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Summary. Let {(X{V,..., X%), n>1} be k-dimensional iid random vectors.
Necessary and sufficient conditions are found for the weak convergence of the

n n

maxima { VX, LV X}")} suitably normed to a non-degenerate limit df.

j=1 j=1
The class of such limits is specified and conditions stated for the limit joint df to
be a product of marginal df’s. Some results are presented concerning extremal

processes generated by multivariate df’s.

1. Introduction
Suppose {X,,n=1}={(X", ..., X, n= 1} are independent, identically distribut-

ed (iid) random vectors with k-dimensional distribution function (df) F. Define the
sample maxima as

Y,=(Y, ", ..., V,0) = (j\z/1 X, ...,jylx;k)).

We seek conditions under which 3 normalizing constants a{’>0, b¥, n>1,
1 <j<k such that

(1)

RS

(Yn“)—bﬁ,” Y,}"’—b,(j‘))

asll) a;k)
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converges weakly to a non-degenerate limit df and we seek specifications of
the class of such limits. To avoid trivialities we assume each marginal sequence
(YD ~b9)/a9 in (1) converges weakly to a non-degenerate limit. This problem
has also been considered by Geffroy (1958), Galambos (1975), Tiago de Oliveira
(1959), Pickands (1976) and Sibuya (1960).

A multivariate convergence of types argument (see Geffroy (1958)) quickly
shows that the class of limit df’s for (1) is the class of max-stable distributions where
we define a df G in R* to be max-stable iff for every n, 304’ > 0, BY), 1 <j < k such that

G (o xy + B, s o0l X+ BP) =G (x4, ., X0). 2

Note that each marginal of G must be one of the three classical extreme value df’s
studied by Gnedenko (1943) and de Haan (1970, 1971). Max-stable df’s form a
subclass of the max-infinitely divisible (max-id) df’s introduced and characterized
in Balkema and Resnick (1977).

We begin in section 1 by deriving the form of max-stable df’s in R* which have
specified marginals. Several representations are given. The restriction on the
marginals is next removed after which we take up domain of attraction and
asymptotic independence questions. Finally we close with some observations
about the extremal processes generated by the max-stable and max id df’s.

The max-id df’s as discussed in Balkema and Resnick (1977) are a proper
subclass of the df’s on R* which can be defined as follows: F(x4, ..., x,) is max id iff
for every t>0, F*(x, ..., ;) is a df or equivalently iff YnF'/* is a df. It is then
immediate from (2) that max-stable df’s are max id.

The following is a criterion for F to be max id: Let A(xy, ..., x;)=[—00, %]
X -+ x [ — 00, x,]. Then there must exist a measure v on [ — oo, o), called the
exponent measure, such that

YRy X xR;_;x[—00,0) xR,y X xR)=c0 forall i=1,...,k,
V(A (X, ..., X)) <00 for some (X, ...,%;)
and
F(xy, ..., x)=exp{ —v(A(xy, ..., %))}
where
A (X, .., %) =[— 00, 00)f —~A(xq, ..., Xg)-

From a process point of view the max id df’s are precisely the class of df’s F
which can be used to define a multivariate extremal process Y(¢)=(Y(2), ..., Y (2)).
Such a process is defined to have marginals: Vn,V0<t; <--- <1,

P[Yl(ti)éx(li)a L) Y;((ti)éxgci): l=1: L) n’]

n n n
£ (A 0, A 39, A o)
i=1 i=1 i=1

n n
. Frz—t (/\ x(l‘),..., /\ xg))...
i=2 i=2
. Ftn_t"_i(x(ln)a [EER] xin)). (3)
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A related viewpoint is that F is max id iff there exists a measure v on [ — o0, oc)* such
that if we construct a Poisson random measure on R, x [ — o0, c0)* with points
{(T,; JM, ..., J®)} and mean measure df x v(dxy, ..., dx;) then defining the ex-
tremal process Y(t) by

Y(t)=sup, {JP| T, <1} @
we have

Fi(xq, .., x)=PLY()<x;,i=1, ..., k] =exp{ —tv(A(xy, ..., x;))}.

Our methods differ from those of previous authors because of our reliance on
the concept of max infinite divisibility and judicious use of polar coordinates. Also
insight is gained by comparing the multivariate stable Lévy processes with certain

of our extremal processes Y which satisfy {Y(at),t>0}={a*Y(),t>0}Va>0
where « is a positive parameter.

