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Summary. Let  {(X~ 1) . . . .  ,X())), n > l }  be k -d imens iona l  i id r a n d o m  vectors.  
Necessa ry  and sufficient condi t ions  are found for the weak convergence  of  the 

m a x i m a  X~ 1) . . . .  , ~/ XJ. k) su i tab ly  n o r m e d  to a non-degene ra t e  l imit  dr. 
j = l  j = l  .)  

The  class of  such l imits  is specified and condi t ions  s ta ted  for the l imit  j o in t  d f t o  
be a p roduc t  of  marg ina l  df's. Some results  are presented  concern ing  ex t remal  
processes  genera ted  by mul t iva r i a te  df's. 

1. Introduction 

Suppose  {X,, --,~(1) n > 1 } = {(et . . . . .  , X~(k)), n > 1} are  independent ,  ident ica l ly  d is t r ibut -  
ed (iid) r a n d o m  vectors  with k -d imens iona l  d i s t r ibu t ion  funct ion (df) F. Define the 
sample  m a x i m a  as 

j = l  j = l  / 

W e  seek condi t ions  under  which 3 no rma l i z ing  cons tants  a~J)>0, b~ i), n > l ,  
1 < j  < k such tha t  

gn(1) - b(n ) y(k)--b(k)' ~ 
~ a(~ 1) . . . . .  a f t  ] 

(1) 
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converges weakly to a non-degenerate limit df and we seek specifications of 
the class of such limits. To avoid trivialities we assume each marginal sequence 

(J) o) a U) (Y~ - b  n )/ , in (1) converges weakly to a non-degenerate limit. This problem 
has also been considered by Geffroy (1958), Galambos  (1975), Tiago de Oliveira 
(1959), Pickands (1976) and Sibuya (1960). 

A multivariate convergence of types argument (see Geffroy (1958)) quickly 
shows that the class of limit df's for (1) is the class of max-stable distributions where 
we define a df G in R k to be max-stable iff for every n, 3 c@ > 0, fl(~), 1 < j  < k such that 

G" (~(,~) x l + fl~l), ..., e(k) Xk + fiN)) = G (x 1, . . . ,  Xk). (2) 

Note  that each marginal of G must be one of the three classical extreme value df's 
studied by Gnedenko (1943) and de Haan  (1970, 1971). Max-stable df's form a 
subclass of the max-infinitely divisible (max-id) df's introduced and characterized 
in Balkema and Resnick (1977). 

We begin in section 1 by deriving the form of max-stable df's in R k which have 
specified marginals. Several representations are given. The restriction on the 
marginals is next removed after which we take up domain of attraction and 
asymptotic  independence questions. Finally we close with some observations 
about  the extremal processes generated by the max-stable and max id df's. 

The max-id df's as discussed in Balkema and Resnick (1977) are a proper 
subclass of the df's on R k which can be defined as follows: F(x~ . . . .  , Xk) is max id iff 
for every t>0 ,  U(x~,  ...,Xk) is a df or equivalently iff V n F  1/" is a df. It is then 
immediate from (2) that max-stable dl~s are max id. 

The following is a criterion for F to be max id: Let A(xa,  ..., Xk)= [--O% X~] 
X ... X [--  o% Xk]. Then there must exist a measure v on [ -  o% oo) k, called the 

exponent measure, such that 

v ( l R l X . . . x N i _ l x [ - o o ,  o o ) x N i + l x . . . X l R k ) = O o  for all i = 1  . . . . .  k, 

v(AC(Xl, ..., Xk)) < oO for some ( x l , . . . ,  Xk) 

and 

F ( x l , . . . ,  Xk) = exp { -- v ( X ( X l , . . . ,  Xk))} 

where 

A~(x l, ..., Xk)= [--  o% o0) k -  A (x l, ..., X,). 

From a process point of view the max id df's are precisely the class of df's F 
which can be used to define a multivariate extremal process Y( t )=  (I1t (t) . . . .  , Yk(t)). 
Such a process is defined to have marginals: V n, V 0 < t~ < . . .  < t, 

P [ Y l ( t i )  <=x([), . . . ,  Yk(tg <=x~~ i =  1, . . . ,  n-] 

) = f t l  1 x li x?  

�9 . . . ,  (3) 
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A related viewpoint  is that  F is max  id i ff there exists a measure  v on [ - o% oo) k such 
that  if we construct  a Poisson r a n d o m  measure  on R + x [ -  o% oo) k with points  
{(T,; j~l) . . . .  ,j(k))} and mean  measure  d t  x v ( d x l  . . . . .  d x k )  then defining the ex- 
t remal  process Y(t) by 

Y/(t) = sup,  {j(1) [ T, =< t} (4) 

we have  

U (X 1 , . . . ,  Xk) = P [ Yi(t) < x i ,  i = 1 . . . . .  k] = exp { - t v (AC(x 1 , . . . ,  Xk))} �9 

Our  methods  differ f rom those of previous authors  because of our  reliance on 
the concept  of max  infinite divisibility and judicious use of  polar  coordinates.  Also 
insight is gained by compar ing  the mul t ivar ia te  stable L6vy processes wi th  certain 
of  our  ext remal  processes Y which satisfy { Y ( a t ) , t > O } = { a ~ Y ( t ) , t > O } V a > O  

where a is a positive parameter .  

2. Max-Stable df's with Prescribed Marginals 

Call a max-s table  df G in R k s i m p l e  if each margina l  is equal  to the ext reme value df 
�9 l ( x ) = e  - x - l ,  x > 0 ;  i.e. 

G(oo ,  . . . ,  oo, x~, o% . . . ,  o o ) = e - ~ C ' , x i > O .  

We begin by deriving the form of a s imple G. The  reason why it is sensible to start  
with a s imple G becomes  clear in section 4 where we remove  this restriction on the 
marginals.  

The  exponent  measure  of  a max  id df need not  be unique. For  instance consider 
the simple stable df G ( X l ,  x 2 ) = e x p  {-(x~-1 + x ~  1)}, X a > 0, x2 >0 .  One possible 
choice of  exponent  measure  v is 

v ( d x 1 , d x 2 ) =  x l z  d X 1 1 ~ 1 > o  . . . .  o}(xl,x2)+ xz2 dx21(xz>O,xl=o}(X1,X2), 

but  ano ther  perfectly good  choice is 

v(dx1, dxz)=xl 2dXl l{x,> o . . . . . .  }(X1, X2)"+-x22dx2 1{ . . . . . . .  2> 0}(X1, X2)' 

W h a t  is impor tan t  for our  future work  is that  the exponent  measure  of  a s imple 
stable df can always be chosen so that  v {([0, oo)k) c} =0 .  This is easy to check and 
hencefor th  when dealing with exponent  measures  of  s imple stable dfs  we suppose  
this p roper ty  is in force. 

