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On the Tail Events of a Markov Chain 

Harry Cohn 

1. Introduction and Summary 

Let (~2, Y,P)  be a probability space, {X,: n>0} a Markov chain defined 
on this space, E =  {al, a 2 . . . .  } the set of its states, ~ "  the a-algebra generated 
by the random variables X m . . . . .  X, (m, n=0,  1, ..., m~n), ~ " - - ~  and ~oo the 

p .  (k,n) P~X a-algebra generated by X,, X~+I, . . . .  Set Pj(")=P{Xn=a~} and i,j -- ~ k=ai 
X~--aj} for n----2, 3, ..., n>k and ai, a~E. 

The a-algebra 3- = (~ ~o~ is called the tail a-algebra of the considered chain. 
n = l  

Let ~o be an arbitrary sub a-algebra of ~ .  A set A in ~o is called atomic 
if P(A)> 0 and A does not contain two disjoints subsets of positive probability 
belonging to ~o. A set A in ~o is called completely nonatomic if P(A)>0 and 
A does not contain any atomic subset belonging to ~o- 

According to a well known property (see Lo6ve [9], p. 100) the sample space 
can be represented by means of disjoint events belonging to ~ as 

n = 0  

where Ao and some of the A,, n > 1 may be absent and if present A0 is a com- 
pletely nonatomic set and A1, A2, ... are atomic sets. This decomposition is 
unique modulo null probability sets of ~o. 

A a-algebra ~o will be said to be trivial if it contains only f~ and ~b, modulo 
null probability sets. 

In the case when the representation corresponding to ~o is of the form 

~? = U Ai with s a natural number, Jo  will be said to be finite. 
i = l  

O ( 3  

When the representation corresponding to ~0 is of the form Q = U A~, 
~0 will be called atomic, i= 1 

There are several papers investigating the structure of the tail a-algebra 
of a Markov chain. Blackwell and Freedman [-3] have proved that ~- is finite 
in the case of a homogeneous, irreducible, recurrent and denumerable Markov 
chain, the atomic sets being {Xo~Ec} modulo null probability sets, where {E~, 
ce C} is the partition of E into its cyclically moving subclasses. Using the space 
time harmonic functions Jamison and Orey [8] extended this result to Markov 
chains recurrent in the sense of Harris. 

Some conditions ensuring the atomic structure of the tail a-algebra which 
corresponds to a homogeneous, denumerable Markov chain, by means of its 
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connections with the invariant a-field of the chain, have been obtained by 
Abrahamse [1]. 

Other papers consider some kind of mixing conditions under which ~- is 
trivial or finite. In [4] such a property has been studied by means of the random 
variables 

sup ]P(Alo~)-P(A)I  (k>n, k , n = l ,  2 . . . .  ). (1) 
A ~  

Bartfay and R6v6sz [2] have proved that in the case of a Markov chain (1) 
remains unchanged if ~ n  is replaced by ~ and 4 | by 4 - 1  and have got some 
necessary and sufficient conditions for the finiteness of f .  Subsequently in [5] 
it has been proved that any finite nonhomogeneous Markov chain has a finite 
tail a-algebra. Iosifescu [7] gave further extensions in this direction and has 
proved, among other results, that the finiteness of the J -  holds true also for a 
continuous parameter Markov chain with a finite set of states. 

The aim of the paper is to give a characterization of the tail a-algebra of 
an arbitrary denumerable nonhomogeneous Markov chain by means of a certain 
convergent sequence of random variables derived from the chain. The random 
variables used are functions of the transition probabilities of the reversed chain 
and the proof of our main theorem will be seen to utilize as its main tools the 
time reversibility of the Markov property and the martingale convergence 
theorem. Some criteria insuring the triviality, finiteness and atomicity of ~- 
are obtained. 