2. Max-Stable df’s with Prescribed Marginals

Call a max-stable df G in R* simple if each marginal is equal to the extreme value df
P, (x)=e"*"",x>0; ie.

—xr1
G(c0,...,00,X;, 0, ...,0)=e" " x;>0.

We begin by deriving the form of a simple G. The reason why it is sensible to start
with a simple G becomes clear in section 4 where we remove this restriction on the
marginals. ,

The exponent measure of a max id df need not be unique. For instance consider
the simple stable df G(x,, x,)=exp{—(x7*+x7 )}, x; =0, x,=>0. One possible
choice of exponent measure v is

v(dx 1, dx,)=x72dX; Lix 5 0,x,- 0y(X1, X2) + X7 2dx, Ly s 0, %02 03(X1, X2),
but another perfectly good choice is
v(dxl, dx2)=x; del 1{x1>0,x2= - uo)(xls x2)+x52dx2 1{x1= - oo,x2>0}(x1’ xZ)'

What is important for our future work is that the exponent measure of a simple
stable df can always be chosen so that v{([0, 00)¥)’} =0. This is easy to check and
henceforth when dealing with exponent measures of simple stable df's we suppose
this property is in force.

Suppose now that G is simple stable. Consideration of properties exhibited by
@, (x) shows that (2) can be written as

G'nxyqy...,nx)=G(x7,...,X)
¥V n and it is easy to switch to a continuous variable s in place of n so that Vs>0
G(8X15 .oty X)) =G(X1, -0, Xp). (5)

From (5) it follows that G(x, ..., x)>0if x;>0 for i=1,2,..., k.
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Letting v be the exponent measure of G (5) becomes

SV(A(SXy, oy 50) = V(A (X, o), (6)
where recall A(xq,...,x)=[—00,x{]x -+ X[ — 00, x,] so that (6) entails

sV(SA(x1, ..oy X)) = V(A (X1, .05 X))

Note v(A%(xy, ..., xy)) is finite if x;,>0 for i=1,2, ..., k.
For fixed s the measure sv(s *) agrees with v on a generating class closed under
intersections and hence we conclude ¥V Be#([0, x0)")

sv(sB)=v(B). _ (N

Let £=[0, Z]* ! and let T: R*—> R, x £ be the transformation to polar coor-
k

dinates: T(x, ..., x)=(r, 0) where r’=Y x7, 0=(0,...,6,_,) and sin® §,=
i=1

(XZ 1+ -+ xD/(xF+ - +xP) for i=1, ..., k—1 Fix a Borel set C<Z and set D(r, C)
={(s, 0)|s>r, 8 C}. Note that for r>0, v(T~'(D(r, C))) <o because for some
X1, % with x;>0, i=1,...,k we have T-Y(D(r, C))c A°(xy,...,x;) and
v(A°(x4, ..., %)) < co. Referring back to (7) we have

sv(sT~YD(r, O))=sv(T~1(D(rs, C)))=v(T ' (D(r, O))),
ie. if M(r)=v(T~*(D(r, C))) we have
M(ry=sM(rs).

Setting s=+""' and S(C)= M (1) gives M (r)=r"S(C) where S is a finite measure on
E. Thus we have

Theorem 1. G is simple stable with exponent measure v iff there exists a finite measure
S on E such that

vo T~ Ydr,d0)=r"2drS(d0)
and

fsinf,, ...,sinf; ; cos6;S(dd)=1

fori=1, ..., kwiththe convention that 0,,=0 and for i=1 the integrand is just cos 0.
Recall T is the transformation to polar coordinates.

The integral condition in Theorem 1 arises because of the requirement that G be
simple (cf. Theorem 2) and disappears when this requirement is waived. To check
that the integral must equal 1 note that for i=1, ...,k

xi_IZV(AC(OO, ceey 00, X, CO, ..., OO))
= [ r2drS(do)
TAc

where TA={(r, 8)|rsin 8, ...,sin 6;_, cos §,>x;}. Integrating on r gives the result.
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Further understanding of the meaning of Theorem 1 is obtained from the
following considerations: For a real function x(¢) which is right continuous with
finite left limits ¥ £ >0 define the functional 4 via

(hx)(t)= sup ((x(s)—x(s—)) v 0).