Suppose  now that  G is s imple stable. Considera t ion  of proper t ies  exhibited by 
�9 l(x) shows that  (2) can be wri t ten as 

G"( n x l ,  . . . , n xk)  = G( x i . . . . .  Xk) 

V n and it is easy to switch to a cont inuous  var iable  s in place of  n so tha t  V s > 0 

G S ( s x l  . . . .  , S X k ) =  G ( x l ,  . . . ,  xk) .  (5) 

F r o m  (5) it follows that  G ( x l  . . . .  , X k ) > 0  if Xi > 0  for i =  1, 2, .. . ,  k. 
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Lett ing v be the exponent  measure of  G (5) becomes 

sv(AC(sxl . . . .  , sxk))=v(AC(xl ,  . . . ,xk),  (6) 

where recall A(x l  . . . . .  xk) = [ -  0% x l ]  x . . .  x [ -  0% xk] so that  (6) entails 

Sv(sAC(x1,  . . . ,  Xk) ) =  V(Ac(X1, . . . ,  Xk) ). 

N o t e  v ( X ( X l  . . . . .  Xk)) is finite if xi > 0  for i =  1, 2 . . . . .  k. 
Fo r  fixed s the measure sv(s .) agrees with v on a generat ing class closed under  

intersections and hence we conclude ~' B ~ ( [ 0 ,  oo) k) 

s v (sB) = v (B). : (7) 

Let ~ = [0, ~]k- 1 and let T: R k ~ R+ x ~ be the t ransformat ion to polar  coor-  
k 

dinates:  T ( x l , . . . , x k ) = ( r , O  ) where r 2 =  ~ x ~ ,  0=(01  , . . . , 0k_  0 and sin 2 0 i =  
/ = 1  

(X2+ 1-t - .  X 2 X 2 "'+ ,k)/( i +...+X~,) for i=1, . . . , k - 1 .  Fix a Borel set C c ~  and set D(r, C) 

= {(s, 0 ) I s>r ,  OeC}. Note  that  for r > 0 ,  v ( r -~ (D( r ,  C)))< oo because for some 
Xl . . . . .  Xk with x i>0 ,  i = 1  . . . .  , k  we have T - l ( D ( r , C ) ) c A C ( x l , . . . , X k )  and 
v ( X ( x l , . . . ,  Xk))< oe. Referring back to (7) we have 

s v ( s T -  l(D(r, C ) ) ) = s v ( T -  l(D(rs, C ) ) ) = v ( T -  l(D(r, C))), 

i.e. if M ( r ) = v ( r - l ( D ( r ,  C))) we have 

m(r)  = sm(rs) .  

Setting s --- r -  ~ and S(C) = M(1) gives M(r) = r -  i S(C) where S is a finite measure on 
S. Thus we have 

Theorem 1. G is simple stable with exponent measure v iff there exists a f inite measure 
S on 3 such that 

vo T - l ( d r ,  dO)=r 2drS(dO) 

and 

sin 0z, ..., sin Oi 1 cos OiS(dO)= 1 
s 

for i = 1, ..., k with the convention that Ok = 0 and for i = 1 the integrand is just cos 01. 
Recall T is the transformation to polar coordinates. 

The integral condi t ion in Theorem 1 arises because of  the requirement  that  G be 
simple (cf. Theorem 2) and disappears when this requirement  is waived. To check 
that  the integral must  equal 1 note  that  for i =  1, ..., k 

x? l=v(AC(oo, . . . ,  oo, xl, oo . . . .  , oo)) 

= [. r-2drS(dO) 
TA c 

where TA c = {(r, O) lr sin 01 . . . . .  sin 0~_ 1 cos O~ >x~}. Integrat ing on r gives the result. 
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Further  unders tanding of  the meaning of  Theorem 1 is obtained from the 
following considerations:  For  a real function x(t) which is right cont inuous with 
finite left limits ~' t > 0 define the functional h via 

(hx)(t) = sup ( ( x ( s ) - x ( s - ) )  v 0). 
O<s<t  

Corollary 1. Let X(t) = (X l(t) . . . .  , Xk(t)) be a k-variate stable LOvy process of index 1; 
i.e. a process with stationary independent increments and the property V a > 0  
{X(a t), t >= 0} = {aX(t) + C(a), t >= 0} where C(a) is a nonrandom vector (L6vy, 1937). 
Suppose further that for i = 1, ..., k the L~vy measure v i of X i has the property that 
vi(x, o o ) = x  -1  for x > 0 .  The class of extremal processes generated by the simple 
stable d f ' s  described in Theorem 1 is precisely the class of extremal processes realized 
through the scheme Y(t )=  { Yl(t) . . . . .  Yk(t)} = {(hX1)(t ) . . . .  , (hXk)(t)}. 

Proof That  Y is an extremal process follows as in the 1-dimensional case (cfi Dwass 
1964, Resnick and Rubinovi tch  1973) f rom the fact that  X induces Poisson r andom 
measure with points {T,; j(1),.. . ,jff)} where T, is the time of  a j ump  and 
(j(1) . . . . .  j(k)) = X ( T , ) - X ( T ~ - ) .  The mean measure is dt x v(dXl, . . . ,  dXk) where v is 
the L6vy measure of  X. However,  i fX is stable with index 1, it is well known (L6vy, 
1937) that vo T-1(dr, dO)=r-2drS(dO) where S is a finite measure on ft. 

