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Log Log Law for Gaussian Processes 

Raoul D. LePage 

If Xt, X 2 . . . .  are mutually independent and identically distributed Gaussian 
random variables with means zero and variances one (i. i. d. standard Gaussian r.v.) 
and for n > 1 we let S, = X t + . . .  + X,, Hartman and Wintner's law of the iterated 
logarithm (refer to [5]) applies to say that almost everywhere (a. e.) the log log (f E) 
sequence {S,](2 n ~ ~ n) ~, n > 3} converges to the closed interval [ -  1, 1] and 
clusters at every point thereof. Some explanation of these terms is in order. 
In a metric space, a sequence converges to a set if it eventually stays within 
every e-neighborhood of that set, and clusters at a point if that point is the limit 
of at least one convergent subsequence. 

The situation in higher dimensions is somewhat surprising. Suppose k>  1 
and {St,,, n > 3}, { S z n  , n ~ 3}, ..., {Sk,,, n > 3} are independent copies of the sequence 
{S,, n>3}. That  is, there is mutual independence between sequences and each 
sequence has the probability law of the sequence {S,,, n > 3}. What are the con- 
vergence properties, this time in euclidean space of k dimensions (k-space), of 
the random vector sequence {(S t . . . . .  , Sk,)/(2 n ~ E n) ~, n > 3} ? Inasmuch as each 
coordinate independently roams [ - 1 ,  1], the set of cluster points a.e. cannot 
exceed the cube [ -  1, 1] k. Interestingly enough, 

Lemma O ~ The above vector sequence a.e. converges to the closed unit ball 
taken around the origin of k-space and clusters at every point of this ball. 

The conclusion of Lemma 5 ~ may be put the following way: if Xt, X2, ... 
are i.i.d. Gaussian random k-vectors possessing mutually independent standard 
Gaussian coordinates then { ( X t + . . . + X , ) / ( 2 n ( # n ) ~  , n>3}  a.e. tends to the 
unit ball and clusters at every point thereof. 

Now suppose B with norm II ]l is a real and separable Banach space on whose 
sigma algebra ~ of Borel subsets is situated a Gaussian measure #. That  is, 
# is a probability measure on .~ and each x*eB* (the topological dual of B) 
induces a zero-mean Gaussian probability law on the real line. One example 
of such a structure is B = C [ 0 ,  1] with #=Wien e r  measure. If Xt, X 2 . . . .  are 
i.i.d. B-valued r.v. defined on a probability space (f2,~-,P) and P o X ,  1=# 
on N, for every n > l ,  what are the convergence properties of the sequence 
~,,=(X t +- . .  +X,)/(2 n# Y n) +, n>3 ,  in B? This will be shown to be directly 
analogous to the finite dimensional case. Using results obtained in [4] there is 
a coordinate system imposed by # a.e. on B in terms of which X1, X2, ... have 
mutually independent standard Gaussian coordinates. It will be proved that 
the sequence {~,,, n > 3} a.e. P tends in B-norm to the unit ball in this coordinate 
system and clusters at every point. What makes this result interesting is the fact 
that this coordinate system may be any complete and orthonormal (c.o.n.) 
sequence for the reproducing kernel Hilbert space determined by # (see [4]) 
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and that the aforementioned ball has coordinate-free description as the unit ball 
in the reproducing kernel Hilbert space. 

Proof of Lemma 5 p. This is a co rollary to Strassen's law of the iterated logarithm 
for k-dimensional Brownian motion [5]. Let Ck[O, 1] denote the space of con- 
tinuous maps from [0, 1] to k-space, endowed with supremum norm using 
euclidean norm in k-space. By Ck[O, oQ) we indicate the set of k-space valued 
maps defined and continuous on [0, oe). The k-dimensional Brownian motion 
considered by Strassen is a Gaussian process {((i)(t): t > 0, 1 < i N  k} with means 
zero and covariances Cov{((0(s),~cj)(t)}=g)ijmin{s, t} for s,t>O, l < i , j < k .  
Strassen has proved that the Ck[O, or) version, which exists for this process, 
satisfies the following law of the iterated logarithm in C k [0, 1]" the sequence 
{~,~, n>3} defined by (,,(t)=(~(1)(n t), ..., ~(k)(n t ) ) / (2n f {n )  ~ for every t~[0, 1], 
n>3 ,  a.e. converges in Ck[O , 1] to a set K and clusters at every point of K. 
The set K is defined by: f~  K if and only i f f  = (fl, ..., fk) 6 Ck [0, 1], f is coordinate- 
wise absolutely continuous with respect to Lebesgue measure, f (0)=0,  and 
k 1 