O<sst

Corollary 1. Let X (1) =(X;(¢), ..., X, (¢)) be a k-variate stable Lévy process of index 1;
i.e. a process with stationary independent increments and the property Ya>0
{X{at), t 20} ={aX(t)+ C(a), t =0} where C(a) is a nonrandom vector (Lévy, 1937).
Suppose further that fori=1, ..., k the Lévy measure v, of X, has the property that
vi(x, 00)=x"1 for x>0. The class of extremal processes generated by the simple
stable df’s described in Theorem 1 is precisely the class of extremal processes realized
through the scheme Y(£)={Y,(¢), ..., %, (&)} = {(hX )(t), ..., (h X )(1)}.

Proof. That Y is an extremal process follows as in the I-dimensional case (cf. Dwass
1964, Resnick and Rubinovitch 1973) from the fact that X induces Poisson random
measure with points {T,; JV, ..., J®} where T, is the time of a jump and
(JY, .., I =X(T,)—X(T,—). The mean measure is dt x v(dxy, ..., dx,) where v is
the Lévy measure of X. However, if X is stable with index 1, it is well known (Lévy,
1937) that vo T~ 1(dr, d@)=r"2drS(d) where S is a finite measure on Z.

In case k=2, the criteria obtained in terms of ve T~ ! for G to be max stable can
be rephrased in terms of v:

Corollary 2. G(x, y) is simple stable with exponent measure v iff

G(x,y)=exp—{x~' | cosfSdO)+y* { sin 0 S(d6)}

[0, arctan p/x] {arctan y/x, /2]
where S(*) is a finite measure on [0, §] such that

T2 /2

| cos05(d)= | sinfS@h)=1.
0 0

Proof. The last two conditions arise because we require G(x, o0)=exp{—x"1}
= G(00,x). For the rest note that by Theorem 1 vo T~ !(dr, d0)=r~2 dr S(d0) so that

v(Ax, y)=[[ r~*drS(db)

T(4°(x,y))

= {f r~2dr S(df)

{{(r,8)|rcos@ Sx,rsinf Zy}¢

= ff ; r~2dr S(db)
{(r’9)|r>c;€s0/\si.ne

and evaluating the integral on r for fixed 8 gives

x71 f cosOS(do)+y ! ] sin 8 5(d0)

[0, arctan y/x] (arctany/x, /2]

as asserted.
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Corollary 3. If G is as in Corollary 2 and P(X £x, YSy)=G(x, y) then
() X, Y are independent iff S{0}=S{Z} =1 and S places no mass elsewhere.
This can be seen either from Corollary 2 or by checking directly from G{x, y)=

exp{— (%+%)} that v{(t,s)|t>x,s>y}=0 for all x,y>0.

(i) P(X=Y)=1iff S{&} =ﬂ and S places no mass elsewhere.

Remark. If the measure S concentrates on some point 6, € [0, Z] with 8, +% we have
Y=(tan ;) X a.s. and hence the marginals are both of type ¢(x), but are not equal.
This means that G is not simple according to our definition.

Remark. We can connect our results with those of Sibuya (1960) (see also Geffroy
(1958)) as follows: In Corollary 2 when k=2 set

W)= | cos8S(d8)= | cos(arctan y)dS(arctany) 8)
{0, arctant] [0,1]
and
1 11
x y y\x

so that

%%%X(X):l o ocosOS@O+~ [ sin0SW@0)

X X {0, arctan y/x] y (arctany/x, /2]
ie.

t+1+xt)=t [ cosdS@Oh+ [ sin@S(dH)

[0, arctant] (arctant, /2]

=tW()+ |  tanfcos6S(dO)+SH{F)

[arctant, m/2)

_ W)+ [y W)+ S(E)
= [ (—0) Widy) + 10— W) + W)+ S(E)

=t+ }O(l —W(s) ds+S({3}).

Therefore we conclude

(<o)

2= [ (1—W(s)ds+S({z})— L.

t

Note y has the properties specified by Sibuya:

¥ is continuous and convex since it is the integral of a monotone
function (10)

max(—t, —1)=x()=0, V=0 (11)
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Conversely if G is of form (9) where y satisfies (10) and (11) then one defines S
via W:; S then satisfies the conditions of Theorem 1.

Example 1 (cf. Geffroy, 1958, p. 71). Let S[0,8]=0 for 0=6 < % so that
/2 /2

[ cos0S(df)= [ sin@ S(dO)=1.
o

0

Then y(t)=(1+t3)* —(1+1¢) and G(x, y)=exp{—(x"2+y~?)?*} for x=0, y=0.

