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On Admissible Translates 
of Infinitely Divisible Distributions* 

William N. Hudson and Howard G. Tucker 

w 1. Introduction and Summary 

A probability measure # over the Borel subsets ~1 of the real line IR 1 is said 
to have the real number t as an admissible translate if/z t is absolutely continuous 
with respect to/~, where/~ is defined by #t(B)=#(B-t) for all Be~31 and B- t= 
{b-t: beB}. Interest in admissible translates for stochastic processes has existed 
for over ten years, possibly as a natural extension of the change of location problem 
in statistics. Some attention in connection with this problem has been paid to 
stochastically continuous processes with independent increments and even to 
infinitely divisible distributions over a Hilbert space. It appears that one step 
towards a solution of the problem of finding the set of all admissible translates 
of such processes or distributions is to solve it for an infinitely divisible distribution 
function over the real line. 

Possibly the first result along these lines is due to I .I .Gikhman and A.V. 
Skorokhod [3], in which they give sufficient conditions for a fixed number to be 
an admissible translate of an infinitely divisible distribution function F. The 
general problem of admissible translates of a measure over a Hilbert space was 
considered in 1970 by Skorokhod [8], where he gives a brief history of the problem 
and references. It is (or will be) clear that there is no problem concerning admissible 
translates of an infinitely divisible distribution function if a Gaussian component is 
present; thus, from here on in our discussion we assume this component missing. 
Another result related to this problem in an obvious way is due to M. Sharpe [9] 
who showed that if F is an absolutely continuous infinitely divisible distribution 
function with a continuous density and whose characteristic function F(u) is in 
L , ( - o %  + oe) for all p>0 ,  then the set over which the density is positive is an 
unbounded interval. F.W.Steutel [10] improved this result by dropping entirely 
the integrability hypothesis on F(u). From a different direction the present authors 
complemented the Sharpe-Steutel result in [6] by showing that if F is absolutely 
continuous with a density which is not necessarily continuous but whose L6vy 
spectral measure has an unbounded absolutely continuous component, then the 
density of F is positive a.e. over its support which is necessarily an unbounded 
interval; the set of admissible translates in this case is obvious. This result was in 
turn extended to the multivariate case by W. N. Hudson and J. D. Mason in [5]. 

In this paper the result of the present authors referred to above is improved 
to read as follows: if F is absolutely continuous and infinitely divisible, then F 
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has a density which is positive over its support which is necessarily an unbounded 
interval. 

A word or two is now in order as for notation. The same symbol will in general 
be used for a non-decreasing function over a subset of IR 1 and for the Lebesgue- 
Stieltjes measure it determines. For  example, if F is a distribution function, then 
for any real number x, F ( x ) =  F ( ( -  o% x]), and if Ae~31, then F(A)=~AF(dx  ). If 
M is a L6vy spectral function or measure, then for real x >0, M(x)=  - M ( [ x ,  oe)) 
and for x<0 ,  M ( x ) =  M ( ( -  o% x]), and M ( A ) = ~ A M ( d x  ) for every Borel set A. 
If X is a random variable, then F x will denote the distribution function determined 
by X, i.e., F x ( x ) = P [ X < x  ] and F x ( A ) = P [ X e A ] = ~ A F x ( d x )  for every As~31. 
Lebesgue measure over the real line will be denoted by 2, and # ~v means that the 
measure # is absolutely continuous with respect to the measure v. If ~ and fl are 
two probability measures, c~,fl will denote their convolution. 

w 2. Background on Admissible Translates 

In this section some background is provided for the problem under considera- 
tion, and concrete examples are included. Along with several lemmas there is 
included Theorem 1 which gives sufficient conditions for an absolutely continuous 
distribution function to have a positive density over it support. 

Lemma 1. I f  U and V are independent random variables, and if  the real number v 
is an admissible translate for  Fv, then it is an admissible translate for Fv+ v.  

Proof  Suppose X and Y are independent random variables such that F x ~ F  v 
and F r ~ F  r .  Then F x x Fy ~ F  v x F V holds over (IR 2, ~2). Consider the measurable 
mapping T: N 2 ~ IR 1 defined by T(x,  y) = x + y. If A ~ ~1, and if F v • F r T -  1 (A) = 0, 
then F x • Fy T - I ( A ) = O .  But F x • Fy T -1 = Fx + r and F v • F V T -1 = Fv+ V, and thus 
F x + r ~ F v +  V. Now take X =  U and Y =  V + v ,  and the lemma follows. 