~ f 2  d t< 1. Because the random sequence of k-space vectors {~,(1), n > 3} has 
10 

precisely the probability law of {($1,, ..., Sk,)/(2 n~ ~ n) ~, n> 3}, and the mapping 
defined by f ~ f(1) is continuous from C k [0, 1] to k-space, our lemma is proved if 

k k 1 

the set K goes into the unit ball under this map. I f f e  K then Z f2 (1)< Z ~ ~2 dr< 1. 
k 1 1 0  

Conversely, if ~ r 2 < 1 then (q . . . . .  rk) is the image under evaluation at t =  1 
1 

o f f e K  defined by f~(t)=r i t, t~[0, 1], l<i<_k. [] 

X* Lemma 5f. For (B,N,#)  as above, if { i, i>>_l}cB* is c.o.n, for the closure 
LP of B* in L2(B,~ ,#)  , then for each i>>-l, x i defined by s  exists 

B 

as a B-convergent Bochner integral and {xi, i> 1} are c.o.n, for a Hilbert space 
oo 

H c B  whose elements are B-convergent series of the form x = ~  x* (x )x  i with 

(X~(X))2<~(X).  O n  H the two norms are related by the inequality Ilxll < Ilxll~ II#ll 
1 

where ll#ll2= ~ Ilxll2 # (dx )<~ .  H may be identified as the reproducing kernel 
B 

Hilbert space of the kernel defined by R(x* ,y*)= ~ x*(x) y*(x) #(dx), (x*,y*)s 
B 

B*x B*, provided elements of B are imerpreted as functions on B*. For a.e. xeB ,  
b 

x -  ~ x* (x) x i ~ 0 as k ~ ~v. The closure H of H in B is the topological support 

o f# .  
Proof The proof of these results appears in [4] together with references to 

related papers by N. Jain and G. Kallianpur, and J. Kuelbs. [] 

Let K =  r~ x~: r 2 < 1 be the unit ball of H. We have frequent need 

k 

of the map x ~ x(k)= ~ X*(X)X i which for each k >  1 is by Lemma ~o defined 
1 

on B and continuous into H. 
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Lemma 0. The set K is closed in B. 

Proof Suppose {y,, n > l } c K  and y , ~ y  in B-norm. For every k>0,  
k k 

Ily~k)l]2= 1~ (x*(y))2=lim ~ (x*(y,))2= < 1. Therefore yeK.  [] 

Lemma 1. For every n>3,  k > l ,  ~ )  is well defined a.e. P, and a.e. {~k), n>3} 

converges to K(k~= rixi: ~r2__<l in the sense qf /-/-norm and clusters at 
1 

every point thereof 

Proof For every n>3, A e ~ ,  P ( I / 2~n~ ,EA)=g(A) .  Therefore a.e. P, ~k) 
are well defined for n > 3, k>  1, and reside in H. The k-vector of coefficients 

defines a random sequence in k-space x~ (X/) . . . .  , x~ 2 n E ~ n) �89 n > 3 
1 

which because of mutual independence of X 1, X 2 . . . .  and orthonormality of 
x* { i, i>  1} has precisely the probability law of {($1,,..., Sk,)/(2n ~ f n) ~, n>3} 

o f L e m m a 5  ~. [] 

In what follows, the reader will find our notation facilitates comparison 
with [5]. 

Lemma 2. For each e > O, h e H, x �9 B, r o > 1, the statements (r 0 - 1) II ~ Jl < e/2, 

l~heK,1.o + h - x  >~ together imply Ilh-xil >=e/2. 

Proofllh_xl,= rol h - x + - r ~  h >= + h - x - ( r ~  

If ~-o h - x  > e the right side is > e - ( r o - 1  ) -~0-o h . B y L e m m a ~ ,  

Hence the right side is > e - f r  o -  1) I1~11. [] 

For convenience let X denote X~. Henceforth E will indicate "expectation", 
i.e. integration over (2 with respect to P. 

