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Reproducing Kernel Hilbert Spaces 
and the Law of the Iterated Logarithm 

for Gaussian Processes* 

Tze Leung Lai 

In this paper, we find the limit set of a sequence ((2 log n) -~ X.(t), n > 3) of Gaussian processes in 
C [0, 1 ], where the processes X.(t) are defined on the same probability space and have the same distribu- 
tion. Our result generalizes the theorems of Oodaira and Strassen, and we also apply it to obtain limit 

theorems for stationary Gaussian processes, moving averages of the type i f ( t -  s) dW(s), where W(s) 
0 

is the standard Wiener process, and other Gaussian processes. Using certain properties of the unit 
ball of the reproducing kernel Hilbert space of X.(t), we derive the usual law of the iterated logarithm 
for Gaussian processes. The case of multidimensional time is also considered. 

I. Introduction 

In [8], Oodaira proved the following version of the law of the iterated logarithm 
for a certain class of Gaussian processes. Let X(t), t > 0, be a separable real-valued 
Gaussian process with X(0)=0,  EX(t)=O and continuous covariance kernel 
R (s, t) = EX(s) X(t) satisfying: 

(1) For any T > 0, there exists a continuous nondecreasing function gT(h) such 
that for all t, t + h e [ 0 ,  T] ,  

]R(t+h,t+h)-2R(t+h,t)+R(t,t)]<=gT(h)~O as h-~O, 
0 9  

~, U 2  1 (g r (1 ) ) -~  (gT(e- ))~du<= C < ~ ,  
1 

and R(T, T)/gT(1)'[oo as T-+ oo. 

(2) There exists a positive function v(r), r>0 ,  such that 

v(r)T~ and R(rs, rt)=v(r)R(s,t) forall  r>0 ,  s,t>O. 

Let Z,  (t) = X (n t)/(2 R (n, n) log log n) ~, t ~ [0, 1]. Oodaira's result states that 
under the above assumptions, the set of limit points of the sequence of functions 
(Z,(t),n>3) in C[0, 1] is with probability one contained in the set K * =  
{h ~ H (R1): [] h [] n < 1/a (1)}, where a2 (t) = R (t, t), C [0, 1] is the space of continuous 
functions on [0, 1] with the usual sup norm t['[[c, H(R1) is the reproducing 
kernel Hilbert space corresponding to the kernel R (s, t), 0 <  s, t < 1, and ]]. ][n de- 

* Research supported by the Office of Naval Research under Contract Number N00014-67-A-0108-0018 
at Columbia University. 



8 T .L .  Lai  

notes the norm of H(R1). Oodaira also proves that with probability one, the set of 
limit points of (Z, (t), n > 3) in C [0, 1] coincides with K* if furthermore 

t A S  

(3) R(s, t) has a representation of the form R(s, t)= ~ Q(t, 2)Q(s, 2)d2, s, t>0 ,  
t 0 

where ~Q2(t, 2)d2<oo for all t > 0  and there is a function u(r) such that 
0 

Q (r t, r 2) = u (r) Q (t, 2) for all r > 0, t, 2 > 0 and v (r)-- r u 2 (r) Too as r T 0% and further 
6 

(4) sup ~ Q2 (t, 2) d2 ~ 0 as 6 ~ 0. 
0 < t < l  0 

Oodaira's result is a generalization of an earlier result of Strassen [10] for the 
standard Wiener process W(t), t >= O, in which case R (s, t) = t/x s and 

K*={h~C[O'l]:h(O)=O'hisabs~176176 2 } dt<l  . 
0 

As is well known, Strassen's result gives the usual law of the iterated logarithm for 
Brownian motion as an immediate corollary, and so does Oodaira's result for the 
Gaussian process X(t) (see Section 4 below); thus we have 

(5) lim sup X(t)/{2 R (t, t) log log t} ~ = 1 a.e. 
t--* o0 

Now suppose that U(t), t >_0, is a separable Gaussian process with mean 0 and 
continuous covariance R(s, t) such that 

lira R (t, t) = o "2 > 0 ,  lira sup R (s, t) < 0 
t~oo  T ~ o o  [ t - s [ >  T 

and for any s, t with ]t-s[< 1, E(U(t)-U(s))=<~,z(It-sl), where ~ is a non-de- 
oo 

creasing and continuous function satisfying ~ ~ (e- x2) clx < ~ .  Nisio [7] has proved 
that 1 
(6) lim sup U(0/(2 log t) ~ = o" a.e. 

