorems 
on Weak Convergence of Empirical Processes 

Ken-ichi Yoshihara 

0. Summary 

In [4], Sen proved Theorems 22.1 and 22.2 of Billingsley [1] on the weak 
convergence of empirical distribution functions for sequences of @mixing random 
variables to appropriate Gaussian random functions under less stringent regularity 
conditions. In this note, we shall prove the same theorems under weaker condi- 
tions than Sen's ones. 

1. The Main Result 

Let {x;, - ~  < j  < ~ }  be a strictly stationary @mixing sequence of random 
variables defined on a probability space (f2, ~ ,  P). Thus, {xj} satisfies the condition 
that 1 

sup - - IP (AnB) -P (A)P(B) I=r  ( n ~ )  (1) 
a ~ -  ~, n ~ + .  P(A) 

where ~ denotes the a-algebra generated by events of the type 

{(x h . . . .  ,xik)eE}, a<il<'.'<ik<_b 

and E is a k-dimensional Borel set. Let 

{~ if u > 0 ,  
c (u) = if u < 0. (2) 

Assuming x~ has a continuous distribution function F(u) and working with 
x* =F(x~) for any i, we define the empirical distribution function by 

F,(t) = n -1 ~c( t - x* ) ,  0_<t_<l. (3) 
i=1 

In [1], Billingsley proved that the sequence { Y,} of random elements in D [0, t]  

defined by Y. (t) = n ~ IF, (t) - t], 0 _< t _  1, (4) 

converges weakly to a Gaussian random function under the condition 
n 2 �89 q5 (n)< o0. Recently, in [43, Sen proved that the same result holds even if 

the condition ~ n 2 ~b�89 ~ is replaced by the condition ~ n qS~(n)< ~ .  We 
show here that the latter condition ~ n q~(n) < ~ can be replaced by the condition 
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(o(n)=O(n-2). We use the same notations and definitions in w 22, [1]. Let 

g t ( x * ) = c ( t - x * ) - t ,  0_<t<l ,  i>0 .  (5) 

Theorem. Suppose that {x,} is (o-mixing with (o(n)=O(n-2), and suppose Xo 
has a continuous distribution function F on [0, 1]. Then 

Y,- ~ ,  Y (6) 

where Y~ is defined by (4) and Y is the Gaussian random function specified by 

E { r(t)} = 0 (7) 
and 

E{ r(s) Y(t)} --EigAx*) g,(x,)} + ~ E{g,(x*) g,(xD} + ~ E{g,(x~) g,(x,)}. (8) 
k = l  k = l  

These series converges absolutely and P(Y~C)=I  (of Theorem22.1 in [1] and 
Theorem 3.1 in [4]). 

2. Basic Lemmas 

Let {zl} be stationary and (o-mixing with Ezi=O, Ez2=z,  P(lzf]> 1)=0 and 

EIz~l<__cv (c< ~ ) .  (9) 

It is clear that (9) holds when the z~ are Bernoullian variables, centered at expecta- 
tion. Let So -- 0 and 

Sm = zl + . . . + z,, , m >= l. 

In what follows, by the letter K, we shall denote any quantity (not always the 
same) which is bounded in absolute value. 

Lemma 1. I f  (O(j)=O(j -2) and (9) holds, then for all m sufficiently large 

ES~ < K m 2 (log m) 2 "c. (lO) 

Proof We follow the proof of Lemma 2.1 in [4]. We denote by ~, ,  the summa- 
tion over all i,j, k>O for which i+ j+k<m,  and let Z~ ), Z ~  ) and Z ~  ) be respec- 
tively the components of ~, ,  for which i>  (j, k), j > (i, k) and k > (i, j). Then, we have 

E S~ ~ 24 m { ~ ) +  ~ ) +  ~ ) }  [E z o z i z i +j z, +j+k [. (11) 

Since (O (]) = 0 ( j -  2), 

m 

( j + l )  2 (O(j)<=Km and ~ (o~(j)<Klogm. (12) 
j=l j=l 

So, using (9), (12) and the assumption that P([z~[ > 1)=0, we have the following 
inequalities: 