Lemma3.  For each e>0,  r > l ,  there exists k sufficiently large so that 
P(II X -  x (k) II > e 2]/~T n) <= e- ~tt,, for all sufficiently large n. 

Proof If 7 > 0 then for each k > 1, n > 3, 

P( I IX-  X<k'll > e 2 ~ - ~ ) <  E e' IIx- x~k'll2 e - 2~2+e". 

By a result of Fernique [2], E e ~ IIx-x~ II 2 < oo for at least those 7 such that a t > 0  
may be found for which 7 < (24 t 2 )- ~ log (P (ll x - x ~k) II <= t)/p (11 x - x ~ II > t)). Since 
by L e m m a ~ ,  t lX-X(k) l t~0  a.e. P as k---,oQ, we may choose any t>0,  r > l ,  
and for k sufficiently large be assured of 7 > r2/2 e2 satisfying Fernique's inequality. 
For such a choice of k and 7, E e ~ IIX-XKk)ll2 e - 2 ~ e e " < e  -~ee~ for all sufficiently 
large n. 
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/ 1  
Lem ma  4. For each k >  1, t o>  1, and r2<r2, p{  "-Z- X(k)/b/2d d n~K~ <e -r2~n 

for all sufficiently large n. \ r~ 

Proof. For  k > l ,  r > l ,  n > 3 ,  P ( 1 - - - x ' k ) / 1 / ~ n ( ~ K ) = P O ~ > 2 r E o E E n ) .  " " 
\ r 0  / 

The latter is asymptotical ly (r 2 d # n) k- 1 e- ~ t ' / ( k -  1)! as n -~ oo. For  r < r o this 
is less than e-r2ee, for all sufficiently large n. [ ]  

For  e > 0  let K~={x :  x~B, IIx-KIl<g},  the open e-neighborhood of the 
closed set K in B. Write r,-, 1 for " r  sufficiently close to one" .  

Proposition 1. For e > 0 ,  r ~  1, P ( X / ~  n~K~)<e - ' ~ "  for all sufficiently 
large n. 

Proof Suppose e > 0, r > 1, k > 1, n > 3. For  r o > r, 

P(X/]/2d d ng~ K~)< P ( ~b X(k)/l/2d d nq} K ) 

[ 1 "k) " - -  1 x ( k ) _ x  n'~ (1) + P [ - ~  X ~ /]/2d d neK,  >g ]/2d d . ] \ r o ro 

By L e m m a  2, since x(k)eH, the second term on the right of (1) is for r o ~ 1 

_ > g - -  

By Lem ma  3 we may choose k sufficiently large so the latter is ~e~" -z~ee,, ~ge~ ~ -~ee ,  
for all sufficiently large n. For  this choice of k, by L e m m a  4, the first term on 
the right side of (1) is <e- (~+~r~189 -~ee" for all sufficiently large n. [ ]  

As used below, square bracket  [ ] will indicate the taking of integer part. 

Proposition 2. For a>0 ,  r >  1, it is possible to choose c> 1 sufficiently close 
to one so that P ( m a x { l l { i -  {[c.ll[: [ c'] <= i < [ cn + l ] } ~ 8 ) <-_ e- ~2 r # [~q for all sufficient- 
ly large n. 

Proof For  e > 0, r > 1, c > 1, [c"] > 3, [-c"] < [c "+ 1-1, let events U, V,, W (depending 
on e, c, n) be defined through the following relations with I = {i: [-c"] < i < [-c'+a]}: 

u- -  {max It r G~ II >-- e}, 

V = ~max IIXEc~ l + . . .  + X~I/>=2 (2 [e ] ~ ~ [e'])~ , 
[ ieI  

W = {max [(i d d i/[e"] d d [c"]) } -  11 II gt~~ It > e/N}. 