t ~ o 0  

In this case, if imitating Oodaira and Strassen, one defines V, (t) = U (n t)/(2 log n) ~, 
t~[0, 1], then it turns out that the set of limit points of V,(t) in C[0, 1] is empty 
with probability one. To see this, we note that by [7], lira max IV, (t)[--a a.e., 

n~oo O < t < l  

and so with probability one, the constant zero function cannot be a limit point of 
V,(t) in C [0, 1]. Now let I be a non-empty interval with rational end-points and 
let 6 > 0 be a rational number. Then with probability one, for everyf~ C [0, 1] such 
that f>_ 6 on I, f cannot be a limit point of V, (t) in C [0, 1] since 

(7) lira min V, (t) = - lira max ( -  V, (t)) = - G a.e. 
n ~  t e l  n~oo t e l  

(cf. [5] and [7]). Similarly since lim max V~(t)= ~ a.e., it follows that with prob- 
n - *  eJO t ~ [ 

ability one, for every g~ C[0, 1] such that g<- - J  on I, g cannot be a limit point of 
V,(t) in C[0, 1]. 

We note that in the case of the Wiener process W(t), the sequence (n- ~ W(n t), 
n >  1) is a sequence of identically distributed copies of the process W(t), te [0, 1]. 
In Oodaira's theorem, condition (2) implies that for each n>  1, the process 
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v-+(n) X(n  t) has the same distribution as the process X(t). te [0, 1], which corre- 
sponds to the reproducing kernel Hilbert space H(R~). For the process U(t) con- 
sidered in the preceding paragraph, assuming U(t) to be stationary, then the 
sequence (U(n+t),  n > l )  is a sequence of identically distributed copies of the 
process U (t), t~ [0, 13. This suggests that instead of considering V, (t) as defined in 
the previous paragraph, one should define 17,(t)--- U(n + 0/(2 log n) ~, te  [0, 1]. 
It turns out that under some mixing condition, the set of limit points of the process 
V, (t) in C [0, 1] coincides a.e. with the unit ball in the reproducing kernel Hilbert 
space corresponding to the process U(t), te [0, 1]. 

In Section 2, we shall prove an intrinsic form of the Oodaira-Strassen theorem. 
Section 3 shows that this result can be applied to obtain Strassen's theorem for 
W(t) and Oodaira's theorem for the process X(t) and that it also gives the limit set 
of the process l?, (t) as an immediate corollary. Section 4 considers some properties 
of reproducing kernel Hilbert spaces and derives the usual law of the iterated 
logarithm for Gaussian processes from the corresponding version involving the 
unit balls in the reproducing kernel Hilbert spaces. In Section 5, we extend our 
results to Gaussian processes with multidimensional time. 

2, The Limit Set of a Sequence of Gaussian Processes in C [0, 1] 

We shall call a family Y of random variables on the same probability space 
Gaussian if for any finite number of random variables Y1 .. . .  , Yme~,  (Y~ . . . . .  Ym) 
has a multivariate normal distribution. By the conditional expectaion of a random 
variable Z given ~,, denoted by E (ZI~), we shall mean the conditional expectation 
of Z given the a-field generated by ~ .  If H is a Hilbert space, we shall call the set 
of all elements with norm __< 1 the unit ball of H. 

Theorem 1. Suppose X(t), te [0, 1], is a separable real-valued Gaussian process 
with mean 0 and continuous covariance R (s, t) satisfying 

(A) E(X(t ) -X(s) )2<_~2(l t -s l ) ,  t, se[O, 1] 
oo 

where ~ is a continuous nondecreasing function on [0, 1] such that ~ ~ (e -~2) du < ~ .  
1 

Let (X, (t), n > 1) be a sequence of Gaussian processes defined on the same probability 
space and having the same distribution as the process X(t), and let 

I1, (t) = (2 log n)- ~ X, (t). 

Then with probability one, the sequence ( Y, (t), n > 3) is relatively compact in C [0, 1] 
and its set of limit points in C [0, 1] is contained in the unit ball K of the reproducing 
kernel Hilbert space H(R) corresponding to the process X(t). Letting ~ =  

{Xj(t): te [0, 1], 1 ~j_~ n} and ~ = U ~ ,  suppose furthermore that 
n = l  

(B) ~ is a Gaussian family of random variables such that 

(8) lira E{E(Xm(t)]~)}2=O for each te l0 ,  1]. 
n ~ o o  

Then with probability one, the set of limit points of (Y~(t), n>_3) in C[0, 1] coincides 
with the set K. 
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Lemma 1. Suppose X(t), te  [0, 1], is a Gaussian process with mean 0 and contin- 
uous covariance R(s, t) satisfying condition (A), and let X,(t), Y,(t), H(R) be as 
defined in Theorem 1. Let (ej(t),j> 1) be a complete orthonormal system (CONS) in 
H(R), and let ~bn: H(R)~L2(Xn)  be the isometric isomorphism (defined by 
~b,(R(t,.))=X.(t)) between H (R) and the closed linear manifold L 2 (X.) spanned 
by {X,(t), te  [0, 1]}. Let it, J)= ~,(ej) be the Gaussian random variable corresponding 
to ej. Then given e > O, there exists ko = ko (e) such that for k >__ ko, 