2]

Example 2. Take S[0, 0]=3] cost sint dz, 0< < Z Then y(t)= — (1 +*)~* and for
]

x20, y20 G(x, y)=exp{—(x"'+y ' —(x*+y*)7?)}.

Example 3 (Sibuya, 1960, p. 208). x(t)= —kt(1+1)~ ' for 0=k <1 corresponds to

[’}
S{0}=S{Z}=1—k, S(0,0)= [ 2k(cos y +sin y)~ > dy
0

and
G(x, y)=exp{—(x~""+y ' —k(x+y)~ 1)}

A constructive Approach. Next we follow a constructive approach which leads to a
representation of the simple stable df’sin Cartesian coordinates. Recalling that the
required marginals are @,(x)=e~*"', x >0 observe that in R? the Frechet df G(x, y)
=@, (x) AP, (y)=exp{—x~ vy !} for x, y>0 is a simple stable df. This df is
concentrated on the line x=y. Let U; and U, be independent random variables
both with distribution function @,. Take

(X, Y)=(max(r, U; cos @, 1, U, cos @,), max(r; U; sin gy, 1, U, sin ¢,)),

then (X, Y) has df

6ix, y)=exp—{r1 (cos 01 sin (p1)+r2 (COS(p2 Y sin(pz)}‘
x y x y

G satisfies (5) and is simple stable provide r; cos @ +7, COs @, =F; sin @ +7, sin @,
=1. Its S-measure concentrates on the points ¢; and ¢,. Generalizing this
procedure we get the most general simple stable df in R*. Let

k
Q-_—-{(xl,...,xk)ixizo,i=1,...,k,zxi2:1}.
1

Theorem 2. G(x, ..., x;) is simple stable iff there exists a finite measure U on Q with

fa;Ulday, ...,da)=1 for i=1,...,k
)

and such that

G(xy,....,x)=exp{— [ max(a;x7 %, ..., qx; ) Ulday, ...,da)}.
2
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Proof. That any G of the given form is simple can be verified easily. To prove the
converse we use Theorem 1. We have

_logG(Xl,‘..,Xk)z 5 r—Zdrs(de)
{(r,0)|rsindy ...
sind; - 1 cos6; S x4,
i Jkye

i=1,...
and integrating on r gives

sinf, ...sin6,_, cos b,

= | max{ . ,i=1,...,k}S(d0)
Ge= i

which completes the proof.

Remark. Independence of the k-marginals of G corresponds to a measure U
concentrated on the k extreme points of Q.

Here are some examples in R3:

Example 4. Suppose

ULV 2, 1/2, 03 =U{(1/y/2,0, 1/y/2} =U{(0,1/)/2, 1)y} = 1/)/2

with U placing no mass elsewhere. Then
G(x,y,z)=exp{—z(x" vy 4y tvz i+xtvz )}
for x, y, z=0.

Example 5. Let U concentrate on Qn{(x,y,z)|x=0o0r y=0o0r z=0} and have
density 3 there. Then

G(x, y,z)=exp —3{(x 2 +y ) +(x" 2 +27 ) +(y 227 )

Remark. Examples 4 and 5 are based on the observation that if Q is partitioned into
n measurable sets £, ..., Q,, the stable df can be written as the product of n stable
df’s with angular measures concentrated on Q,(i=1,...,n).

3. Domains of Symmetric Attraction of Simple Max-Stable Distributions

Here we study the domain of attraction of a simple stable df G and again we recall
that each marginal of G equals ®,(x)=e"* ", x>0.

Suppose F is in the domain of attraction of a simple stable df G; i.e. 3a$’ >0, b},
n=1,j=1,...,k such that

F(aPx, +bD, ..., a% x, +b¥) - G(xy, ..., x;) (12)

for (x;,...,x,) a continuity point of G, x;=20, i=1,...,k. Consideration of the
marginals shows that (12) still holds if bY =0, n=1,j=1, ..., k (cf. Gnedenko (1943),
de Haan (1970)). Suppose for the moment a,=a'"’=--- =a®. When this is the case
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we say F is in the domain of symmetric attraction of G. Recall the notation
A(xy, ..., x)=[—00,x]x - x[— 00, x,]. Note (12) holds iff for x,=0,i=1, ..., k:

limn(l —F(a,x,, ..., @,x))= —1log G(x4, ..., x;)