~ )  [Ezo zi zi+j zi+j+kr ~ 2 ~ )  (o(i) E [z o [ 
I n  

< K z  ~ (i+ 1) 2 (o(i)<Kz m, (13) 
i = l  
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~(2) iEzo zi zi+; Zi+j+k] m 

< Z ~  ) tE Zo z~ E z o zkl + 2 Z ~  ) q~(j) IE Zo zil 

<= K z z Z ~  ) d? *= (i) d? ~ (k) + K z y,~) d? (j) 

< K m z  2 ( ~ qS=*(i)] + K z  + 1) 2 qb(i 
' , i = 1  / \ j = l  

_<_ Kin(log m) 2 z, 

m 

m 

5 K ~ , ( k + l )  ~ ~(k)__<Kmz. 
k = l  

Thus, (10) follows from (11) through (13), and the proof is completed. 

Let q = [n~], and h = In/2 qT Further, let 
q 

vi= ~ z2iqH (i=O, ..., h - l ) ,  
j = t  

q 

�9 ~i = ~ z ( 2 i + ~ ) ~ + ;  ( i = 0 , . . . , h -  1), 
i = 1  

h--1 h - 1  

i=0 i = 0  

Lemma 2. There exists a number 7>0  such that for all n sufficiently large 

max ,E_ _ 
V = O  \ i = 0  / / 

Proof. We shall evaluate the following quantity: 

(=~o)4 /h-1 ,~ t th-~ ,a h) 
E =ElY, ,/+4elly, H 

i \ i = 0  / \ \ i = O  / 

Since 4 4 E v k <= KEv o for all n sufficiently large, so, by Lemma 1 (p. 170) in [1], 

~-~ ~ f i ~-~ ~ 

--< I/~vi v~l 
i ~ O  

h 

i = 1  

(13) 

(14) 

(15) 

06) 
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/ /h-1  ,2 ) ( /h-1 ,4,~ 

\i=0 / / 
/ s -1  \4 

Now, we consider E { ~ vi} �9 As in the proof  of Lemma 1, 
\ i = 0  / 

,,h-1 x4 

It follows from the fact r (m) = 0 (m- 2) that if (i, j, k) > 1 then 

[E vo vi vi +j 1)i+ j+kt 

< ]Evo vi Evo Vk[ +2  ~b�89 - 1) q) {E(vo vi) 2 E(vo Vk)2} ~ 

__< 4(e  v~) 2 r i -  1) q) r k -  1) q) 
+ 2 r 1) q){(e V~o) 2 +2 r i-1) q)E~}+ (18) 
�9 {(E v2) 2 + 2 q~ ((2 k -  1) q) E v~} ~ 

KE Vo 4 {~b } ((2 i - 1) q) r ((2 k - 1) q) + r ((2 j -  1) q)} { 1 }  <Kq_l  Ev~ 1 
= ( 2 i -  1 ) (2k-  1) 2~Z]--  1 " 

Similarly, for i > 1 

IEv~ vi[<=Z(o~'((2i-1) q)Ev~<=Kq-~ Ev'~, 

E v 2 v 2 __< (E v2) 2 + 2 r ((2 i - 1) q) E v~ < (E v2) 2 + K q 71 E v~, 
(19) 

[Ev 2 vi v,+j[ =2~b ( (2 j -  1)q)(Ev2)2+2r - 1)q)Ev'~<=Kq-lEv'~ (j>= 1), 

max([Evo v 2 v~+jl, IE vo v~ v2+ i[) < 2 r ((Z i -1 )  q) E v4 < K q-~ E v~ (j > O). 

So from (18), (19) and the definitions of q and h, we have 

h - 1  

Zh IE vo v, vi+j Vi+j+k[ < Ev~ + Z {I Ev3 v,I + IE vo v~ t + Ev~ v if} 
/ = 1  

h--1 h-- j--1 

+ ~ ~ {IEv~v~vi+jl+lEvov~V~+jl+lEvov~V~+jl} 
j=l i=1 

+ Y', IEVoViV~+jVi+j+kl (20) 
(i,j ,k)>-i 

~K{(1 +q-~ h+q -1 h 2 log h)Ev~+h(Ev2) 2} 

=< K {E Vo 4 + h (E v2)2}. 