[ k ej(t) ] (9) P (2 log n)- ~ ~ < e n oSUtpx Y~(t)- ~ )  for all large = 1. 
j ~ l  

Proof The idea of the proof is similar to that of Lemma 1 in [8]. Let 

k 

U~ k) (t) = X,  ( t ) -  ~, ~J) ej (t). 
j = l  

Then EU~k)(t)=O and making use of the fact that 

it can be shown that 

(10) 

E~J) X. (s)= (e  j, R (s, .)) = ej(s), 

k 

EU(,k)(t) utk)(s)=R(s, t)-- ~ ej(s) ej(t). 
j = l  

k 

We shall denote the expression in (10) by Ftk)(t, S). Since y, e 2 (t) converges to 
j = l  

R(t, t) uniformly in te  [0, 1] as k--* 0% we can choose k o and p sufficiently large 
such that for k >= k o, 

( l l)  ek=e r(k)(t, t))~+4Sip(p-U2)du >1.  
[ o_t_l 1 

Let A~ k) = [ sup I U(, k) (t) l >_- e (2 log n)~]. Since 
O=<t<l 

k 

E (U~ k) ( t ) -  U, (k) (s)) 2 = E (X (t) - X (s)) 2 - ~ (ej (t) - e 2 (s)) 2 
j = l  

_-<O2(It-sl), 

we can apply Fernique's lemma (cf. [2]) to obtain that for e k (2 log n)-: > (1 + 4 logp)~, 

PA~k)<4p 2 ~ e -~2/2 du. 
gk(2 logn) �89 

Hence for k>=ko, it follows from (11) that ~ P A ~ ) < o %  and so by the Borel- 
n 

Cantelli 1emma we obtain the desired conclusion. Q.E.D. 

Proof of Theorem 1. It is well known that under assumption (A), the processes 
X, (t) have continuous sample paths a.e. Also, the set p K is a compact subset of 
C [0, 1] for all p > 0  (cf. [8]). To prove that under assumption (A), K contains with 
probability one all the limit points of Y, (t), given e > 0, we can choose k by Lemma 1 
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such that (9) holds. Letting 
k 

(12) Z~ ) (t) = (2 log n)- + ~ ~.J) ej (t), 
j = l  

it can be shown as in Section 5 of [8] -~k) that P I_L. belongs to K~r for all large n] = 1, 
where K, denotes the q-neighborhood of K in C [0, 1] and F =  sup R�89 t). 

0__<t-<l 

Therefore PI-Y, belongs to K~+,r for all large n] = 1, and so {I1,: n>3} is relatively 
compact in C [0, 13. 

We now prove that under assumptions (A) and (B), K is contained with 
probability one in the set of limit points of Y, (t) in C [0, 1]. Because of the compact- 
ness of K in C [0, 13, it suffices to show that given any gEK and 0<e< �89  

PI-II Y,-g l l c<  e(6 + I lgllc)i.o.] = 1 

(cf. [8], p. 296). Letting h = (1 -~)g,  we have IIg-hllc = ~ [Igllc, and so we need only 

show that PI-[I Y,-hJfc<6e i.o.] = 1. Since h has the expansion h(t)= ~ hjej(t) 
j = l  

with the above series converging uniformly in t e [0, 1], we can choose k > k0 such 
that k 

h ( t ) -  ~ h j  ej(t) < e, 
j=l C 

where ko is given by Lemma 1. Defining Z~, k) (t) as in (12), we need only show that 

[ (t)-j~=lhjej(t) c ] P Z(. k) <4ei .o .  =1 .  

For j = 1 . . . . .  k, we define 

B(.J) = [[I {~( f - (2  logn) ~ hi} ej(t)][c<(4~/k)(2 logn)~], 
(j) _ (j) 1 C. - [[ 4. - (2 log n) ~ hj] < (4 e/kF) (2 log n) ~] 

where F =  sup R~(t, t)> ]lejllc (see (26) in Section 4). It is easy to see that B(.J) = C(f 
and o___t~a 

Z~k)(t) - 2 hjej(t) <=4e ~ ~.B~ ~. 
j = l  C j = l  

Therefore it suffices to show that P C(~ ~) i.o. --1. (We remark that it is not 
L j = I  J 

enough just to show that P[C(.J)i .o.]=l for each fixed j = l  . . . . .  k, and so the 
proof in [8] in fact needs additional argument.) 

