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Combinatorial Solution of the Buffon Sylvester Problem 

R.V. Ambartzumian 

1. Introduction 

In the present note we consider integrals with respect to a certain measure #, 
introduced on the set 9)l of geodesic lines (g-lines) which belong to a "simple 
domain" 5O on a smooth surface in lRa. A domain 5 ~ is called simple if there is a 
single g-path inside 60 connecting every pair of points from the interior of 

In the case where 5 ~ has constant curvature the measure # coincides with the 
usual invariant measure. In the general case many properties of the latter are 
shared by #. In particular [1] 

d/t = sin 0 dl dO (1) 

where 0 is the angle of intersection of g e 93l with a fixed line ~ and I is the longitu- 
dinal coordinate of the point of intersection on Y. 

We show (w 2) that the correctness of such an introduction of/~ follows from a 
certain symmetry principal in the theory of G-lines. The Buffon-Sylvester problem 
for a simple 5O is posed as follows (see [2, 3] forplanar and spacial cases): 

Let a set of needles {Ai}~ (a needle Ag is an open finite segment of gegJ~) be 
fixed on 5s Let 

Ai= {gegYt; g n Ai#:fi} , 
n 

Find/~ (E) and/~ (F). 1 1 

The method of "invariant imbedding" [-3] gave the answer in the case of a 
planar 50: 

(E) = 2 F, p (g) + F, p I ,_ 2 ( g ) -  F, p I,_ 2 (g). (2) 
T'  W -  W + 

(2) is valid under the additional assumption that the set of endpoints of the needles 
{Ai} is nondegenerate in the sense that no three points from the set {~} of the 
needles' endpoints lie on the same g-line. In (2) T', W-  and W + are disjoint 
subsets of the set {ge~J~; a pair of points from {~,.} lies on g}, p is always the distance 
between the points in the pair, T ' =  {gegJl; a needle lies on g}, W-  = {ge~Jl; the 
two needles with endpoints on g lie entirely in different halfplanes with respect to 
g}, W + = {gegJl; the two needles with endpoints on g lie in the same halfplane with 
respect to g}, Ik(g)= 1 if g intersects k needles and 0 otherwise. 

Although the method of invariant imbedding is no more useful in the case of 
general ~ the result itself holds, and this is shown in w 3. In the general case, in (2) 
p stands for geodesic distance, and due to the simplicity of ~ W § and W-  are 
also well defined. 

A process of integration of (2), analogous to that used in [-3] reveals some 
interesting properties of g-convex domains on ~ In particular we give an isoperi- 
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metric inequality which reduces to the classical one when ~ has constant curvature. 
We demonstrate some extremal properties of the halfsphere in the set of simple 
domains on surfaces in IR a . 

2. The Symmetry Principal 

Consider the problem of defining the measure/~ on M. 
Let A be an infinitesimal segment of g693/on ~, dl the length of A. Consider 

the set {g~93l; g c~ A + 0, the angle of intersection at g c~ A belongs to (~,, ~ + d~p)}. 
Assume that the p-measure of the above set may be presented in the form d# = 
F(g, l, ~) dl d~k. It is natural to ask whether there exists a ~t for which 

F(g, l, ~k)=F(tp), independently o fg  and I. (3) 

Let us show that the condition (3) defines F up to a constant factor. 

Let AI and A2 be two infinitesimal g-segments on 5 e of length dl~ and dl2, 
~x and ~2 be the midpoints of A~ and A2 respectively. The #-measure of the set 
{g~gJ/; Alng4:fJ, A 2 n g + ~ }  under (3) may be written in both forms 

dp = F(~I) dl I d~b x = F(~2) dl 2 d~b 2 (4) 

where @i is the polar angle (measured from A~) of ~ ,  d~p ! is the difference between 
the polar angles of the endpoints of A s in the system of geodesic polar coordinates 
on ~ with ~ as center, i = 1, 2, j = 2, 1. In general the relation between the length 
d2i of the infinitesimal arc through ~ of a geodesic circle centered at ~ and the 
corresponding polar angle d~i has the form d 2 i = h ( ~ ,  ~ )  d~bi, i=  1, 2 with some 
function h. The geodesic radius is always orthogonal to the geodesic circle. 
Therefore in (4) we have to insert 

sin ip~ d I s 
d~b~= h (~ ,  ~ )  ' i=  1, 2. 