n—

so that if v is the exponent measure of G we have

limnP[Xea,A(xq, ..., x ) | =v(A(X1, ..., X))

n— 00

for all A with v(0A)= 0, where we suppose X is a random vector with df F. Hence for
all Be #([0, co)* —{0}) with v(6B)=0 we have

lim nP[X ea, B] =v(B). (13)

n—

Now we switch to polar coordinates. Let C be a Borel subset of £ and set for r>0

k
B(r, C)={(x1,...,xk) Y xt>r?0¢ C}.
1

Then

limnP[XeB(a,r, CY]=1limnP[Xea,B(r, C)]

n— oo B— 0

=v(B(r, C))=r""5(C)
by Theorem 1, i.e.

lim nP[|X||>a,r, O(X)e C]=r1S(C) (14)

n— oo

where |X|, @ are the polar coordinates of X. Setting r=1 and C=Z we obtain

im PLIXI>a,r, 0(X)eZ]_
o PLIX[>a,, 6X)eZ]

rot (15)
and furthermore it follows from (14) and (15) that

| . PLIX|>4, 6(K)=C]_S(C)
lim PLOX)e ClIX]>a,, OX)eE]=lim o = 2)eE] " 5@)"

It is not hard to see that g, may be replaced by a continuous variable ¢.

Theorem 3. The random vector X with df F is in the domain of symmetric attraction of
the simple stable df G with exponent measure v and vo T~ '(dr, d0)=r"* dr S(d0) iff

P[|IX|>tr, @(X)eZ]

i x>t eeE Al r>0 a2
and
lim P[O(X)e C||X]|>t, O(X) e 5] = S(C)/S(E) (17)

for all Borel sets C<= 2 with S(0C)=0.
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To check that (16) and (17) are sufficient observe that these conditions are
equivalent to (13) where we choose a, to satisfy

Pl|X|>a,, @X)eE]l=n""S(5).

In (13) put B=A4x4, ..., x) [0, o) for x;>0, i=1,...,k and the result of this
substitution is equivalent to

lim P[a; ' Xe A(xy, ..., x) ([0, o)) ] =exp { = v(A(xy, ..., X))}

and since a,— oo we have P[a, * X & ([0, c0)*)] — 0 so that (12) follows as desired.

Remark. The criteria for convergence of sums of iid vectors are similar. See Rvadeva
(1962, Theorem 4.2; set a=1).
The situation of non-symmetric attraction is discussed in the next section.

Example 6. Let (X, X,) have a 2-dimensional Cauchy distribution i.e. its density
is 2n)~ 1 (14+x*+y?)~%2 Then ||X|| and (X) are independent, [|X| has density
r(147r%)732 r>0 and @(X) has uniform density on [0, 2x). It follows that this
distribution is in the domain of symmetric attraction of a simple stable law and
S[0,0]=0, 0<0=<2Z Cf. Example 1.

Sufficient conditions for convergence can be given in terms of the density of F
when this density exists.

Corollary 4. Suppose G is simple stable and the measure S appearing in the
representation of Theorem 1 has density s(0), 0=(0,...,0,_1)€=. Suppose F has
density f. Then F is in the domain of symmetric attraction of G if for all r>0

{ f(trcosfy, trsinf cosf,,....trsin@; ...sin b, _,cosB_,,trsind; ...sinf,_,)do

lim 2
tmo | fltcos@,tsin@ cosh,,... tsinf, ...sinb,_,cos0_y,tsind; ...sinb_,)dd

) (18)

lim f(tcosBy,tsinf cosh,,...,tsinb; ...sinf,_,cos6,_4,tsinby ...sinb;_,)

towm FEA 2,800/ 22, .. /2
=5(0)/s(3). : (19)

1

Proof. Let f*(r 0) be the densrcy of | X||= (Z XZ) and 0=(0,,...,0,_,) where O,

=arcsin ( Y X Z X l) and suppose

I=i+1

[ fure.0)do
lim %2 —y~2 (20)
—w | filt, 0)d0

Oc=
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and

lim f,(z, 0)/f, (¢, 5) =5(0)/5(2)- (21)

t—

Note that (21) and de I'Hospital’s rule give

r,0) dr_@

5%

_d
§.
-

[

e
T furnDar

r=t

and therefore

r,0)de dr
PuXi>noec) 1 A0

lim =
T [ fmDde T [ A D dr

40 50

s(3) s
from which (17) follows and (16) follows directly from (20) thus implying F is

symmetrically attracted to G. The conditions (20) and (21) readily translate into (18)
and (19) and the proof is complete.