Let ~: H(R) ~ L 2 (X) be the isometric isomorphism defined by ~ (R (t, ")) = X(t), 
and let ~(~)=O(e~). Noting that ~1), ..., ~(k) are orthogonal with mean 0 and 
variance 1, we can choose a~ J), a ~) and t~ j), t (j) such that defining ((J)= 

�9 " " ~ m j  �9 �9 �9 ~ m j  

mj 

~, al j) X(t~J)), we have 
i = 1  

(13) ~O) . . . .  , ~r are orthogonal and for j =  1 . . . . .  k, 

E(~(J)-~(J))z<(e/kF)2, E [((J)]z> 1 - e .  
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TO simplify the notat ion,  we shall write ~(J)= ~ a~ i~ X(ti), where al ~ may equal 0. 
m /=1  

Define ~ ) =  ~ al j) Xn(ti). Then  for all n, 
/=1  

E ( r - ~(2))2 = E ( ~(i) - ~(i))~ < (~/k  r ) 2  , 

and a simple applicat ion of the Borel-Cantelli  lemma shows that  P[D~ i~ for all 
large n] = 1, j = 1 . . . . .  k, where 

0(, 1) = [[ ~(J) - (~)1< (e/kF)(2 log n)~-]. 

By (8), we can choose n o and v>__l such that  for n>no,  

lal .?l E* h < �89 
(14) i=1 p=, j = l  . . . . .  k. 

Let  t f ( J ) = E ( ~  ) ] . ( 1 )  -(k) . . 2"(1) (k) V(~)=?'(J)_ U(i) Then  E (~,)= 
* " ~  " ' - ,  " ' ' ,  cvn ~ v n "  

(J) (J) EU~, = EV~, =0 ,  and 

El H(J) ~=E a? ~(X~,(t~)l~(2o, ~(2o;-. "(~) -..,~(,-~)J~ <~(~/kr) ~. ~vn " ' ,  �9 ~v(n-- 1),  y(k) ,'~2 

1 i = 1  

The last inequality above follows from the Schwarz inequality, (14) and the fact that  

E E X,~(tl , " * ,  - v n o ,  " " ,  ~v(n-1) ,  " " ,  ~ v ( n - 1 )  

<=E {E(X~o(t , )I~(~_,))}  ~ 

Since u(~J~ ) is normal,  we obtain ~ P (E(j,)) < ~ .  j = 1 . . . .  , k. where 
tl 

E(?, = [I u(/) l >-_ (~/k r )  (2 logv ~)~3. 
Lett ing E~.) denote  the complement  of E ~  ), we therefore have P [E~) for all large n] 
= l , j = l  . . . . .  k. 

We note that  C(J) ~ (i) -(J) (i) _~, (D~, c~ E~, ~ F~, ), where we define the events 

F(~ ) = [7 V(, J) - (2 log v n) ~ hjl ~ (2 6/k F) (2 log v n)~], 

G(J) - rt ~'(~) - (9 log v n) ~ h~l <-_ (e/kF) (2 log v n) ~] vn - -  i_l'~vn \ -  

H e n c e  it suffices to prove P for infinitely many  1. Since (V~(2 ~ ,,(k) 

n >-- n o, is a sequence of independent  vectors, we need only show that  

k 

\ j = l  ! 

We note  that  
k k k (vJn)\) k 

P F~ ) > P (G~. c~ E~. , -~, , .  
\ j = l  / \ j = l  \ j = i  ] j = l  

Since ~ P (E~) < oe, it remains to prove that  P G = o~. 
j = l  n \ J  =1  
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Let 4~ denote the distribution function of the N(0, 1) distribution, and set 
o2=E[((J)[ 2. Then a } > l - e  and E[(~J)J2=a 2 for all n. Since ([3,) . . . . .  ((7,) are 
orthogonal, 

p ( 8 o  = 
\ j = l  / j = l  

k 

(15) > 1-[ (~b (o-~ -1 (2 log v n) ~ (] hj[ + (2 e/kF)))- ~b (~;~ (2 log v n) ~ I hj])} 
j = l  

> C (log n)- ~ exp ~}- 2 h log n . 
\ j = l  

Now h belongs to (1 - g)K, and so hE ~ 1 -- e. Hence ~ a~- 2 h~ _-< 1, and from (15), 
j = l  j = l  