In case k = 2, the criteria obtained in terms ofv  o T -  ~ for G to be max stable can 
be rephrased in terms of  v: 

Corollary 2. G(x, y) is simple stable with exponent measure v iff 

G(x, y) = e x p  - {x  - 1  ~ COS 0 S(dO) + y-1 ~ s in  0 S(dO)} 
[0, arctan y/x] (arctan y/x, ~]2l 

where S(') is a finite measure on [0, 3] such that 

re/2 ~z/2 

cos 0 S(dO) = ~ sin 0 S(dO) = 1. 
0 0 

Proof The last two condit ions arise because we require G(x, c o ) = e x p { - x - 1 }  
= G(c~, x). For  the rest note that  by Theorem 1 v o T -  1 (dr, dO) = r -  2 dr S(dO) so that  

v(AC( x, y))= YS r-2 dr S(dO) 
T(Ae(x, y)) 

= r dr S(dO) 
{(r,O) lrcosO < x, rsinO < y} c 

= SS r 2drS(dO) 

k ' cos0 s in0)  

and evaluating the integral on r for fixed 0 gives 

x -  1 S cos 0 S(dO) + y-  1 ~ sin 0 S(dO) 
[ O, arctan y/x] (arctan y/x, ~/2] 

as asserted. 
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Corol lary 3. I f  G is as in Corollary 2 and P(X < x, Y<y)= G(x, y) then 
(i) X, Y are independent iff S{O} = S {~} = 1 and S places no mass elsewhere. 

This can be seen either from Corollary 2 or by checking directly from G(x, y ) =  {_(1+ 
exp \ -x  y ] )  that v{(t ,s)[t>x,s>y}=O for all x,y>O. 

(ii) P(X= I 0 =  1 /ff S{�88 = 1 / 2  and S places no mass elsewhere. 

Remark. If  the measure  S concentra tes  on some point  0o E [0, {] with 0o 4:�88 we have 
Y= (tan 0o) X a.s. and hence the marg ina l s  are bo th  of  type ~l(x) ,  but  are not  equal, 
This means  that  G is not  s imple according  to our  definition. 

Remark. We can connect  our  results with those of Sibuya (1960) (see also Geffroy 
(1958)) as follows: In Coro l la ry  2 when k = 2  set 

W(t)= ~ cos OS(dO)= ~ cos(arc  tan y) dS(arc tan y) (8) 
[0 ,  a r c t a n  t] [0 ,  t] 

and 

G(x ,y )=exp{ -  ( 1 + 1 + 1  Z 

so tha t  

i.e. 

1 1 ,  1 
- + -  + -  X = -  ~ cos 0 S(dO) + 1 ~ sin 0 S(dO) 
x y y x [O, arctany/x] Y (arctany/x,n/2] 

t + 1 + Z(t) = t y cos 0 S(dO) + ~ sin 0 S(dO) 
[0 ,  a r c t a n  t] ( a r c t an  t,  re/2] 

=tW(t)+ ~ tanOcosOS(dO)+S({~}) 
[ a r c t a n t ,  r~/2) 

o9 

=tW(t)+ ~ yW(dy)+S({~}) 
t 

co 

= ~ (y-- t) W(dy) + t(1 - W(t)) + t W(t) + S({~}) 
t 

oo 

= t + S (1 - W(s ) )  ds  + S({~)). 
t 

Therefore  we conclude 
oo 

z(t)  = ~ (1 - W(s)) as + s ( { ~ } ) -  1. 
t 

Note  Z has the proper t ies  specified by Sibuya:  

X is cont inuous  and convex since it is the integral  of  a m o n o t o n e  
funct ion 

m a x ( - t ,  -1)<Z(t)_-<O, V t>O.  

(10) 

(11) 
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Conversely  if G is of  form (9) where Z satisfies (10) and (11) then one defines S 
via W; S then satisfies the condit ions of T h e o r e m  1. 

Example 1 (cf. Geffroy, 1958, p. 71). Let  S[0, 0] = 0  for 0 _ < 0 < ~  so that  

~x/2 r~/2 

S cos 0 S(dO) = S sin 0 S(dO) = 1. 
0 0 

Then Z(t) = (1 + t2) =* - (1 + t) and G(x, y) = exp { - (x-  2 + y -  2)~} for x = 0, y > 0. 

0 

Example 2. Take  S [0, 0] = 3 ~ cost sint dr, 0 < 0 < ~. Then Z(t) = - t(1 + t 2)- ~ and for 
0 

x >0 ,  y>= 0 G(x, y )=exp{  - ( x -  1 + y -  1 _ ( x  2 + y2)-~)}. 

Example 3 (Sibuya, 1960, p. 208). Z(t) = - k t(1 + t)-  1 for 0 < k < 1 cor responds  to 

0 

S {0} = S { ~} = 1 - k, S(0, 0) = ~ 2 k(cos y + sin y) -  3 dy 
0 

and 

G(x, y )=exp{  - ( x -  1 + y-  1 - k ( x  + y)- 1)}. 

A constructive Approach. Next  we follow a construct ive approach  which leads to a 
representa t ion of the simple stable df's in Car tes ian coordinates.  Recall ing that  the 
required marginals  are ~l(X) = e - x - l ,  x > 0 observe that  in R 2 the Frechet  df  G(x, y) 
= 4~ 1 (x)/x ~ 1 (Y) = exp { - x -  1 v y -  1 } for x, y > 0 is a s imple stable df. This df  is 
concent ra ted  on the line x = y. Let  U1 and U2 be independent  r a n d o m  variables 
bo th  with distr ibution function ~1. Take  

(X, Y) = (max(r1 U1 cos q~,, r 2 U 2 COS q?2), max(r ,  U1 sin q)l, r 2 U 2 sin q)2)), 

then (X, Y) has df 

G ( x , y ) = e x p - { r l (  c-~176 v s i n71 )  + r2 (c~176 v s i 7 2 ) } .  

G satisfies (5) and is s imple stable provide  rl cos ~01 + r2 cos q) 2 = r, sin q)1 + r2 sin q)2 
=1 .  Its S-measure  concentra tes  on the points  ~01 a n d  ~02. General iz ing this 
p rocedure  we get the mos t  general  s imple stable df in R k. Let  

O= (x l , . . . ,Xk) lX i~O, i=l , . . . , k ,  x 2 = l  . 

Theorem 2. G(xl, ..., Xk) is simple stable iff there exists a finite measure U on f2 with 

ai U(dal . . . . .  dak) = 1 for i = 1, .. . ,  k 
f2 

and such that 

G(xl , . . . ,  Xk) = exp { -- 5 max(a  1 x71, ... ,  akX~ 1) U(dal, . . . ,  dak)}. 
ia 
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Proof  That  any G of  the given form is simple can be verified easily. To prove the 
converse we use Theorem 1. We have 

- l o g G ( x l  . . . . .  xk) = ~ r-2drS(dO) 
( ( r , O )  l r s i n O a . . .  

sin Oi - 1 cos01 < x i ,  
i =  1 ,  . . . , k }  c 

and integrating on r gives 

=o~zSmaxts inOl""sinOi- lc~ x~ ' i =  l, .. . , k} S(d0) 

which completes the proof.  