This yields 

d# = F(~b0 sin ~b 2 dl 1 dl 2 = F(~/2) sin @x dl x dl2. (5) 
h ( ~ ,  ~2) h(~2, ~ 0  

Since ~O ! and ~/2 are  independent variables we easily conclude from (5) that 

F(~b) = C sin ~b, h (~1, ~2)= h (~2, ~1). (6) 

Obviously the symmetry condition (6) is necessary and sufficient for the existence 
of a # with the property (1). The existence of such a # has been established for 
simple 5 p (see [1]), and this proves (6) as well as 

sin ~kx sin ~/2 dll dlz. (7) 
d # =  h 

Note that for 50 of constant curvature x, h depends only on the distance r between 
and ~ .  For instance 

h = r  for tc=0, h = s i n r  for x = l  and h = s h r  for x = - l .  
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It follows by integration of (1) that for every g-convex domain ~___5 e the #- 
measure of the set {g~932; g n ~ 4:~[} is equal to the length of the perimeter of ~ .  
We use this fact in w 3. 

3. Convex Polygons 

To prove (2) we start with a somewhat more general problem. Namely let 
~1 . . . . .  ~n be a set of g-convex open polygons on 5s Let 

?1 n 

Bi=(gEgJl;g~i4:~J}, E=(~Bi, F=UBi. 
1 1 

lk (g) = 1 if g intersects k polygons, 0 otherwise. 

The results of [3] again suggest the form of #(E) and #(F) in the case of non- 
degenerate {~}, {~} = the set of all vertices of {~i}~: 

# ( E ) = E  p I._l(g)+ ~ p I.-2(g)- ~ p In_2(g), (8) 
T W -  W + 

# (F) = ~ p I o (g) + ~ p I o (g) -  ~ p 10 (g). (9) 
T W + w -  

H e r e  T, W -  and W + are disjoint subsets of the set 9~o = {g~gJ/; a pair of points 
from {~} lies on g}, p=p(g) is the g-distance between the points of the pair, 
T=  {g69~o; a side of a polygon from {@i} lies on g}. To define W -  and W § note 
that each gEgJl divides 5e into two disjoint regions which we call g-parts. W - =  
{g69J/0; the two polygons which have vertices on g lie entirely in different g-parts}, 
W + = {g~gJ/o; the two polygons which have vertices on g lie entirely on the same 
g-part}. Denote by J a subset of the {1 . . . . .  n}. We add J to the symbols introduced 
above when referring to the set { ~ i } i E S "  

By the universal theorem of logic 
n 

#(E)=Z(-1)i+IH,, 1I,= ~ #(Fs) , (10) 
i = 1  c a r d d = i  

#(F)=  ~ ( -1 ) '+ l r c , ,  rci = Z #(Ej). (11) 
i =  1 c a r d  J = i 

Let us verify that the right side of (8) and (9) satisfy (10) and (11). 

Upon setting IT(s)= 1 ifg~ T(J), 0 otherwise, changing the order of summation 
yields 

E EpIo(g,J)=~p Y. Ir{j)Xo(g,J)=~pC~.--~r_~, 
c a r d  J =  i T(J)  T c a r d  J =  i T 

r =  r(g) is the number of polygons from {~i}~ intersected by g. 
Quite analogously 

E E plo(g,J)=EPCi--2-2. 
c a r d  J =  i W:~(J)  W :~ 

Furthermore 

i - - 1  
2(-1)'§ . . . .  2 p  = ,--r--1 = Z P I,,-l(g), 

i = 1  T T i = 1  T 

C i -  2 _ C i -  2 _ ( -  1) '+1 ~ P  ,,-,--2- ~ P ~ ( -  1) '+~ . . . .  2 -  - ~ P I,,-2 (g). 
i = 1  W =~ W =~ i = 1  W=E 
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We see that substitution of the values for #(F, J) from (9) into (10) yields the 
right hand side of (8). In the same way we can obtain the right hand side of (9) by 
substituting (8) into (11). 