/ k \ 

it then follows that ~ P ( (~ G~J. )) = o9. Q.E.D. 
n \j= ~ / 

Remark. By an obvious modification in the proof, Theorem I can be extended 
to vector-valued Gaussian processes. Let X(t)= (X(1)(t) . . . . .  X (k) (t)), where X (i) (t), 
tel-0, 1], i=1  . . . .  , k, are independent separable real-valued Gaussian processes 
with means 0 and continuous covariances R~(s, t) such that assumption (A) of 
Theorem i is satisfied by each X(~ Let H = H ( R O  x ... x H(R,) be the product 
Hilbert space endowed with the inner product 

k 

( ( f , ,  . . . ,A) ,  . . . ,  gO) , ,  = ( f , ,  
i=1 

and let K be the unit ball of H. If (X, (t), n > 1) is a sequence of Gaussian processes 
defined on the same probability space and having the same distribution as X(t), 
then the set of limit points of the sequence ((2 logn)-~ X, (t), n >  3) in C [0, 1] can 
be described in terms of K as in Theorem 1. 

3. Some Applications of Theorem 1 

We shall now derive Oodaira's theorem from Theorem 1. Let X(t), t>0 ,  be the 
Gaussian process described in Section 1 and define 

Z,( t )=X(nt) / (2R(n,  n)log logn) ~, te[0,  1]. 

We shall denote the set of limit points of the sequence of functions (Z, (t), n > 3) in 
C [0, 1] by ~e(Z,), and let K be the unit ball of the reproducing kernel Hilbert 
space H(R1) corresponding to the kernel R(s, t), s, te  [0, 1]. Using conditions (1) 
and (2) together with Fernique's lemma, Oodaira ([8], p. 291-293) has proved 
that with probability one, the sequence (Z, (t), n > 3) is equicontinuous, and given 
e > 0, we can choose c > 1 such that defining nr = [c'], we have 

(16) P [  sup I l Z , - Z ,  r l l c<e fora l l l a rger ]=l .  
nr~n~nr+l 

Defining X~ (t) = v-  ~ (n~) X (n, t), we obtain from Theorem 1 that s ((2 log r)- ~ X~) c K 
a.e., and so 5 f (Z , r )c (1 /a (1 ) )K=K* a.e., since log lognr,-,logr and R(n, n)= 
v(n)~r2(1). From (16), we then obtain that with probability one, ~ ( Z , ) c K * ,  
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where K* denotes the e-neighborhood of K* in C [0, 1]. Since e is arbitrary and K* 
is closed in C[0, 1], s  a.e. Now suppose further that conditions (3) 

t 

and (4) also hold. We note that condition (3) implies X(t)= j Q(t, 2) dW(2), and 
for any t~[0, 1] and re>r, we have 0 

E{E(Xm(t) lX(s), O<=s<--n.)}2< E{E(Xm(t)lW(s), O<s<n,)} 2 

=(v(n,.)) -1E  I Q(n~t,J.)dW().) 
0 

"r  

i Q (n t, 
0 

tlr / . m  

= 5 Q2(t,)Od2~O as m - r ~ o o .  
0 

Hence condition (B) of Theorem 1 is satisfied and so ~e((2 logr)-~Xr)=K a.e. 
Therefore La(Z,)=K* a.e. It is clear from the above derivation that Oodaira's 
theorem still remains true if we drop condition (4). 

Theorem 1 can also be applied to find the limit set of the processes I7", (t) intro- 
duced in Section 1. The result is stated in the following corollary. 

Corollary 1. Let X(t), t>O, be a real-valued separable stationary Gaussian 
process with mean 0 and continuous covariance R (s, t) satisfying assumption (A). 
Let 17".(0=(2 log n) -~ X (n + t ), te l0 ,  1]. Then with probability one, the sequence 
(17",(0, n>3)  is relatively compact in C[0, 1] and its set of limit points in C[0, 1] 
is contained in the unit ball K of the reproducing kernel Hilbert space H(R) corre- 
sponding to the kernel R (s, t), 0 < s, t < 1. I f  furthermore 

(17) lim E {E (X(t)]X(z), 0 < z < s)} 2 = 0, 
t - - s - ~  O0 

then with probability one, the set of limit points of (~', (t), n > 3) in C [0, 1] coincides 
with the set K. 

Proof Set X,(t)=X(n+t),  t~[0, 1], in Theorem 1. Q.E.D. 