Example 7. On R? suppose S[0,0]=0, 0<0<Z for G. Then (19) means
f(tcosf,tsinf)~ f(tcosh,,tsinb,)

ast—oo V0,0,e[0, 5]

4. Stable df’s that are not Simple; Domains of Attraction

We again suppose that (12) holds but now make no assumption about the marginals
of the limit G except that they be non-degenerate. Denote the marginals of F by F, i
=1,..., kand let Uy(x) be an inverse of the monotone function 1/(1 — F(x)). Then U,
satisfies

U
M G-t )

where

P 1 1—x—*
p =t X

o1 T Orlogx (22)
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for x>0 where p is a positive parameter (de Haan, 1970); in particular

N (x)—B;, -
tim (U~ b7y =V OB 3
where a? >0, b, i=1,...,k, n>1 are the normalizing constants appearing in (12)
and A;>0 and B; real constants. Therefore

P
R R
lim P[I_Fi(Yn y<nx,, i 1,...,k]

n-> 00

=1lim P[(Y,? —b®)/aD <(Ufnx,)—bM)/a®, i=1,...,k]

R— 00

= G('ﬁl(xll AR ij(xk))

from (12) and (23). We can choose the 4 and b such that the marginals of
G, (x1), ..., Yulxy)) are e=* ', x>0, then we have symmetric convergence of the

1
maxima of <{-—— (X{"),..., ] ,,);ngl} to the simple stable df

1-FK
G(¥,(x,), ..., ¥(x,). Using this we can generalize the results in the previous two
sections to the general case:

Theorem 4. The type of the most general max-stable df with non-degenerate marginals
is of the form G (P1 Y(xy), ..., ¥ (x,) with G, a simple stable df and ¥ one of the
Sfunctions givenin (22) and (23),i=1, ..., k. A df F is in the domain of attraction of G iff
F(Uy(x1), ..., Udxy) is in the domain of symmetric attraction of G(¥,(x,), ..., ¥u(x).

We end this section with a remark concerning our definition of the simple stable
df’s. We chose the approach used in Section 2 because of the links described in
Corollary 1 with the stable Lévy processes. However an alternative approach
would be to start with df’s whose marginals are double exponential df's. The
transformation to polar coordinates is then replaced by the transformation

Zy=Xg b Xy, 2y =X — Xa, e s Z =X — Xy

and all results can then be derived in an analogous fashion to the one given in
Section 2. For example in R? if

Bw,2)={(x,y)|x+y>2w,x—y>2z}
then (6) is replaced by

s+logv(B(w+s, z))=log v(B(w, z))
which entails

V(B(w, z))=e""p(2)

. . v )
where p is decreasing. There is a problem here however. In the previous case we had
measures on the closed set [0 1%~ 5o that here we have to consider measures on
the closed set [ — o0, c0]*~ !
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In R? the approach using marginals equal to exp { —e~*} could be linked to the
approach using marginals equal to e=* ' directly if in the latter approach we had
used the transformation z=xy, w=arctan y/x instead of the conventional transfor-
mation (x,y)—(r,0) to polar coordinates. Similar remarks hold in higher
dimensions.

5. Asymptotic Independence

For completeness we derive by our methods two results of Sibuya (1960)
concerning asymptotic independence and asymptotic full dependence of the
components of the vector of maxima. We suppose that the vector of maxima
converges to a limit df and for ease of writing we assume symmetric convergence to
a simple stable df. Asymptotic independence then carries over to the general case.

Theorem 5 (Sibuya). Suppose (X, Y) has df F(x, y). F is in the domain of symmetric
attraction of exp{ —x~1+y~ 1}, x>0, y =0 (the simple stable df which is a product
of its marginals) iff

(i) P[X >x]~P[Y >x]~x""L(x) where L(x) is slowly varying as x — oo and

(i) lim P[Y>x|X>x]=0.

X 0

Remarks. (1) In the case of convergence to a non-simple stable df, (ii) remains the
same provided the marginals of F are equal (replace “x — o0” by xTx,, the right
endpoint of the common marginal df).