The probability distribution of the atomic sets in 3- is established and some 
special cases of nonhomogeneous Markov chains are considered. In particular 
when the chain assumes only s values, its tail a-algebra will be proved to contain 
at most s atomic sets. In the final section an extension of the main theorem to 
a continuous parameter Markov process is given. 

2. Some Basic Results 

Let us define for any k and n with n > k the random variable 
(3O 

y~,n(~)=�89 y, IP~(~)-P~*(~,n)[ for r (2) 
i=1 

Let us notice that 

Vk,.(CO) = sup (P{A} -P{AIo~}). (3) 
Ae~k 

Indeed, we have 

sup (P{A} - P { A [ ~ } ) =  ~ (Pi (k) _ p.(k,.))+ 
Ae~---~k i = l  

for o~{X.=a~}, where a+=max(a ,  0). On the other hand, if we denote by A 
the complementary set of A, for any A and B with P(B)>0, one has 

P { A} - P {A[B} = - (P {A} - P {.,t[B}) 
and (3) follows. 

Now, we shall see that a stronger result than (3) holds. Namely, we have 
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Lemma 1. I f  {AT.: n > l }  is a denumerable Markov chain and {Tk,.(CO)} is 
defined by (2), then 

7k,,(CO)= sup (P{A} - P { A I o ~ } )  a.s. (4) 
A~.,Zk 

The proof of this lemma can be achieved using the same technique as in 
the proof of Lemma 3 of [6] by taking into consideration that the Markov 
property is reversible. 

Lemma2.  I f  {X,: n > l }  is a denumerable Markov chain and {Tk,,(CO)} is 
defined by (2), then 

~k,,(co) < ~k:,(co) a.s. (5) 
for k '>k.  

The proof follows directly from Lemma 1. 

Lemma 3. I f  B is an event of positive probability and o~ o a sub a-algebra 
of ~ then 

sup (P {A} - P {AIB}) < 1 - P {B}. (6) 
A e ~.~o 

Proof. We have 

P(A ) -  P(AIB) = P(A c~ B) + P(A c~ n ) -  P(A c~ BIB) < P(A c~ B) < 1 - P(B). 

We notice easily that in (6) equality holds if and only if B ~ o .  

Let us denote by T O the completely nonatomic set and by T~, T 2 . . . . .  the 
atomic sets occurring in the representation of Q corresponding to ~-. 

Theorem 1. (i) There exist the limits 

~im 7k,, (co) = 7k (co) a.s., (7) 

lim 7k(co) =?(co) a.s. (8) 

(ii) ?(co)= 1 
and 

? (co) = 1 - P(T~) 

for almost all coe To 

for almost all me T~ (i= 1, 2,...). 

Proof Let us consider first the following decomposition of 7k,, (CO): 

7k,,(CO) = Y', (Pi (k)-Pi *(k'"))+ + ~ (Pi(k)--P~*("")) + (9) 
ierzv i~F~r 

where Fu = {1, 2, . . . ,  N}. Denote the first sum of the right hand side of (9) by 
2~, (co) and the second one by 2~,', (co). 

Now, for a given e > 0  we can choose a number N such that for any n and co: 
2~',(co)<e. Indeed, it is enough to notice that 

(co)---- 2 p(k) 
ie/'N 

which obviously could be made as small as we like by choosing N sufficiently 
large. 

Let us deal now with the first sum of (9). By a well-known property of mar- 
tingales due to Doob  (see e.g. [9], p. 409) we have 

P{Xk(co)=ai[~ ~176 --*P{Xk(CO)=ai]3-} a.s. (10) 
5* 
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as n--+oe. Since 2f,.(co) contains a finite number of summands, we get from (10) 
and by the time reversibility of the Markov property 

lim2~,.(rn)= ~ (P~(k)--P{Xk(Co)=a,l~--}) § a.s. 
n ~  oo ie rN 

If we notice that 

I~k(~)- ! im;~.(o)l  < e a.s. 

we conclude that 

lim 7k,,(rO)-=?k(O))= sup (P{A}-P{A[~})  a.s. 
n ~ o o  A ~  k 

Further, taking into account (5) we deduce that the following limit also exists" 

lim ?k ((o) = 7 (r a.s., 
k ~  co 

and the first part of the theorem is proved. 