In [5], we have studied the limiting behavior of moving averages of the type 
t co 

i f ( t - s )  d W(s) with 0< ~fz(t)dt < m, which arise in time series analysis and 
0 0 

other statistical applications. Such moving averages are nonstationary Gaussian. 
Suppose 

(18) ~ a continuous nondecreasing function ~b on [0, 1] such that 
ct) 

~(e-"~)du<oo and for all t>=O, O=<x=<l, 
1 

I f(u)du+ u)-f(u+x)) du 
t 
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Then we have (cf. [5]) 

(19) lim sup (2 log t)- ~ ~ f ( t -  s) dW(s) = f z  (t) d t a.e. 
t ~  0 

In fact, Theorem 1 can be applied to describe the limiting behavior (19) in terms 
of limit sets in C[0, 1]. 

oo 

Corollary 2. Let f be a continuous function on [0, Go) such that 0 < S f2 (t) dt < oo 
m 0 

and (18) is satisfied. For s, te[O, 1], define R(s,t)= ~f(u)f(u+lt-s[)du and let 
0 

H(R) be the reproducing kernel Hilbert space corresponding to the kernel R. Let 
t 

U(t)= ~f ( t - s )  dW(s), t>O, and define Y~(t)=(2 log n) -~ U(n+t), t~[0, 1]. Then 
0 

with probability one, the sequence ( Y~(t), n>3)  is relatively compact in C[0, 1] and 
its set of limit points in C [0, 1] coincides with the unit ball K of H (R). 

Proof. Since f is continuous, the kernel R is continuous. Let (W(t), t<O) be 
t 

Brownian motion independent of (W(t), t>0), and define X(t)= ~f(t-s)dW(s) .  
- o f )  

Then X(t) is a stationary Gaussian process with covariance R (s, t). We note that 
for t> s, 

E{E(X(t)[X(z), 0<__~<= s)}2~E{E(X(t)[ W(z), ~ <. s)} 2 

=E{_~f(t-2)dW(2)} 2 
o~ 

= yf2(u)du~O as t - s ~ o o .  
t - - S  

Also by (18), assumption (A) of Theorem l is satisfied (cf. [5]). Hence defining 
V,(t) = (2 log n) -~ X(n + t), te [0, 1], it follows from Corollary 1 that the sequence 
(V,(t), n>3)  is relatively compact in C[0, 1] and its set of limit points in C[0, 1] 
coincides with K a.e. It remains then to prove 

(20) lim I[ V,-  Y, IIc=0 a.e. 

0 

To prove (20), we let Z , ( t ) = X ( n + t ) -  U(n+t)= ~ f ( n + t - s )  dW(s), t~[0, 1]. 
oo - o o  

Then EZ 2 (t)= ~f2 (u)du and for 0<  s < t < 1, we have from (18), 
n + t  

n + t  oo 

E(Zn(t)-Zn(s)) 2= - ~ f2(u) du+2 Sf(u) ( f ( u ) - f ( t - s+u) )du  
n + s  n + s  

<_2 f2(u)du (f(u)-f(t-s+u))2 du 

(? ; < 2 2 (u) du ~,2 ( t -  s). 
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Hence for any e > 0, an application of Fernique's lemma shows that 

P [ It z .  II c > e (2 log n) ~] < Go, 

and so by the Borel-Cantelli lemma, (20) follows. Q.E.D. 

The condition (8) on the asymptotic independence of the sequence of processes 
Xm (t) is equivalent to each of the following mixing conditions: 

(21) For each te[0 ,1] ,  lim sup{E(UX,.(t)): Ue f f . ,EU2=I}=O,  where ft. 
m - n ~ m  

denotes the closed linear manifold generated by ~, .  

(22) For each te l0,  1], 

lim sup {]P(A1 ~ A 2) - P(A1) P(A2)[ : A1 ~ ~ (Xm (t)), A2 ~ ~ (~)} = 0, 
n ~ o o  

m - -  n ~ o o  

where ~ (~ )  denotes the a-field generated by ~ .  

Noting that EX~ ( t )=EX 2 (t) for all m, the equivalence of (8) and (21) is obvious, 
while the equivalence of (21) and (22) follows from the inequalities am,,< rm,,<= 
2 ~ ~ . . . .  where ~,,,, denotes the supremum in (22) and rm,, E ~ X~ (t) is the supremum 
in (21) (cf. [93, p. 135). In Oodaira's theorem on the Gaussian process X(t) intro- 
duced in Section 1, we choose the subsequence n, = [c ~3 so that we have the asymp- 
totic independence of the sequence of processes (v-~(n~)X(n~t), r>__l). Since 
log r ~  log log n~, this choice of the subsequence suggests why we have the iterated 
logarithm behavior. In the following corollary, to achieve asymptotic independence, 
we have to choose a subsequence nk= [r/k 2 log log kJ where r/>0. Noting that 
2 log k ~ log nk, we obtain from Theorem 1 the following corollary which corre- 
sponds to Strassen's version of a theorem of Kiefer. Kiefer's theorem ([3], 
Theorem 4) states that if W(t) is the standard Wiener process and fl > 0, then 

lim sup { max t)~lW(t)- W(z)l/[2 fi t(log t) 2 log log t] +} = 1 a.e. 
t ~ o o  [ ~ - t [ < ( 2 f l t l o g l o g  

Corollary 3. Let W(t), t>_O, be the standard Wiener process and let f l>0,  
g (t) = (2 flt log log t) ~. For tr [ -  1, 1] and n > 5, define 

(23) X. (t) = (W(n + t g (n)) - W(n))/(g (n)) ~, 

(24) Y. (t) = X. (t)/(log n) ~ . 