As EvE=qz(l+o(1))(cf. Theorem 1.6 in [2]), so from (17), (20) and Lemma 1, 
we have 

E{i~__ol)i) ~_~K{hq2(logq)2'r,-k-h2q2"r2}~K{n~z-k-n2z2}. (21) 

/h-1 \4 /~-1 ~4 
On the other hand, E ,=o,(~v~) = E  \ = o , | i  ~ v ' ) "  Thus, (14)with y=-~ is obtained from 
(15), (16) and (21). 
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Let  

and  

3. Proof of Theorem 

Y" L , =  o = 

1 h - 1  
r '(t)=-7 E 

1/n ~=o j=~ 

Let  zj = gt (xj ~) - g~ (x*) (0 < s K t < 1) and  put  

q 

vi= ~ z2iq+ J ( i=0 ,  1 . . . . .  h), 
j=l 

q 

-~i' "~- E Z(2i'+l) q+J (i' = 0 ,  1 . . . .  , h - -  1). 
j = l  

Since zj is a Bernoul l ian  variable,  (9) holds with c = 2  and E z j = 0 ,  

Ez~=(t-s)(1-t + s)< t-s. 
Hence,  it follows f rom L e m m a  2 tha t  for all n sufficiently large 

h 4 /h-1 \4\  
max  E( 2 vl) ,E( 2"fii) I<K{nE-r(t-s)+(t-,)2} 

\ i = 0  / i = 0  / ] 

where 0 < s < t < 1 and 0 < V < +- Therefore,  if ~ (0 < e < 1) is a fixed n u m b e r  such that  

- - ~ t - - s ,  

we have  n 

m a x ( E  [ Y" ( t ) -  Yd(s)l% E I Y d ' ( 0 -  Y~"(s)[ 4) 

_-< K (~(t - s )  l+~er ~-(t- s) 2 } (22) 

Assume  now tha t  p is a n u m b e r  satisfying ~/n <= p. Since 

Y~(s+ip)-Y~(s) 
= { Y~' (s + i p) -- Y~'(s)} + { Y"(s + i p) - ~" (s)} 

i i 

= ~ {Y'(s+jp)-Y'(s+(j-1)p)}+ ~ {Y~"(s+jp)-Y"(s+(j-1)p)} 
j = l  j = l  ( i=  1 . . . .  , m) 

where  m is a posit ive integer, so by  (22) and  T h e o r e m  12.2 in [-1], 

P(max IY.(s+ip)- r.(s)l> 2) 

<P \(maxlY'(s+ip)-i<=m Y~'(s),>-~) +P (im~ ,Y."(s+ip)- Y~"(s),> 2 )  

< 3 2 K  
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Thus, as (22.20) in [1], we have 

P(~-<t-<~+mp_ sup_ [ Y.(t)- Y,(s)[ > 4 ~ / <  K ~  ,=  ~ \/1+1)~ (rap) 1+~ (23) 

if 

n - < p < ~ - .  (24) 

Now, we choose 6 so that Ko 6~e -4 ( l+e -~ )<q ,  where ~/>0 is an arbitrarily 
given number. From (23) it will follow that 

P( sup [Y,(t)- Yn(S)l>4e)<~/6, (25) 
s < t < s + ~  

provided there exist a p and an integer m such that (24) holds and m p = 6. But 
this is equivalent to the existence of an integer m with 

6 6 
--V~<m<__--n, 

which is true for all sufficiently large n. The rest of the proof is identical to the 
proof of Theorem 22.1 in [1] and hence, is omitted. 

Remark. By Lemma 2, we can prove that the conclusion of Theorem 22.2 in [11 
holds, even if the condition ~ n 2 ~b~(n) is replaced by the condition ~b (n)= 0 (n-2). 
This is an extension of Sen's result in [4]. 
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