Clearly this by no means proves the Eqs. (8) and (9). For instance, the quantities 
P I ,- l(g) and Y' p Io(g) also satisfy (10) and (11). 

T T 

We will prove (8) and (9) by induction with respect to n in the case of non- 
overlapping polygons {~i}. 

According to the remark at the end ofw 2, (8) and (9) are true for a single polygon 
(n = 1). Assume that (8) and (9) are true for sets of n -  1 nonoverlapping polygons 
with nondegenerate {~}. Let us show that (8) and (9) hold for {~}~. 

Consider the possibilities: 

a) The set E is empty. 
b) The set E is not empty. 

If a) is the case, %=/~(E)=0.  For #(Es), card J < n, (8) is true b y  assumption, 
and (9) is verified by using (11) as above. At the same time, the indicators on the 
right hand side of (8) vanish, which proves that (8) is also correct. 

Now let us look at case b). Choose g0eE and assume that the numbering of 
{~i}~ is by order of their intersection with go. 

Fig. 1. ~ i  are  the shaded  polygons ,  i =  1 . . . . .  n 

Using the lines from W-  construct for each ~i the polygon ~i by the method 
shown in Fig. 1. We mark the symbols introduced above with tildas when referring 
to the set {~i}~. 

Lemma. E =/~. 

The proof is obtained by induction with respect to n, and draws on the 
uniqueness of the point of intersection of two g-lines on ~. 

Another important property of the set {~i}7 is tha t /~(P)=the  length of the 
perimeter of the minimal convex hull of the set {~i}. 
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In general the sets {-@i}i~s do not possess nondegenerate {~,.}. For this reason 
we have to derive the limiting form of (9) for { ~ } ~ j ,  card J < n. This happens to be 

#(Fs) = ~2 p io(g, S)+ ~ p io(g, S ) -  _ ~  p io(g, S). (12) 
~(y) w(y) w - (y) 

The following symbols need special defining: 

7~(J) is the set of all pairs (a, g), where a belongs to the set of all sides of the 
polygons {~i}i~J- g is the geodesic through a. p = p ( a )  is the length of a. 

Also when ge  W -  (J) it may occur that three points from {~} lie on g; in this case 
p equals the distance between the outermost points on g. We emphasise that (12) is 
true for card J < n  because of our assumption. But in fact (12) remains true for 
card J = n also, since its right hand side in this case reduces to the perimeter of the 
minimal convex hull of {~i}7. 

By the lemma above 
n 

# ( E ) = ~ ( - 1 ) ~ + t / I ~ ,  /I~= ~ #(Fj). (13) 
a c a r d  J = i 

Substitution of (12) into (13) yields 

# ( E ) = ~  p/~._, (g) + ~2 p / . _  2 (g) -  w~+ p/~.- 2 (g). (14) 
T W -  

But the right hand side of (14) does not change when the tildas are removed. 
Hence (8) is proved. Now we are in a position to check (9) by substituting (8) into 
(11). With this the proof by induction is completed. 

In the next section we apply Eq. (2) only to needles. The latter is obtained from 
(8) by the following procedure. 

Let i}a), ..., i}~,) be the parts into which Ai is partitioned by other needles of the 
set {Ai}7. Choose integers kl, ..., k,, 1 < k S s ~ .  Denote 

Ek ...... k.---- {g; g ~ I}k') ~ ,  i =  1 . . . .  , n}.  

Obviously 
#(E)= 2 . . . . . .  

Each I} k~ may be considered as an infinitely narrow polygon and (8) may be used 
to express #(Ek  ...... k.)" Then (2) is obtained through an easy summation. 

4. Integration 
Let ~ 5r be a strictly g-convex bounded domain with piecewise smooth 

boundary ~ ,  ~Jl~ = {g ~ 9Jl; g c~ ~ ~ } .  
Every (gl . . . . .  g , ) c  (gJl~)" defines a set of needles {Ai}~, A i = g  i ~ D with a.e. 

nondegenerate {Pi}- The measure M, on (93l~)" is defined by 

d M ,  = d# l  . . . . .  d p , ,  where each p~ coincides with # on 9J/~. 