Then with probability one, the sequence ( Y. (t), n > 5) is relatively compact in C [ - 1, 1] 
and its set of limit points in C [ -  1, 1] coincides with the set 

(25) K1 = h e C [ -  !, 1]: h(0)=0, h is absolutely continuous and i - ~ -  dt< 1 . 
- 1  

The details of the proof of Corollary 3 are given in [6], where we use Theorem 1 
to show that more generally, if g (t) is a positive nondecreasing function on [0, oo) 
and X. (t) is defined by (23), K1 is defined by (25) and ~(f~) denotes the set of limit 
points of a sequence of functions (f~, n > no) in C [ -  1, 1], then 

(i) ~((2  log n)- ~ X,) = K1 a.e. if g (t) = o (t/~) for any fl > 0; 
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(ii) A('({2(1-cOlogn}-~X,)=K1 a.e. if g(t)=t~O(t) with 0<c~<l ,  0 ( t )+  
(~, (t))- 1 = o (t p) for any fl > 0 and lim lim g (p t)/g (t) = 1 ; 

(iii) 5e((2 log log n)-~X,)=Ka a.e. i fg ( t )=a t (1  +o(1)) for some 0 < a <  1. 

4. Properties of Reproducing Kernel Hilbert Spaces 
and the Usual Law of the Iterated Logarithm 

Let X(t), te  [0, 1], be a Gaussian process with mean 0 and continuous covariance 
R(s, t). Let H(R) be the reproducing kernel Hilbert space corresponding to the 
kernel R(s, t), and let K be the unit ball of II(R). Since R is continuous, H(R) is 
contained in C[0, 1] and K is compact in C[0, 1]. For a n y f s  K, we have the follow- 
ing properties: 

(26) llfllc < sup R-~(t, t), 
0_<t_<l 

(27) (f(t)-f(s))2<=E(X(t)-X(s)) 2, O<s, t < l ,  

(28) Vte[O, 1], [f(t)l<R~(t, t) with equality i f f f=aR(t , . )  with a=R(t ,  t )=0  or 
cd R (t, t) = 1. 

These properties can be proved by using the reproducing property. For example, 
to prove (28), we note that 

[f(t)l = I(f, R(t, "))l--< llfll, Ile(t, ')ll ,  

< I(R(t, "), R(t,'))]~=R�89 t). 

Let a(t)=R~(t, t), re[0, 1]. In view of (28), a is an upper envelope of the func- 
tions in K. In the case of the Wiener process, it is well known that a~K. In general, 
it is easy to see from (28) that a s K  iffthere exists toe [0, 1] such that for all t s  [0, 1], 
R (to, t) = a (to) a (t), i.e., a (to) X(t) = a (t) X (to) a.e. By making use of (26) and (28), 
we can obtain the usual law of the iterated logarithm for Gaussian processes from 
the corresponding version involving limit sets. 

For example, let us consider Oodaira's theorem for the Gaussian process X(t) 
introduced in Section 1. Let Z,(t)=X(nt)/(2R(n, n) log log n) ~, te[0,  1] and let 
K*={hEH(RO: lihlln<l/a(1)}=(1/a(1))K. Under assumptions (1) and (2), 
Oodaira's theorem states that K* contains the set of limit points of the relatively 
compact sequence (Z,(t), n> 3) in C [0, 1] with probability 1. By property (26), 
this implies that 

(29) lim_ sup [IZ.l[c<=(1/a(1))oSUpa(t)=l a.e. 

The last equality in (29) follows from the fact R (t, t) = v(t) R(1, 1) and v is increasing. 
Since R(s,t) is continuous on [ 0 , 1 ] •  and R(t,t)=v(n)R(t/n,t/n) for 
n -  1 _-_ t_-< n, it follows easily from (29) that 

(30) lim sup X(t)/(2R (t, t) log log t) ~ < 1 a.e. 
t~cO 

Now assume further that condition (3) holds. Then by Oodaira's theorem, with 
probability 1, K* coincides with the set of limit points of (Z, (t), n > 3) in C [0, 1]. 