Set now ~b(A, ~o)=P{A}-P{AIJ-} and ~ =  {A: ~b(A, o~)<7(~ ) a.s.}. It is easy 
co 

to see that ff is a monotone class and contains U ~"-  Therefore 
n = l  

P{A}-P{A]g-}<=?(~o) a.s. (11) 
for any A e ~  *. 

Consider further an atomic set T i belonging to J .  If we denote Ak = {j: 
Pj(k)--P{Xk=jlTi}>O}, then we have P{XkeAk}--P{Xk~Aklg-}=?k(~O) for al- 
most all (n~ T~. This fact, together with Lemma 3 and (11) yields 

?k(r P { ~} -- P { ~]T~} -- 1 - P { Ti} __< ? (r 

for almost all e) ~ T i. Hence 
7(0)) = 1 - P { T~} (12) 

for almost all oJ ~ T~. 
To complete the proof let us notice that it follows from (11) that for any 

Te J-  we have 
P{T}-P{T[~-}<?(co) a.s. (13) 

Let us suppose that the event T =  {co: 7(~)< 6} has positive probability for 
a given 6 with 5 < 1. Consider an arbitrary subevent of T, say T', which belongs 
to J .  Writing (13) for T' and integrating over T' we get P(T')P(T')<6P(T'). 
If P(T')>O we deduce easily that P(T')> 1-3 .  Therefore T is a union of atomic 
sets and contains at most 

atomic sets. This fact and (12) prove the remaining part of the Theorem. 

Corollary 1. The tail ~r-algebra of a denumerable Markov chain {Xo: n=> 1} has 
the same structure as the tail a-algebra of any of its subsequence of random variables 
{X.~: k >  1}. 
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Corollary 2. (i) ~ (co)= 0 a.s. iff 5 is trivial. 

(ii) V (co) < ~ a.s. with �89 < @ < 1 iff Y is finite. 

(iii) 7 (co) < 1 a.s. and (i) and (ii) do not hold iff 5-  is atomic. 

Proof. By Theorem 1 we need only show that y (co)<�89 a.s. implies y (co)=0 a.s. 
We notice easily that we have either P{v(co)=0} = 1 or P{v(co)=0} =0. If the 
second case were possible, we would have according to Theorem 1 � 89  1 
for any atomic set T of F But since there cannot be more than one set with_ such 
a property, T must also be atomic and 7(co)=P(T)<�89 for almost all o)E T, which 
is a contradiction. 

Corollary 3. I f  P {~ (co)< 1} > 0 and we denote the probability distribution of 7 by 

7: Po B. . .P~. .  ' 

then 5- contains Pi/(1 - x i )  atomic sets having probability 1 -  x~, i>= 1. 

Proof. Let us denote by { Tk ~: k = 1, ..., kg} the atomic sets of 5 which have the 
same probability (for i=  1, 2, ...). According to (12) we have 

1--P(Tki)=Xi, k = l ,  . . . , k  i. 

Therefore P{Tk i} = 1--x i for k =  1, .. . ,  k i and the number k i is Pi/(1-xi). The proof 
is complete. 

Remark. While the expression of 7 (co) is in general difficult to obtain explicitly, 
we can nevertheless get effectively the probability distribution of the atomic sets 
of 5 by using Corollary 3. Indeed, we know that the distribution function of 
7(09) can be obtained by taking the limit of the distribution functions of {Tk,n(CO)}. 
According to Theorem 1 y (co) is a discrete variable, {x~} are the points of discontin- 
uity and {P~} the jumps of its distribution function. 

3. Applications 

In this section we shall give some theoretical applications of the preceding 
results to nonhomogeneous Markov chains. 