Then  P ( U ) < P ( V ) + P ( W ) .  For  all sufficiently large n, W is contained in the event 
~[c,lCK,, as K~ is no rm bounded  in B. By Propos i t ion  1, for r ~  1, P(~tc,I~K~)= 
P(X/l/2({[cVj]q~K~)<-~e -r~t~[~"] for all sufficiently large n. To  bound  P(V) we 
need the inequality, P { m a x  [IX a + ... + Xfl > a)<=2P(llXII > aJ - ~ -  II/~]L lf2) valid 

l ~ j = J  

for all J=>l,  a > 0 .  The proof  closely follows that of the specialization to the 
Gaussian case of a well-known r.v. inequality. For  example, see [3], L e m m a 2 ,  
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p. 45, where there is also a nice historical sketch of the development of the ordinary 
log log law for r.v. The proof strongly uses two things: mutual independence of 
X1, X2, ... and the fact that for each n > 1 the probability law of (X 1 +. . .  + X,) / l fn  
is precisely that of X. Applying this inequality, 

(li ll >=2•  Ec~ 
> L (d d [ c " ] / ( c  2 - 1))0 <2P (IlXlt = 2 

for all sufficiently large n, using ([c "+1] - [cn] ) / [ c" ]~c2-1  for all sufficiently 
large n. By Fernique's result, there exists y > 0 for which E e 7 ilXll 2< c~. For this 7, 
our last upper bound on P(V) is < 2 E  e~llxli2e -(~2/4)~t[c"]/(c2-a). For c so close 
to one that g 2 > 4 r  2(c 2 - 1 )  the latter is <�89 e -r2~[c"] for all sufficiently large n. 
Combining this with the bound previously obtained for P(W) gives the result. [] 

Theorem. The sequence {~,, n>3} a.e. P converges in B to K and clusters at 
every point of K in the sense of B-norm. 

Proof Suppose e > 0, r > 1. For c > 1, [c"] __> 3, [c"] < [c "+ 1], 

P(i: [c"] < i <  [c"+1], ~iq~K~) 

< P ({tc-]r Ke/2) + P(max { I[ { i -  ~[c-]ll: [c"] _-< i<  [c "+ 1] } > e/2) 
<- e-  r2dd[cn] 

by Propositions 1 and 2, for r, c sufficiently close to one and all sufficiently large n. 
Since ~e-r=et[c"]<oo we may apply the Borel-Cantelli lemma to conclude 

n 

P({iEK~ eventually as i--+o0)=1. Since this is true for all rational e>0,  the 
sequence {{i, i>3} is a.e. convergent to K. By Lemma 0 the set K is closed in B, 
which together with the previous sentence implies the set of cluster points a.e. 
cannot exceed K. To prove the set of cluster points a.e. contains K it is enough, 
because of separability of K in B, to prove that for each x E K, e > 0, P(II ~i - x][ < 
i. o.) = 1. Here i. o. means infinitely often as i --+ oo. Suppose e > 0, x e K. Choose r ~ 1, 
k so that IIx-x(k)[] <e/5 and so that, by Lemma 3, 

P (it X - X (k) ]i > 5 1 / 2 ~  ~n) < e-"2~" 

for all sufficiently large n. For this k, by Proposition 2, choose c > 1 sufficiently 
close to one so that the conclusion of Proposition2 holds for {~, i=>3} and 
for /~'~(k), i>  3}. From the Borel-Cantelli lemma applied to these estimates, a.e. P, 
defining n = n (i) by [c"] < i <  [c"], for all sufficiently large i, 

8 8 8 

By Lemma 1, a.e. P, 
8 

, -x(k)[I < II~l k) ll~/II#ll 
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i. o. Therefore, a.e. P, i.o. 

II r  = < II~i-~t=~ + I1 ~t=,,~- ~(k)-~tc I t +  ~(k)tc.a_ ~i(k) II + I[r + Itx(k)--xll < ~ ,  

This completes the proof. [] 

This theorem, as applied to B = C k [0, 1], # = k-dimensional Brownian motion 
measure, differs slightly from Strassen's theorem quoted in the proof of Lemma 5 ~. 
Both {r n>3} and {~,, n>=3} are zero-mean Gaussian sequences in Ck[0 , 13. 
Their coordinatewise covariances are: min{n, m} min {s, t} for the former, versus 
min {n s, m t} for the latter, for n, m>3,  0<s ,  t <  1. Does Strassen's result follow 
as a perturbation of our theorem? This question is presently under study. 

I wish to thank V. Mandrekar and also J. Williamson for helpful discussions of Strassen's theorem. 
The paper has also benefitted from good refereeing. 
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