Remark. Independence of  the k-marginals of  G corresponds to a measure U 
concentra ted  on the k extreme points of  f2. 

Here  are some examples in R 3" 

Example 4. Suppose 

U {(l/If2,  1/1~, 0)} -- U {(1/1~, 0, 1/1J2)} -- U{(0, 1/]f2, 1/1~)} -- 1/1//2 

with U placing no mass elsewhere. Then 

G ( x , y , z ) = e x p { , � 8 9  l v z - l + x - l v z - 1 ) }  

for x, y, z > 0 .  

Example 5. Let U concentra te  on ~2 c~ {(x, y, z) ] x = 0 or y = 0 or z = 0} and have 
density �89 there. Then  

G(x, y, z) = exp - �89 {(x- 2 + y -  2)+ + (x-  2 + z -  2)~ + (y-  2 + z -  2)~}. 

Remark. Examples 4 and 5 are based on the observat ion that  if f2 is part i t ioned into 
n measurable  sets g21 . . . .  , f2n, the stable df can be written as the produc t  of n stable 
df's with angular  measures concent ra ted  on f2~(i = 1,. . . ,  n). 

3. Domains of Symmetric Attraction of Simple Max-Stable Distributions 

Here  we study the domain  of  a t t ract ion of a simple stable df G and again we recall 
that  each marginal  of  G equals 4~l(x)=e -x - l ,  x > 0 .  

Suppose F is in the domain  of  a t t ract ion of  a simple stable df  G; i.e. 3 a~ ) > 0, b~ j), 
n _>_ 1, j = 1 . . . .  , k such that  

F"(a(, 1) x l  + b(~ 1) . . . .  , a(~ k) xk + b(, k)) ---, G(x l , . . . ,  xk) (12) 

for (xl . . . .  ,Xk) a continui ty point  of  G, x~>0, i = 1  . . . .  ,k. Considerat ion of the 
marginals  shows that  (12) still holds ifb~ ) = 0, n > 1,j = 1, ..., k (cf. Gnedenko  (1943), 

_(1)_. = a(, k). When  this is the case de H a a n  (1970)). Suppose for the momen t  a n = u, - .- 
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we say F is in the domain o f  symmetric  at traction of G. Recall the nota t ion  
A ( x l ,  ... , Xk) = [-- o0, Xl] X . . .  X [-- 00, "Yk]" Note  (12) holds iff for x i > O, i = 1 , . . . ,  k: 

lira n(1 - F(a ,  x l . . . .  , anxk) ) = - - log  G(x l, . . . ,  Xk) 
n ~  oo 

so that  if v is the exponent  measure  of  G we have 

lim n P  IX ~ a, AC(x 1 . . . .  , Xk) ] = v( A c(x 1 . . . .  , Xk)) 
n ~  oo  

for all A with v(OA) = 0, where we suppose X is a r a n d o m  vector  with dfF .  Hence  for 
all B e N ( J 0 ,  oo) k -  {0}) with v (0B)=0  we have 

l im n P IX ~ a, B] = v (B). (13) 
n ~ c o  

N o w  we switch to polar  coordinates.  Let  C be a Borel subset of  ~ and set for r > 0 

k 

Then  

lim nP. IX e B(a,  r, C)] = lira n P  IX ~ a, B(r, C)] 
n ~ o o  n ~ o 9  

= v(B(r, C) )=  r -  1 S(C) 
by T h e o r e m  1, i.e. 

l im nr[ l lXl l  > a , r ,  O(X) s C] = r  1S(C) (14) 

where IIXIr, O are the polar  coordinates  of  X. Setting r =  1 and C = 3  we obtain  

l im P [ l [ X r l > a , r , O ( X ) E S ]  -1  
, ~ o  e[llXl[ > a , ,  O ( X ) ~ ]  - r  (15) 

and fur thermore  it follows f rom (14) and (15) that  

P [ I I X l I > a . , O ( X ) E C ]  s ( c )  
l im P [O(X)~  C[l lXl l l>a, ,  O ( X ) E ~  = lim p[l iX[ I > a, ,  O ( X ) e S ]  = S(S)" 

It  is not  hard  to see that  a,  may  be replaced by a cont inuous  variable t. 

Theorem 3. The random vector X with d f  F is in the domain o f  symmetr ic  at tract ion o f  
the simple stable d f  G with exponent  measure v and v o T -  1 (dr, dO) = r -  2 dr S(dO) i f f  

r [I[XII > t r ,  O(X) e 3 ]  
lira - f o r  all r > 0  (16) 
~ P [ l [ X l l > t , O ( X ) e S ]  = r  

and 

lira P [ O (X) ~ C llrX r l > t, O (X) ~ ~]  = S(C) /S(~)  (17) 
t ~ c x )  

f o r  all Borel  sets C ~ Z  with S(0C)=0 .  
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To check that (16) and (17) are sufficient observe that these conditions are 
equivalent to (13) where we choose a, to satisfy 

P[IlXl] >a , ,  O(X)~S]  = n -  1 S(~). 

In (13) put B=A~(Xl, ...,xk)c~ [0, oo) k for x~ >0,  i=  1,... ,  k and the result of this 
substitution is equivalent to 

lim P" [a 21 X E A(xl , . . . ,  Xk) W ([0, ~)k)~] = exp { -- v(X(xl , . . . ,  Xk))} 

and since a, --~ oo we have P[a21X e ([0, oe)k) ~] ~ 0 SO that (12) follows as desired. 

Remark. The criteria for convergence of sums of iid vectors are similar. See Rva~eva 
(1962, Theorem 4.2; set a =  1). 

The situation of non-symmetric attraction is discussed in the next section. 

Example 6. Let (X1, X2) have a 2-dimensional Cauchy distribution i.e. its density 
is (2r c)-1 (1 + X 2 ~  - y2)-3/2. Then [IXl[ and 0(X) are independent, []X[I has density 
r(l+r2) -3/2 r > 0  and O(X) has uniform density on [0, 2re). It follows that this 
distribution is in the domain of symmetric attraction of a simple stable law and 
S [0, 0] = 0, 0 < 0 < a Cf. Example 1. =2.  

Sufficient conditions for convergence can be given in terms of the density of F 
when this density exists. 