(2) For asymptotic independence of k-dimensional extremes one has to require
for each subset {i,,i,,...,i} of {1,2,...,k}

lim P{X; >x,...,X; >x|X;>x}=0. (24)

X

This becomes apparent from the multidimensional analogue of (26).

Proof. Suppose F is symmetrically attracted to exp{ —(x~*+y~1)}. From marginal
convergences, there exist a,7oo such that

lim n{1—F(a,x, o)} =lim n{l —F(o0, a, x)=x"1 (25)

h— n— o0

and moreover

lim n{l—F(a,x,a,x)} =2x"1.

n—oo

From
P[X>x,Y>x]=(1-F(x, 0))+(1—F(c0,x))—(1—F(x,x)) (26)

we immediately get (ii). It is well known that (i) is necessary and sufficient for
marginal converges with al’ =a{® =a,,.
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Conversely suppose (i) and (i) hold. From (i) we have
P[X>ta]l~a 'P[X>t], as t— o0 Ya>0 so by (ii)

. P[X>tx, Y>ty]
lim =
t— o0 P[X>t:|

and picking a, to satisfy P[X >a,]=n"! we have

lim nP[X >a,x, Y >a,y]=0.

n— o

Therefore

lim n(1—F(a,x, a,y))=lim n{(1 — F(a,x, o))+ (1 — F(00, a,y))

n— o0 1— 0

—P[X>a,x,Y>a,y]}=x"1+y?

and this is equivalent to F being symmetrically attracted to exp{—(x~'+y~")}.

Example 8. Sibuya (1960) showed that partial maxima of the components of a
bivariate normal distribution with correlation coefficient p, |p| <1, are asymptoti-
cally independent. Asymptotic independence also holds for the two-dimensional df

F(x,y)=exp{—(x~'+y~'4+ax"'y=1)} for x,y>0 (a>0).

It is easy to check the conditions of Theorem 5 are satisfied or alternatively verify
directly that

-1 -1
(1—F(t, 0}~ {1 = F(tx, t)} —ﬁ—% as t— 0.

Example 9. Suppose F is the joint df of (X, — X) and that for x - oo
P[X>x]~P[X <—x]~x"1L(x).

Since P[X >x, — X > x] =0 for x>0 we have (ii) of Theorem 5 is satisfied. Thus if
{X,,n>1} are iid copies of X there exist a,— oo such that

VX = AKX
PlE xS gy | 20,09 0,0)

and consequently a limit law for the range ensues:

V Xi- A X,
=1 =1 <x =@ %Py (x).

n

P

a

Cf. de Haan, 1974.
We have the following counterpart of Theorem 5.
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Theorem 6 (Sibuya). Suppose (X, Y) has df F(x, y). F is in the domain of symmetric
attraction of G(x,y)=exp{—(x"'vy 1)}, x=0, y=0 (the simple stable df
concentrating on the 45° line in the positive quadrant ) iff
(i) P[X >x]~P[Y>x]~x"'L(x) as x — oo where L is slowly varying and
(i) lim P[Y >x| X >x]=1.
Remark. For k-dimensional extremes the conditions are similar. In particular (ii) is
replaced by

lim P[X{>x,...,X;>x| X, >x]=1. (27)
This follows from the k-dimensional version of (28).

Proof. To see that (i) and (ii) are necessary, proceed in a manner analogous to the
previous proof. For the converse suppose (i) and (ii) hold and note for ¢, x, y > 0 with
y>Xx:

P[X >ty, Y>ty]<P[X>tx, Y>ty] <P{Y>ty}
P[X >1] = P[X>1] TP{X>1}

(28)

Hence by (i) and (ii):

lim P[X>tx, Y >ty]/P[X>t]=y*

t—> oo
and replacing t by a, we see

lim n(1—F(a,x, a,y))=lim n (1 — F(a,x, cv)+1—F(o0, a,y)

n— 0 n—>w0
—P[X>a,x,Y>a,y])
=x gy oy laxlox-1lyy-!

as required.