Theorem 2. Let {Xn: n > 1} be a denumerable Markov chain assuming a state ai 
such that P {Xn=a i i.o.} =1 and lim infPi~n)>a>0. Then the tail a-algebra 9- is 

n ~  oo 

finite and contains at most [1/a] atoms. 

Proof. Without any loss of generality we may take f 2 = N  *~176 i.e. the space of 
all sequences co=(il, i2, ...) with il, i2, . . .~N*, Xn(co)=i,, the smallest o--algebra 
with respect to which the {X~: n >  1} are measurable, and P the probability con- 
structed on ~,~ in the standard way. 

Now, there exists a set A ~ E  ~ with P(A)= 1 such that in any coeA the coordi- 
nate i occurs infinitely often. Further applying Lemma 3 to the sequence {Vk,,(CO)} 
and using Theorem 1 we get 7 (co) < 1 - a  for co cA and the theorem follows. 

Let us define for an arbitrary 8 > 0 and for a positive integer m the set 

N~'= {i: Pi~m)> e}. (14) 



70 H. Cohn 

Theorem 3. Let {X.: n__> 1} be a denumerable Markov chain and {N~"} the family 
of sets defined by (14). I f  )ina lim,,40osup P {X, ,~]~  } -- 1, then the tail a-field J -  is at 
most atomic. 

Proof According to Theorem 1 we need to prove that P {co: 7 (co) < 1 } = 1. By 
the assumption made, for an arbitrary ~/we may find a number e and a subsequence 
{m,) such that lirn P {X,,~ N~"} > 1 - q. (15) 

From Lemma 3 we deduce easily that ?R, ,,, (CO) < I -- e for co~{X,(~)=aj} with 
j~N~" and k <m. .  Now, by (15) we get P{~k(CO)< l - - e } >  1--t/ for any k and the 
same relationship will hold true if we replace ~k (O~) by 7 (co). The proof  is complete. 

Corollary 1. Any Markov chain {X,: n > 1} with a stationary absolute probability 
-distribution admits at most an atomic tail a-algebra. 

We note that in particular when the chain is homogeneous the same result is 
a consequence of the Blackwell and Freedman paper [3], because such a chain 
is recurrent. 

Corollary 2. Any Markov chain {X.: n >  1} assuming s states has a finite tail 
a-algebra which consists of  at most s atomic sets. 

Proof First, note that since ~;k,,(r assumes at most s values, the same will hold 
true for 7 (r We can see this most easily by a double application of the following 

Lemma. 1 Let X1, X 2 . . . . .  X be random variables having distributions 711,7[ 2 . . . . .  7[, 
and taking values in a separable metric space, and let X ,  converge to X "in law"; 
i.e. let 7[. converge weakly to 7[. Then if 7[ contains s + 1 distinct points in its support, 
the same must be true for 7[, for all sufficiently large n. 

To prove the lemma (noting that the support of a probability measure 7[ is the 
set of all points y such that 7[(G)>0 whenever the open set G contains y) notice 
that under the stated hypothesis there will exist s + 1 disjoint open sets all having 
positive 7j-measure. We can take these open sets to be spheres, and since there are 
continuum-many choices possible for the radii of the spheres, we can suppose that 
each sphere has a boundary of 7j-measure zero, that is, is a 7j-continuity-set. 
Calling the spheres so chosen $1, $2 . . . . .  Ss+ ~, we shall have 7[,(Si)>0 for n>N/  
(all i = 1 , 2 , . . . , s + 1 ) ,  and so 7[,(Si)>0 for i = 1 , 2  . . . . .  s + l  provided that n >  
max (N0 = N. Thus the support of 7[, (for n > N) contains at least s + 1 points (it is 
here that we use the separability of the metric space). 

Turning now to the corollary, if the distribution of ~, contains s + 1 distinct 
points in its support, then so does that of ]/k for k > K. Choose such a k, and apply 
the lemma again; we see that the distribution of 7k,n must have at least s + 1 points 
in its support for all n > N ,  yet 7k,. is a real-valued random variable assuming at 
most s distinct values. 