Corollary 4. Suppose G is simple stable and the measure S appearing in the 
representation of Theorem 1 has density s(O), 0=(01, ..., Ok_ 1 ) ~ .  Suppose F has 
density f. Then F is in the domain of symmetric attraction of G if for all r > 0  

f ( t r  cos  01, tr  sin 01 cos  02, . . . ,  tr  sin 01 ... s in Ok_ z cos  O k_ 1' tr  sin 01 ...  sin O k_ 1) dO 

lim -~ 
t~cx~ f ( t  cos  01, t s in 0 t cos  02, . . . ,  t s in 01 ...  sin 0k_ 2 cos  0k_ 1, t sin 01 ...  sin Ok_ 1) dO 

g 

= t - - ( k +  1) (18) 

and (with " -  ( � 8 8  �88 

lira f ( t c o s 0 1 ,  t s in01 cos02 . . . . .  t s in01 ...  s inOk- 2 COSOk 1, t s in01 ...  sinOk_ 1) 

t o  ~o f (t/]/2, t / ( ]~)  2 . . . . .  t/(]/2) k) 

= s(O)/s(~). (19) 

i k  \ �89  
Proof. Let f .(r,O)be the density of ]IX][-- [ ~  X•) and O----(Ox,...,Ok_ 1)where O~ 

k k 

=arcsin (l.~+lX:/l~,_ _ X~) ~ and suppose 
\ 1  I 

S f,(rt,  o) dO 
lim o~z = r -  2 (20) 

f,(t,O)dO 
0 ~  
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and 

l i m f . ( t , O ) / f , ( t , ~ ) = s ( O ) / s ( ~ ) .  

Note  that  (21) and de l 'Hospi ta l ' s  rule give 

(21) 

• f,(r, O) dr 
l im ~=t _s(O) 

~ ~ f,(r,~)dr s(~) 

and therefore 

l im P[I[XII > t ,  0 e  C] 
oo 

'+  ~ ~ f ,  (r, ~) d 
t 

S f.(r,O)dOdr 
= l i m  t o~c 

t~ ~ f ,  (r, ~) dr 
t 

~(O) dO s(c) 
O s C  

s(l) s(~) 

f rom which (17) follows and (16) follows directly f rom (20) thus implying F is 
symmetr ica l ly  a t t rac ted  to G. The  condit ions (20) and (21) readily translate into (18) 
and (19) and the p roof  is complete.  

Example 7. On R 2 suppose S[0, 0] =0 ,  0 < 0 < ~  for G. Then (19) means  

f ( t  cos 01, t sin 01) ~ f ( t  cos 02, t sin 02) 

as t ~ o o  V 0 1 , 0 2 E [ - 0  , ~ ]  2 - 

4. Stable df's that are not Simple; Domains  of Attraction 

We again suppose that  (12) holds but  now make  no assumpt ion  abou t  the marginals  
of  the limit G except that  they be non-degenerate .  Denote  the marginals  ofF by F~, i 
= 1, .. . ,  k and let Ui(x ) be an inverse of  the m o n o t o n e  function 1/(1 - F/(x)). Then U~. 
satisfies 

u~(t x ) -  u~(t) 
lira - 7'i(x) 
t~m Ui(te)- Ui(t) 

where 

x P - 1  1 - x - p  
~Ui(x) = e p - 1 '  1 - e -  p or log x (22) 
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for x > 0  where p is a positive parameter  (de Haan, 1970); in particular 

lim (U~(nx) - b(,i))/a(, i) ~l'i(x) - Bi = ~i(x ) (23) 
n ~  co A i 

where a(,~ 0, b(, i), i= 17..., k, n_> 1 are the normalizing constants appearing in (12) 
and A~ > 0 and B~ real constants. Therefore 

lim P [ l @  (Y,(~ i= l , . . . , k ]  
n ~ o o  

lim P[(Y,(i)-b(,i))/a(~i)<(Ui(n (i) (i) = x i ) - -  b ,  ) / a , ,  i = 1 , . . . ,  k]  
fl ~ oo 

= G ( g q ( x l ) , . . . ,  }Pk(x~)) 

from (12) and (23). We can choose the a(, ~) and b~ ) such that the marginals of 
G(~l(xl) . . . . .  ~k(Xk)) are e -~ - ' ,  x > 0, then we have symmetric convergence of the 

maxima of (X(nl)) , . . . , l_~(X~);n>=l to the simple stable df 

G(~Pl(xl) .. . .  ,7Jk(Xk)). Using this we can generalize the results in the previous two 
sections to the general case: 

Theorem 4. The type of  the most general max-stable df  with non-degenerate marginals 
is of  the form G.(~i-  l(xO, ..., }P[ l(Xk)) with G. a simple stable df  and 7'i one of  the 
functions given in (22) and (23), i = 1,... ,  k. A df  F is in the domain of  attraction of G iff 
F ( UI (x l) . . . . .  Uk(Xk)) is in the domain of symmetric attraction of G( Ttl (x a), ... , ~ k(Xk)). 

We end this section with a remark concerning our definition of the simple stable 
df's. We chose the approach used in Section 2 because of the links described in 
Corollary 1 with the stable L6vy processes. However  an alternative approach 
would be to start with df's whose marginals are double exponential df's. The 
transformation to polar coordinates is then replaced by the transformation 

Z t ~ X  1 "At- " ' "  -~ -Xk~  Z 2 ~ X  1 - - X 2 ~  . . . ~ Z k ~ X k _  1 - - X  k 

and all results can then be derived in an analogous fashion to the one given in 
Section 2. For  example in R 2 if 

B(w, z)=  {(x, y) lx + y > 2  w, x - y > 2  z} 

then (6) is replaced by 

s + log v(B(w + s, z)) = log v(B(w, z)) 

which entails 

v(B(w, z)) = e - ~ p ( z )  

where p is decreasing. There is a problem here however. In the previous case we had 
measures on the closed set [0, ~nk- t ~j SO that here we have to consider measures on 
the closed set [ -  o% ~ ] k -  1. 
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In R 2 the approach using marginals equal to exp { - e-~} could be linked to the 
approach using marginals equal to e -~ 1 directly if in the latter approach we had 
used the transformation z = x y, w = arctan y/x instead of the conventional transfor- 
mation (x ,y )~(r ,  O) to polar coordinates. Similar remarks hold in higher 
dimensions. 