We now consider the simplest cases of admissible translates of an infinitely 
divisible distribution function F. If F is normal with mean # and variance 0 -2 > 0, 
then every real number is an admissible translate of F. By lemma 1, we immediately 
conclude an assertion made in section 1 that if F is infinitely divisible and has a 
Gaussian component, every real number is an admissible translate of F. If F has a 
Poisson distribution, then the set of all admissible translates is easily seen to be the 
set of all positive integers. A first non-trivial result would be the following. 

Proposition 1. I f F is an infinitely divisible distribution function without a Gaussian 
component, and if its Ldvy spectral measure M has a discontinuity at b =t= 0, then b 
is an admissible translate of  F. 

Proo f  One may represent F as the convolution of two distributions G and H 
whose characteristic functions are 

and 

! iux 1 i u x  \ M  ) 

_H(u) = exp [M({b}) (e i"b - 1)]. 
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Thus F = G */-/, where H is the distribution of b Y, where Y has a Poisson distri- 
bution. Lemma t and the observation made above about the Poisson distribution 
show that b is an admissible translate of F. 

Thus it is easy to see that for F infinitely divisible, the set of all admissible 
translates of F contains the additive semi-group generated by the points at which 
its L6vy spectral measure M is discontinuous. In an attempt to find the set of all 
admissible translates of F, one might inquire if every point of increase of M is an 
admissible translate of F. One consequence of the following proposition is that 
one can easily find F and M where no point of increase of M is an admissible trans- 
late of F. 

Proposition 2. I f  F is an infinitely divisible distribution without a Gaussian 
component and with L&y spectral measure M, and if F is not continuous, then the 
set of admissible translates of F is the additive semi-group generated by the points 
of discontinuity of M. 

Proof. Since F is not continuous, then by a known result (see [1], [2] and [4]), 
0 <  K =M(IR1 \ {0})< oo. Without loss of generality we may write 

co 

F(u) = exp ~ (e iux- 1) M(dx). 
- - o o  

Then, as is well-known, one may write 
M*n 

F= ~, e - K - ,  
n>=o n! 

where M*" denotes the convolution of M with itself n times. Let tJe0 be a real 
number not in the semi-group generated by the discontinuities of M. Then 
M*"({t})=0 for all n>0,  and thus F({t})=0. But the t-translate of F, F~, satisfies 
Ft({t})=F({O})=e-r>O, and thus t is not admissible. Invoking Proposition 1, 
we obtain our conclusion. 

Thus, the only real problem is that of determining the set of admissible trans- 
lates for a continuous F which we cannot do completely here. The following 
lemma provides the crucial step in the proof of theorem 1. Recall that 2 denotes 
Lebesgue measure over (IR 1, ~a). 

Lemma 2. Let y >0  be an admissible translate for a probability measure qo over 
(iN 1, ~1), and assume (p 42. I f  I is any bounded interval, then 

Proof. It is sufficient to prove 

(x) y) 

except for a set of Lebesgue measure zero. But 

5 *  
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Thus it is sufficient to prove 

dcp d~o 

Defining (py by q~y(A)=q)(A-y) for all A E ~  1, our hypothesis becomes (py4q0, 
which implies that 

dcp 
{x: ~-dcPY ( x ) > O } c { x : ~ - ( x ) > O }  a.e. (2) 

But by the definition of q~y, 

{x: ~-dcPY ( x ) > O } = y + { x :  ~ do (x) > 0 } = { x + y :  ~ -  (x) > 0 } . d o  (3) 

Now (2) and (3) imply (1). 

Theorem 1 which follows is the fundamental lemma needed to prove Theo- 
rem 2. However, it is an interesting result in its own right which should be com- 
pared with Skorokhod's remarkable result [8] that goes as follows: 

Skorokhod's Lemma. Let (p be a probability measure over (JR 1, f~l) such that 
(py4q) for all y>0 .  Then qo 42,  and (p has a positive density a.e. over its support 
which is necessarily an interval of the form [a, oo) or ( -  0% oo). 