Next, we shall show that the conditions of Theorem 3 are satisfied. For  that, 
suppose the contrary, i.e. there exists a positive number p such that 

P { X m ~ " } > p  

1 It was Prof. D.G. Kendall who noticed that this result holds true in such general conditions and 
provided the proof. 



On the Tail Events ofa  Markov Chain 71 

for m sufficiently large and arbitrary positive e. But if we choose e < p/s, we deduce 
that there must be more than s states which is a contradiction. Therefore Y- is 
finite, and if we denote by N the number of the atomic sets in J,, then by Corol- 
lary 3 after Theorem 1 we get 

N - - ~  P~ (16) 
�9 = 1-x~'  

x~, ..., xt being the distinct values assumed by 7 and P~ . . . . .  Pt their probabilities. 

Now, given two arbitrary positive e and t/we may find two positive integers k 
and n such that 

P {17k,, -- 71< e} > l -- ~ . 

Let us denote by x[, . . . ,  x'~ the values assumed by 7k,, on the sets 

{X,=al} . . . . .  {X,=a~} 

respectively and by Et, ..., E~ the subsets of E with the property that for any a jeEr ,  
IxA-xzl <~, i= 1, . . . ,  t. Further, let x* be the value of yk,, taken on the set {X, =ai, } 
where P/") = max Pj("). According to Lemma 3, x* __< 1 - P~"). Then if we denote by 

aj~Ei 

N[ the number of states in E i and set P~'= ~ Pj("), we get 
j~Ei 

___N[, i=1  . . . .  , t .  (17) 
1 -x~ 

Further, we may choose ~, ~/, k and n such that E1 . . . .  , E t be disjoint and 

- - <  Y' ~-2 
i=l'/-'a l _ _ x i  i=1 1 - - X ~  

with 2 < 1. 

Therefore by (16), (17) and (18) we get 

N < N [  +. . .+N~'  + 2 < s +  I.  

(18) 

As N is an integer we deduce that N__< s and the proof is complete. 

4. The Continuous Parameter Case 

The above results can be extended to the case of a continuous parameter 
Markov process with a denumerable set of states {X(t), t~[0, oo)}. For such a 
process the tail a-algebra 9- is defined as 

9-=N  
te[0, oo) 

~ t 2  ~ being the a-algebra generated by the random variables {X(s), t l ~ s ~ t 2 }  , 

tl, t2e [0, oo), q <t2.  We have 

Theorem 4. Let  {X(t), te [0, oo)} be a Markov  process having a denumerable set 
o f  states, {t, ,  n >  1} an arbitrary increasing sequence of  positive numbers with 
lim t ,=oo  and {Trk,~.(o))} a sequence o f  random variables defined in the manner 
n~ oo 
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of (2). Then 
(i) There exists the limits 

! im  = a.s., 

lim ,k( o) a.s." 

(ii) 7 ( @ =  1 for almost all me To 
and 

7(co )=I -P(T/ )  for almost all ~oe T~, ( i=1 ,2 , . . . ) .  

Proof. (a) is Theorem 1 applied to the Markov chain {Xt, , n__> 1 }. 

To prove (b) we may notice that as in the proof of Theorem 8 of [8] we deduce 
that {Xt,, n > 1 } provides all the information about ~ .  Indeed an obvious extension 
of Lemma 1 to Markov processes yields 

7tk,t= sup ( P { A } - P { A I N 2 } ) .  
A e ~ o  k 

oo 

Now, if we remark that in (10) 9-  may be replaced by ~--' = ~ ~oo t=, we deduce 
n = l  

that Y'  is the tail a-algebra of {At., n >  1}. But ~ - ' - - Y  and the proof is complete. 

Acknowledgement. The author wishes to express his thanks to Professors D.G.  Kendall and 
H. Kesten for their useful comments on this paper. 
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