5. Asymptotic Independence 

For completeness we derive by our methods two results of Sibuya (1960) 
concerning asymptotic independence and asymptotic full dependence of the 
components of the vector of maxima. We suppose that the vector of maxima 
converges to a limit df and for ease of writing we assume symmetric convergence to 
a simple stable df. Asymptotic independence then carries over to the general case. 

Theorem 5 (Sibuya). Suppose (X, Y) has df F(x, y). F is in the domain of symmetric 
attraction ofexp { - x - 1  + y-1)}, x >= O, y > 0 (the simple stable d f which is a product 
of its marginals) iff 

(i) P [ X  > x ] ~  P [ Y  > x ] ~  x -  I L(x) where L(x) is slowly varying as x ~ ~ and 

(ii) lim P [ Y > x l X > x ]  =0.  
x ~ c o  

Remarks. (1) In the case of convergence to a non-simple stable df, (ii) remains the 
same provided the marginals of F are equal (replace "x ~ ~ "  by xTx o, the right 
endpoint of the common marginal df). 

(2) For  asymptotic independence of k-dimensional extremes one has to require 
for each subset {il, i2 . . . . .  it} of {1, 2, ..., k} 

lim P{Xil  > x, ..., Xir> x]X1 >x} =0.  (24) 
x ~ c O  

This becomes apparent from the multidimensional analogue of (26). 

Proof Suppose F is symmetrically attracted to exp { - (x - 1 + y - 1)}. From marginal 
convergences, there exist a,T oo such that 

lim n { 1 - F ( a , x ,  oe)} = lim n { 1 - F ( o %  a, x ) = x  -1 (25) 
n ~ c t ~  n ~ o o  

and moreover 

lira n{1 - F ( a , x ,  a,x)} = 2 x  -1. 
n ~ o o  

From 

p [ x > x ,  Y > x ]  =(1 - F ( x ,  m)) +(1 - F ( o %  x ) ) -  (1 - F ( x ,  x)) (26) 

we immediately get (ii). It is well known that (i) is necessary and sufficient for 
marginal converges with ,~(1) =,r =,~ 
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Conversely suppose (i) and (ii) hold. 
P [ X > t a ] ~ a - l P [ X > t ] ,  as t ~  oo V a > 0  so by (ii) 

P [ X > t x ,  Y > t y ]  
lim = 0 
t-oo P [ X > t ]  

and picking an to satisfy P [X > a.] = n-1 we have 

From (i) we have 

lim n P [ X  > anx, Y > any] =0. 
n ~ o o  

Therefore 

lim n(1-F(anx ,  any))= lim n{(1-F(anx ,  o o ) )+ (1 -F (oo ,  any)) 
n ~ o o  ~ 1 ~ o o  

- P [ X > a n x ,  Y > a , y ] }  = x  -1 + y - 1  

and this is equivalent to F being symmetrically attracted to e x p { - ( x - 1  +y-1)} .  

Example 8. Sibuya (1960) showed that partial maxima of the components  of a 
bivariate normal  distribution with correlation coefficient p, [p[ < 1, are asymptoti-  
cally independent. Asymptotic independence also holds for the two-dimensional df 

F ( x , y ) = e x p { - - ( x - l + y - l + a x - l y - i ) }  for x , y>O (a>O). 

It  is easy to check the conditions of Theorem 5 are satisfied or alternatively verify 
directly that 

{1 - F ( t ,  t)}- 1 {1 - F ( t x ,  ty)} -~ 
x - l + y - 1  

as t-~ o0. 

Example 9. Suppose F is the joint df of (X, - X) and that for x ~ oo 

P [X > x] ,,~ P [X  < - x] ~ x -  1 L(x). 

Since P [X > x, - X > x] = 0 for x > 0 we have (ii) of Theorem 5 is satisfied. Thus if 
{Xn, n >  1} are iid copies of X there exist an--+ oo such that 

p i=l <_x, i=1 <y __,~l(x)~l(y  ) 
an an 

and consequently a limit law for the range ensues: 

p i= 1 *~b2(x). 
an J 

Cf. de Haan,  1974. 
We have the following counterpart  of Theorem 5. 
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Theorem 6 (Sibuya). Suppose (X, Y) has df F(x, y). F is in the domain of symmetric 
attraction of G ( x , y ) = e x p { - ( x - l v y - 1 ) } ,  x>=O, y>=O (the simple stable d f  
concentrating on the 45 ~ line in the positive quadrant) iff 

(i) P [ X  > x] ~ P [ Y  > x ] ~  x -  l L(x) as x ~ oc where L is slowly varying and 
(ii) lira P [ Y  > x I X  > x] = 1. 

x ~ o o  

Remark. For  k-dimensional extremes the conditions are similar. In part icular  (ii) is 
replaced by 

lim P [ X  1 > x . . . .  , Xk > x I X i  > x ]  = 1. (27) 
x ~ o o  

This follows from the k-dimensional version of (28). 

Proof. To see that  (i) and (ii) are necessary, proceed in a manner  analogous to the 
previous proof. For  the converse suppose (i) and (ii) hold and note  for t, x, y > 0 with 
y > x :  

P [ X > t y ,  Y > t y ] < P [ X > t x ,  Y > t y ]  P { Y > t y }  
--- (28) 

P [ X > t ]  = P [ X > t ]  = P { X > t }  

Hence by (i) and (ii): 

lira P [ X  > tx, Y > t y ] / P [ X  > t] = y -1  

and replacing t by a, we see 

lim n(1 - f ( a , x ,  a,y)) = lira n (1 - F ( a , x ,  oo)+1 -F(oo ,  a,y) 

- P [ X  >a,x ,  Y >a,  y]) 

= x = l  + y - l _ y - 1  = x - l = x - 1  v y - i  

as required. 