Now in our Theorem 1 we put part of Skorokhod's conclusion into his hypo- 
thesis, namely, (p 42,  while at the same time weakening his hypothesis to read: 
~0y, 4~o for some sequence y,~0. The proof of Theorem 1 will involve the notion 
of metric density, about which we should state this much (see [7], pp 222-224): 
if A s ~  1, then there is a subset A o of A such that 2(Ao)=0 and such that every 
x e A  " ,A o has metric density 1 with respect to A, i.e., 

lim (2 e) -1 2((x - e, x -~- e) (~ A) = 1. 
e.L0 

Theorem 1. Let (p be a probability measure over (IR 1, f51), and assume qo 42. 
Let {x,} be a sequence of positive numbers such that xn~ O and each xn is an admissible 
translate of (p. Then dp/d2>O a.e. [2] over its support which is an interval of the 
form [a, oo) or ( -  o% co). 

Proof. Let D =  x : ~ X - ( x ) > 0 .  Let a=in f {x :2 (Dc~( -oo ,  x])>O}. Define 

DC=[a, oo)'..D if a >  - o o  and = N I \ D  i r a =  - o o .  We wish to prove 2(DC)=0. 
We assume to the contrary that 2(D c) + 0. Then there exist points in D c of metric 
density 1. Let zeD c be one such point, z>a.  Then there exists an e > 0  small 
enough so that 

(2 g)- 1 2(D c c~ (z -- e, z + e)) > 0.9 (4) 

Let xeD  be a point of metric density 1 with respect to D and such that a < x < z .  
Next choose 6 > 0 small enough to satisfy both 

0 < 6 < e / 1 0  and 2 ( D n ( x - f , x + 6 ) ) > 0 . 5 ( 2 6 ) = 6 .  (5) 
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Let y be any of the x,'s which satisfy 0 < y < 3/10. Next define 
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k l = m i n { k : x + k y - 6 > z - e  }, k 2 = m i n { k : x + k y - 6 > x + k l y + 6 } ,  

and, for every integer j > 2 ,  let k j = m i n { k : x + k y ' c ~ > x + k j _ l y + 3 } .  Let 
n = m a x { j : x + k j y + 5 < z + e }  and denote I j = ( x + k j y - 6 ,  x+kjy+6) .  Now 
11 . . . . .  I, are disjoint, n>  1, and 

U I~(z-~, z+~). (6) 
j=t 

Since y is an admissible translate of cp, we obtain by Lemma 2 for everyj 

2(D m Ii)_-> 2(D (~ ( x - 6 ,  x +6))> 6. (7) 

Hence by (5), (6) and (7), 

2(D (~ (z-~,  z + ~))__> ~ 2(D (~ Ij)>nS. (8) 
j=l 

An easy computation shows that n >= 9, from which it follows from (8) that 

2(D c~ (z - e, z + e)) > 0.9 e, (9) 
while (4) implies that 

2(DC~(z-e, z+  e)) > 1.8e. (10) 

Thus, (9) contradicts (10), and hence (4), from which we obtain the theorem. 

w 3. Admissible Translates in the Absolutely Continuous Case 

We now solve the problem of admissible translates in the case of an absolutely 
continuous infinitely divisible distribution function F. It is already known [13] 
that in this case the support of F is an unbounded interval of the form ( -  ~ ,  a], 
[a, ~),  or ( -  ~ ,  0o), and one can always determine the finite number a when it 
exists [11]. In Theorem 2 we shall prove that the density of F is positive a.e. over 
its support. Thus, if the support of F is [a, ~),  the set of all admissible translates 
is the set of all positive real numbers, when the support of F is ( -  ~ ,  a], then the 
set of all admissible translates is the set of all negative real numbers, and in the 
remaining case it is ]R 1. 

Theorem 2. Let F be an absolutely continuous infinitely divisible distribution 
function with characteristic function 

{ ( t F(u)=exp i7u+ ~ ~ e ' X - 1  M(dx) . 

Then the density of F is positive a.e. [2] over the support of F which is necessarily' an 
unbounded interval. 

Proof. If every deleted neighborhood of zero contains discontinuity points 
of M, then the conclusion follows from Proposition 1 and Theorem 1. Hence we 
shall assume there exists a deleted neighborhood of zero over which M is con- 
tinuous. Of course, M is also inbounded. Without loss of generality we shall 
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assume M ( + 0 ) = -  o9. Let S denote the set of all admissible translates of F. 
According to Theorem I it is sufficient to show that there exists a sequence 
{x,} c S such that x,+0 as n--+ oo. This is accomplished by the following two claims. 

Claim l ~ If there is no sequence {x,}cS such that x,$0 as n--+oo, then for 
some Borel set A and number 3 > 0, 

(i) F(A)=0 and (ii) F(A-y)>O for all yE(0, 3). 