2 Z. Wahrscheinlichkeit stheorie verw. Gebiete, Bd. 29 
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By property (28), r}aax If(1)l =a(1),  and so maXs~K. If(l)[ = 1. Hence 

(31) lim sup X(n)/(2R (n, n) log log n) ~ = 1 a.e. 
n-.-~ ao  

In view of (30) and (31), we obtain the usual law of the iterated logarithm (5) for 
the process X(t). 

5. Gaussian Processes with Multi-Dimensional Time 

Theorem 1 can be easily extended to Gaussian processes with multi-dimensional 
time parameter. Let Ik denote the k-dimensional unit cube [0, 1] x- . .  x [0, 1]. 
First we have the following generalization of Fernique's inequality: 

Lemma 2. Let X (t), t~ Ik, be a real-valued separable Gaussian process with mean 
O. Assume that 

E {X(t 1 . . . .  , tk)-- X ( t l , . . . ,  t,_ i, si, ti+ t . . . .  , tk)} 2 < ~2 (It ,-  S,I), 
(32) 

ti, sie[O, 1], i=1  . . . . .  k, 

ao 

where ~ is a continuous nondecreasing function on [0, 1] such that S ~ (e-u2) du < co. 
1 

Suppose F=sup  E~(X2(t)) is a finite positive number. Then with probability 1, 
t~lk 

the process X (t), t ~ I k, has continuous sample paths. For x >- (4 k log n)~ and n > e 2, 

(33) P[suplX(t)l>Xl_telk F + - ~ _ ~ ! ~ k ( n  )du x~ . 

Lemma 2 can be proved by a modification of the argument given by Marcus [11] 
in the case k = 1. We shall let C (Ik) denote the space of continuous functions on Ik 
with the usual sup norm metric. A straightforward modification of the proof of 
Theorem 1 gives the following theorem. 

Theorem 2. Suppose X(t), t~Ik, is a separable real-valued Gaussian process 
with mean 0 and continuous covariance R(s, t) such that condition (32) is satisfied. 
Let (X, (t), n > 1) be a sequence of Gaussian processes defined on the same probability 
space and having the same distribution as the process X(t), and let Y,(t)= 
(2log n) -�89 X,(t). Then with probability one, the sequence (Y~(t), n>3)  is relatively 
compact in C (Ik) and its set of limit points in C (Ik) is contained in the unit ball K of 
the reproducing kernel Hilbert space H(R) of the process X(t). I f  furthermore, 
assumption (B) of Theorem 1 is satisfied (where we replace [0, 1] by Ik), then with 
probability one, the set of limit points of ( Y, ( t ), n > 3) in C ( Ik) coincides with the set K. 

Recently, in connection with certain limit theorems for the sample distribution 
function, there has been considerable interest in the Gaussian process ~(t~, t2) 
with two-dimensional time, mean 0 and covariance 

Er tz) ~(sl, Sz) = min(q,  sl)[min(tz, s2 ) -  tzS2] (cf. [4], [12]). 

The reproducing kernel Hilbert space of the process {~(t 1, t2), t 1, tz~[0, 1]} is 
the direct product HI | H2, where H1 is the reproducing kernel Hilbert space 
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corresponding to the standard Wiener process, while H 2 corresponds to the 
Brownian bridge with covariance F(s, t)=min(s, O - s t  (cf. Section 8 of [1]). A 
CONS of HI| is {e,,m: n=0, 1, . . . ,m=1,2 ,  ...}, where 

e,, m (tl, t2)= 2 sin ((n + �89 re q) sin (m re t2). 

It is easy to see that the unit ball of//1 |  is 

(34) K =  h: h (q , t z )=  f ~f(u,v)dudv,  q,t2e[O, 1), where I ~f2(u,v) d u d v < l  �9 
0 0  O0 

In the same way as we derived Oodaira's theorem from Theorem 1, we can obtain 
from Theorem 2 that with probability one, the sequence ({2 n log log n}- ~ ~ (n tl, tz), 
n> 3) is relatively compact in C (Iz) and its set of limit points in C (lz) coincides 
with K (cf. [4], p. 32). 

Note Added in Proof A student of mine at Columbia, Gian-Carlo Mangano, 
has recently succeeded in weakening the asymptotic independence condition (8) 
of Theorem 1. By using a different approach, he has proved that Theorem 1 still 
holds if we replace condition (8) by: 

(8') lim max IEX,,(t) X,(s)[ =0  for any s, te [0, 1]. 
r~oo I,,-,t>r 

This and other related results are contained in his Ph. D. thesis, "On Strassen-type 
laws of the iterated logarithm for Gaussian random variables with values in ab- 
stract spaces", which is now in preparation. 
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