6. Multidimensional Extremal Processes 

Here  we collect some results about  mult idimensional  extremal processes in R k. Let  
Y(t )=(Yl( t ) , . . . ,  Yk(t)) be an extremal process generated by the max-id df F 
according to (3). F r o m  the form of the joint  distribution of Y(tl)  . . . .  , Y(tn) given by 
(3) it is clear that  Y is a Markov  process in R k with stat ionary transit ion 
probabilities. Again from (3) it follows that  regular versions of the transit ion 
probabili t ies are 

Px, ...... k [g( t )_<yi ,  i = l  . . . .  ,k3 

: =P[Y~(t+s)<yi ,  i =  1, ..., k[ Y~(s)= xi, i =  1 . . . .  , k] 

= H ( Y l ,  .-., Yk) 1ix i >=Xci= 1 ..... k3" 
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The process Y is in fact a Markov jump process and we will compute the 
parameters governing holding times and jumps. To facilitate this we compute the 
generator w. The computation is conducted for k=2.  For  f a bounded and 
continuous function R2--+ R we have for w f :  

w f ( x l ,  x z ) = l i m  t -  1 E ~ , , ~ ( f  (Yl(t), Y2(t) ) - f (xl ,  x2)) 
t,~o 

= lira t -  1 ~ ( f (Y l ,  Y2) - f (x l ,  x2) ) Pxl,x2 [Y l ( t )edYl ,  Y2(t)edy2]. 
t$o 

Since 

P~ . . . .  [Yl(t)Edy~, Y2(t)~dy2] 

= P [ Y l ( t ) ~ d y l ,  Y2(t)~dy2] lty . . . . .  y2>x2] 

+ P[Yx(t)<=xa, Y2(t)edy2] ltrl . . . .  y . . . .  ] 

+ P [ Y , ( t ) e d y l ,  Yz(t) <=x2] llyl>x,,r2_x21 

and recalling t -  1 p [ Yl(t), Y2 (t) e" ] ~ v (') as t$0 where v is the exponent measure of 
F (Balkema and Resnick, 1977, Th. 6) we have: 

w f ( x x ,  x2)= 55 (f(Y*, Y 2 ) - f ( x , ,  x2)){lty , . . . .  y2>.~v(dyt, dy2) 

+ l[y, . . . .  y2= x21v(dy*, [--  o% X23 ) 
+ lty . . . . .  y= >x~lv([- oo, x , ] ,  dy2)}. 

Comparing the form just obtained with the canonical form of the generator for a 
Markov jump process (cf. Breiman, 1969, p. 331) we obtain the mean c~- * (x , ,  x2) of 
the holding time in state (x 1, x2) and the conditional probability H((x~, x2); B) that 
starting from (x 1, x2) the process jumps into B. For  arbitrary k these quantities are 
given by 

( ( x  1, " ' ,  Xk)) = v ( A  c ( x  i . . . .  , xk))  

v(A c(yl  . . . .  , yk)) 
f i ( ( x l ,  . . . ,  Xk) ; A ~ (Y l, .-., Yk)) -- (29) 

v (A  ~ (x  1 . . . . .  x 0 )  

for Yi > xi, i = 1, ..., k where as usual 

A(Yl ,  . " ,  Y k ) = [ - - ~  Yl] x ... x [ - -oo,  yk]. 

More specifically: 
Let z be the time of the first jump after t =  1. 
Then 

P [ Y  (z)r . . . .  , Yk)l Yi(1)=xi, i=  1, ..., k] 

v(A ~(yl, ..., Yk)) 
=: P( ........ k) [Y(z) ~A~(Yl . . . . .  Yk)] -- 

v(A~(xa, ... ,  xO) 

for y~ >= x~, i=  1, .. . ,  k. 
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If  B = {(t~ . . . .  , tk) lh > xi, i = 1, ..., k} then 

P( ........ ~) [Y(z)~A n B] = 
v (AnB)  

v(AC(~D ..., ~)) 

for any A ~ ( R k ) .  
If  C = { ( t l  . . . .  ,tg)[ti=xi for some i = 1 , 2  . . . .  ,k  and tj>__x~ for all j =  1,2, ..., k} 

then 

v((A ~ C)*) 
P( ......... )[Y(z)~A c~ C] - 

v(A~(~l . . . . .  x~)) 

with (Ac~C)*={(tl ,  ...,tk)] there exists y~Ac~C with t i=y i if yi>x~ and t j<yj  
otherwise} for any Ae~(Rk) .  

For  processes generated by simple stable df's these formulas  can be interpreted 
as follows: If  T is the t rans format ion  to polar  coordinates  and T Y ( t ) =  (]IYI], O)we 
have on sets A' such that  T - ~ A ' c B :  

A t  , , ,  P~ . . . . . . . . .  )1-(11u ] = ~  r-2drS(dO)/v(A~(x~, Xk)) 
A '  

so that  with respect  to P( . . . . . . . .  ,)(.) we have I] Y ]1 and Oindependen t  when restricted 
to B. 

Another  independence result is given below which describes when the j u m p s  of 
Y are iid r a n d o m  vectors. P repa ra to ry  to this discussion we discuss the range N(Y) 
which we define as 

~ ( Y ) = { x l V  open sets 0rex, P [ Y ( t ) e 0  for some t] > 0 ] } .  

For  what  follows we denote  the suppor t  of  a measure  v by supp v. 
To  character ize N(Y)  we need hitt ing probabi l i t ies  for rectangles. This 

compu ta t i on  is done  for k = 2  and we seek P [ Y  hits (xl, x2] x ( y a , y z l  ] where 
x i < x z, Yl < Y2. Assume Y is related to a Poisson r a n d o m  measure  as described in 
the introduct ion.  Define a(A)=inf{Tk[(J~ 1), J(Z))ffA} to be the first t ime there is a 
poin t  in AE~(R2) .  Then  

P[Y(t)e(xl ,  x2] x (Yl, Ya] for some t-I 

= P [ a ( ( -  o% x2] x (Yl, Y2]) v a((x, ,  x2] x ( -  o% Y2]) 

< ~(AC(x2, Y2))]. 

Note  

~ ( ( -  oo, x2] • (y~, y~]) 

= ~ ( ( -  o9, x l ]  x (yl, y2])/'  a((xl, x~] x (yl, y2])= u A v 

and 

a((Xx, x~] x ( -  oo, y2])= a((Xl, x2] x ( -  o0, yl]) A V= W/, V. 
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Set Z--=a(Ac(x2, Y2)) and the required probabili ty is 

P[(U A V) v ( W A  V ) < Z ]  

where U, V, W,, Z are independent and for any A~N(R 2) P [a(A) > t] = e-t~(A). Set 41 
= v((x~, x~] • (yl, y~]), ,~ = v ( ( -  ~ ,  x d  x (y~, y~3), & = ~((xl, x~] x ( -  oo, yd) ,  & 
=v(A~(x2, Y2)). Performing the required calculation by capitalizing on inde- 
pendence gives 

P [ Y  hits (xl, x23 X (Yl, Y2]] 

{2~ 1 
1 1 }  

, ~ l + & + &  ,h +2-2 + &- 

provided 24 > 0 while if 24 = 0 the required probabili ty is P [ U/x V) v (W/x V) < oo] 
-- 1 since U, V, W are each exponentially distributed. If 24 > 0 we observe that the 
hitting probabili ty is positive iff 21 +22 > 0  and 21 +23 >0.  This leads to: 

Theorem 7. Let Y be extremal in R k with df G and exponent measure v.  Then 
(Xl . . . . .  xk)eN(Y) iff for all 5 > 0  

v { ( -  oo, xl +e]  x ... x ( -  oo, x i_ l+ 8 ]  x ( x i - e ,  x i+e]  x ( -  oo, xi+l +e]  

x . . .  X(--O%Xk+e]}>O for i = l , . . . , k .  