Proof of Claim 1 ~ Define Fx(B)=F(B-x ) for Be231. By hypothesis there 
exists a 3 > 0 such that for all x e (0, 3), Fx is not absolutely continuous with respect 
to F. Hence for every xe(0, 3) there is a Borel set A x such that 

F(Ax)=0 but F(A~-x)>O. (11) 

Now, for every xe(0, 3), define a function g~(.) by g~(y)=F(Ax-y). Since F is 
absolutely continuous, it follows that g~(y) is continuous in y. Now let 

Nx = {y: g~(y) > 0}. (12) 

Since g~(y) is continuous in y, then N x is open, and (11) implies that xeN~ for all 
xe(0, 3). Hence (0, 3)c  U{N~: 0 < x < 3 } .  Since (0, 3) is sigma-compact, there is a 
sequence {t,} c (0, 3) such that (0, 3) c U,  N,. Set 

A = U A , .  (13) 
?t 

By (11), F(A)< ~', F(At, ) = 0, so F(A)= 0. Let y e(0, 3) be arbitrary; then for some n, 
y e Nt. By (12) and (13), F(A-  y)> F(A~.- y)> 0, which proves claim 1 ~ 

Claim 2 ~ There exist two infinitely divisible distribution functions G and H 
such that (i) F = G * H, (ii) F and H are equivalent, and (iii) the support of G is 
[0, oo). 

Proof of Claim 2 ~ Let x 1 >0  be such that M is continuous over (0, Xl), and 
select Yl ~(0, x~) so that M(Xl)-  M(yl) = 1/2. For n = 2, 3 . . . . .  let x. = y~_ 1/2 and 
0 < y . < x .  be such that M(x.)-M(y.)=l/2 ~. It is easy to determine two L6vy 
spectral measures, M 6 and M m so that Ma+Mn=M and 

dM 12 if xEU [y.,x.] 
d~_H (x) = ,=1 

1 if x r U [y., x.]. 
n = l  

Now take as G and H those distribution functions whose corresponding charac- 
teristic functions are 

oo 

G(u) = exp S ( eiux- 1) Ma(dx) 
0 

and 
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Since MG((0, 6))>0 for every 6>0,  it follows from the theorems in [11] and [13] 
that the support of G is [0, oo), thus implying (iii). In order to verify (ii), we use 
Theorem 4 of [6] which asserts in our case here that F a n d / 4  are equivalent 
measures if the following four conditions are satisfied: 

and 

and 

M(IR 1 "-- {0}) = Mn(1R 1 \ {0})= oo, 

M ~ M n and Mn ~ M , 

( 1 -  ]// dM~/dM) 2 dM < oo 
x4=O 

x*O 

(a) 

(b) 

(c) 

X 
x MG(dX) = ~ ~ ( M - M n ) ( d x ) "  

x*O l + x 2  x*O l + X  

Conditions (a), (b) and (d) are immediately seen to be true, and the value of each 

integral in (c) is (1 -1/2)2/2. This proves conclusion (ii), and finishes the proof of 
claim 2 ~ We now prove the theorem. Let A and 6 > 0  be as in Claim 1 ~ and let 
G and H be as in Claim 2 ~ By (i) of Claim 2 ~ 

F( A ) = S H (A - y) G(d y). (14) 

By claims 1 ~ and 2 ~ since H and F are equivalent, and since F ( A - y ) > O  for all 
y~(0, 3), then H ( A - y ) > O  for all y~(O, 6). By (14) and (iii) of Claim 2 ~ we obtain 
F(A) > 0. But this contradicts conclusion (i) of Claim 1 ~ Hence the hypothesis of 
Claim 1 ~ is not true, i.e., there does exist a sequence {x,} c S  such that x,$0. Now 
we apply Theorem 1 to conclude that dF/d2 > 0 a.e. [2] over the support of F. 

In order to show that Theorem 2 extends both the first three theorems in [6] 
and the Sharpe-Steutel result referred to earlier (but does not contain the latter), 
we must give some indication that (i) there exists an F without a Gaussian compo- 
nent but which is absolutely continuous and is determined by an M-function 
which is continuous singular, and (ii) there exist absolutely continuous infinitely 
divisible distribution functions without a continuous density. An example that 
satisfies (i) is given in [12]. Examples which satisfy (ii) can be found among the 
distributions of class L; see e.g., Theorem 4 in [14]. 
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