Let us integrate (2) with respect to M,.  
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Firstly 
#(E) dM,= ~ d# ~ I~(g) dM, = j (2Z) n d#, 

Z = Z (g) is the length of g n 9 .  
Then with Pl for the length of Ax we have 

2 ~ ~ p I._~(g) dM.=n ~ 2p, I._~(g~) dM. =n ~ (2Z)" d#. 
T 

Furthermore 

[ ~  P I . - 2 ( g ) -  Z P  I . -2  (g)] dM.=Zn(n-1)~P~2 I.-2(g~2)[Iw - -Iw§ dM. 
W -  W + 

In this writeup PlZ is the distance between an "arbitrary" endpoint of A1 and an 
"arbitrary" endpoint of A2, g~2 is the g-line through these points, Iw~ (g~, g2) is 
the indicator of the set W +. 

After summing up these terms and dividing the result by n - 1 ,  we obtain for 
n > 2  

(2Z)" d # =  n ~ 2pl 2 I._ 2(glz)[Iw+ - Iw-] aM.. (15) 

Using (1) and 
I._ 2 (g.) d/t3, "", dkt. = (2 Pl 2)"-2 

transform the right hand side of (15) to 

�88 ~ (2p12) "-a [Iw+ -Iw-]  sin $~ sin $2 d$1 d$2 dl~ dl 2 . 

One finds readily that 

St St 

~ sin $! sin $2 [Iw + - Iw- ] d$  ! d$  2 = 4 cos cq cos 62, 
o o  

the angles cq and 6 2 are shown on Fig. 2. 

~ 

Fig. 2 

So we arrive at the final result 

n n ~Z d#=-~ ~ p'~IlCOSCqCOSO~2dlldl2, n > l .  (16) 
(08) 2 

In fact (16) holds when 0 9  possess parts of g-lines. Let f(x)= a 2 x2+ a 3 xa+  -.. 
+ a, x". For such polygons (16) implies 

~ f(x) d#=�89 ~ f'(p) cos St cos $2 dl~ dl 2, (17) 
(0~) 2 

f '  is the derivative of f .  
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It follows from Weierstrass' approximation theorem that (17) remains valid 
for every f, f (0)= 0 with continuous f ' .  For nonnegative f '  (17) may be written as 

an inequality ~ f(z) d#<�89 ~ f'(p) dll dl2, (18) 
(0~) 2 

equality holds for the halfsphere. 

The case f (x)=x is of special interest. In this case we have by [1] for simple 
domains on the surfaces in ~3 

g d# = hA, where A is the area of ~, and (18) takes the form of the isoperimetric 
inequality 

rcA<=�89 2 when H is the length o f ~ .  

Another class of inequalities may be derived for convex domains on a fixed 5 e. 
For example we may compare (17) in the case o f f ( x ) = x  namely, 

7~ A =�89 ~ cos el cos e2 dl~ dl 2 (19) 
(0~) 2 

with the dual equation which follows from (7): 

h d/t=�89 ~ sin ~1 sin ~2 dll dl2. (20) 
(0~) 2 

Adding up (19) and (20) we obtain 

nA+~hd/~=kH 2_ ~ sin 2 ~1-~2 dl~ dl2, (21) 
(o~)2 2 

or in a weaker form 
nSP + S hd#<�89 2. (22) 

An easy calculation shows that (22) reduces to the classical, isoperimetric in- 
equality in the case where 5e has constant curvature. It is clear from (22) that 
equality hold in (22) for any g-convex ~ c 5 e for which ~a = ~2 for almost all g~ 9J/u. 
All g-circles have this property when 5~ has constant curvature. Another obvious 
example is the g-circle with the center at the axis of rotation, in the case when 50 
is a surface of rotation. 

In the general case, it might be interesting to clarify the situation. 
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Note Added in Proof The author is greatly indebted to the referee for pointing out the work of 
A. Pleijel (Archiv der Mathematik, vol. 7 (1956) 317-319 and 420-424) where results similar to those 
of w have been obtained for the case of a euclidean plane by quite different methods. 