Equivalently we have 

(Y) = {(x 1, ..., xk) lxi = sup {yily cA}, i = 1 . . . .  , k for some A c supp v}. 

= supp v v supp v v . . .  v supp v (k-times) = supp G 

(cf. Balkema and Resnick, 1977). 
Notice when G is simple stable the support  of v has the form suppv 

= {x]0esupp S} where r x  = (r, 0) and v o T -  1 (dr, dO) = r -  2 drS(dO). 
We now consider the following problem: Let 1 < T 1 < T2 < . . .  be the times Y 

jumps past t =  1. For  convenience set To= 1. When is {Y(T, ) -Y(T,_  1), n >  1} a 
sequence of iid random vectors? We begin by reviewing and completing the 
situation for k = 1 (cf. Resnick and Rubinovitch, 1973). 

If Y is extremal in one dimension generated by F(x) set Q ( x ) = - l o g F ( x )  
= v(x, oo). Suppose a = inf{x[F(x)> 0}. If  the jumps of Y are iid then 

(Y(Tn), n~O) = Z o + ~ Z ~ ,  n>O (30) 
1 

where {Z n, n ~  1} are lid rv's with common df H(x). Note (30) holds i f f V x ~ ( Y )  

1 - 9_ ( y ) / Q  (x )  = 1-1(y - x )  (31) 

for y >_-x (cf. 29). The following facts are evident 
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(i) 
(ii) 

(31). 
(iii) 

This is 

(iv) 

This is 

(Y) = supp v, 

t e s u p p H  iff t > 0  and t = x 2 - x  1 where Xl,X2esuppv. This follows from 

If xl,  Xae~(Y)  and xl  <x2 then Vz~N(Y) 

z + (x2-  x O ~ ( 2 ) .  

clear since x 2 - x~ esupp H. 

Either ~ ( y ) = ( a ,  oo) 

or ~ ( y ) =  {x o +rid, - oo < n <  oo and xo+nd>a} ,  d>0 .  

easily seen once one defines 

d = i n f { y -  xly > x, x, y ~ ( Y ) } .  

Thus one is led to the possible structure of N(Y) when independent jumps are 
present. Analyzing (31) leads to functional equations which Q must satisfy. These 
equations are easily solved and the result is: Y has iid jumps iff 

(i) N(Y)=(a ,  oo), - oo < a  and F is of type 

{0e, F (x) = x _> a 
x < a  

or (ii) ~ ( Y ) = { X o + n d  , Vn such that xo+nd>a}  
and F concentrates on {xo+nd } and is of the form 

F(xo +nd)={~ -p" 
for x o + n d > a  
otherwise 

where 0 < p < 1. 
We now consider the problem in R k so suppose the jumps of Y ( . ) =  

(YI('), ..., Yk(')) are iid vectors. We are going to prove that the process is then 
one-dimensional; i.e. that ~(y)  is contained in a straight line. Obviously the slope of 
this line has to be positive. Pick two arbitrary components of g These components 
constitute an extremal process in R z and the jumps are iid pairs. The desired result 
will be proved if we prove the result for any two components of Y; i.e. it suffices to 
suppose k = 2. 

Suppose in order to get a contradiction the process is not concentrated on a line. 
Then there are points (xl, x2), (yl, Y2)EN(Y) with (say) xl  --< Y~, x2 > Y2. It is evident 
that the following points must be in ~(Y):  

{Z(/'I, D'/)}: = {(21 At- n(21 --X1), X2 ' t-re(x2 --22))} 

where n > -  1, m > -  1, n, m integers but we exclude n = m = -  1. Define g(n, m) 
= v {AC(z(n, m))}. Referring to (29) and using the asumption of iid jumps we have 
that g (n+  r, m+s)/g(n, m) does not depend on n or rn for r, s=0 ,  1 . . . . .  Call this ratio 
f (r, s) so that 

g(n+r, m)=g(n, re)f  (r, 0). 



336 L. de Haan and S.L Resnick 

F r o m  this  we d e d u c e  

f ( r  + s, 0 ) = f ( r ,  0 ) f ( s ,  O) 

a n d  thus  f ( r ,  0 ) - - e  ~r for  s o m e  c o n s t a n t  e w h i c h  enta i l s  

g(n, m) = e ~ " -  1)g(1, m). 

S i m i l a r  ana lys is  on  the  s e c o n d  v a r i a b l e  shows  

g(n, m ) = e ~ ( " -  l) eP{m-1) g(1,  1) 

=. C e ~ I~m 

w h e r e  c, ~, fi are  c o n s t a n t s  a n d  c > O. 

S ince  g m u s t  be  d e c r e a s i n g  in n a n d  m we  m u s t  h a v e  ~ < O, fl < O. 

D e f i n e  sets 

B.,  m = {(zl ,  z2)Iyl + ( n -  1)(y~ - x D < z~ < y~ + n(yl  - x O ,  

X 2 q- (m -- 1)(x 2 -- Y2) < 2"2 ~ x2 q- re(x2 -- Y2)} 

for  n, m = 1, 2 . . . .  say a n d  n o t e  

v(B,,m) = - - g ( n -  1, r e - : l )  + g ( n -  1, m ) +  g(n, m -  1 ) - g ( n ,  m) 

= - ce~"eP"(e  - ~ -  1)(e - a -  1) < 0 

w h i c h  gives  the  des i r ed  c o n t r a d i c t i o n .  

T h u s  i f Y  has  i id j u m p s  t h e n  Y is o n e - d i m e n s i o n a l .  T h e  s t ruc tu re  o f  N ( Y )  and  the  

poss ib l e  d i s t r i b u t i o n s  o f  t he  p roces s  a re  t h e n  o b t a i n e d  f r o m  the  o n e - d i m e n s i o n a l  

resul ts .  
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