6. Multidimensional Extremal Processes

Here we collect some results about multidimensional extremal processes in R¥. Let
Y()=(Y(2), ..., Y,(t)) be an extremal process generated by the max-id df F
according to (3). From the form of the joint distribution of Y(z,), ..., Y(¢,) given by
(3) it is clear that Y is a Markov process in R* with stationary transition
probabilities. Again from (3) it follows that regular versions of the transition
probabilities are

Bcl,,xk[y;(t):é_yn l=19 ak:l
=P[K(t+s)§yn l:]_, 7lel(S)=xl7 1:1: ’k:l
=F'(y, ... ) l[yi Zx,i= 1.,k
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The process Y is in fact a Markov jump process and we will compute the
parameters governing holding times and jumps. To facilitate this we compute the
generator w. The computation is conducted for k=2. For f a bounded and
continuous function R? —» R we have for wf:

"wf(xg, x2)=1tilr£1tﬁlExl,xz(f(Yl(t), Y,(0) = f(x1, x2))
:lliﬁ}fl ”(f()’u Vo) —f(x1, X)) B, ., [Yi(t)edyy, Ys(t)edy,].

Since

R, s, [Yi(t)edyy, Yr(H)edy,]
=P[Y,()edy,, Y,(edy,] 1[y1>x1,y2>x2]
+PLY1())=x1, L(0)€dy ] 11y, sy ya5 52
+PLYi(Nedyy, Ya(0) x50 Ly 5 ny,yp=x21

and recalling t = P[Y,(?), Y,(t)e*]= v(*) as t|0 where v is the exponent measure of
F (Balkema and Resnick, 1977, Th. 6) we have:

Wf(xln x2) :jj(f(ylﬂ .)72) —f(xln x2)){1[y1>x1,yz>x2]v(dy1> dy?.)
+ 1[y1 >X1,¥2= lev(dyb [_ 0, x2])
+ 1[Y1=x1,y2>x2]v([ — &0, X1], dyz)} .
Comparing the form just obtained with the canonical form of the generator for a
Markov jump process (cf. Breiman, 1969, p. 331) we obtain the mean o~ ! (x4, x,) of
the holding time in state (x,, x,) and the conditional probability IT((x,, x,); B) that

starting from (x,, x,) the process jumps into B. For arbitrary k these quantities are
given by

(X1, ey X)) =V(A(Xq, .0 X))

V(Ac(yla L] yk))
V(A (Xq, e X2))

for y,=x;, i=1, ..., k where as usual

(x4, s X); A Y15 o5 V)= (29)

AWy, - y)=[—0, y1x - x[—0,y].

More specifically:
Let 1 be the time of the first jump after t=1.
Then

P[Y(T)EAC(.VI: AR yk)| Yi(1)=xi= [= 17 cers k]

V(Ac(yla tery yk))

=:P(xx,...,xk)[Y(T)EAc(yl’""yk)]:v(Ac(xl xk))

for y,2x;, i=1,...,k
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If B={(tq,...,t)|t;>x;,i=1,..., k} then

v(AnB)

R V(A (x4, .-y Xi))

1 LY (DDEANB] =
for any Ae#(R").

If C={(ty,....t)Iti=x; for some i=1,2,...,k and t;=x; for all j=1,2, ..., k}
then

v({(An O)%)

By, .. sy Y(®)eAN C] =m

with (AN C)*={(ty, ..., )| there exists yeAn C with t;=y; if y;>x; and ¢;=y;
otherwise} for any Ae%(R¥).

For processes generated by simple stable df’s these formulas can be interpreted
as follows: If T is the transformation to polar coordinates and TY(t)=(|| Y|, @) we
have on sets A’ such that T-14’<=B:

By, o [(1Y1,@)eAT=] | 2 drS@O)(A(x,, ..., %)

so that with respect to F,, ., (*) we have | Y| and @independent when restricted
to B.

Another independence result is given below which describes when the jumps of
Y are iid random vectors. Preparatory to this discussion we discuss the range Z(Y)
which we define as

Z(Y)={x|V open sets 02x, P[Y(t)e0 for some t]>0]}.

For what follows we denote the support of a measure v by supp v.

To characterize #(Y) we need hitting probabilities for rectangles. This
computation is done for k=2 and we seek P[Y hits (x;,x,] x(y;, ¥,]] where
X, <Xy, V1 <V,. Assume Y is related to a Poisson random measure as described in
the introduction. Define o(A4)=1inf{ T, |(JV, J$¥)eA} to be the first time there is a
point in Ae%(R?). Then

P[Y(t)e(xq, x5] % (1, y,] for some ¢]

=P[o((— 00, x3] X (¥1, y21) v o((x1, X2] X (— 00, y,])
<o(A%(x2, y2))]-

Note

o((— o0, x,] % (¥1, ¥21)
=0((— 0, %1%y, y21) Ao((x1, X,] X (¥4, y.)=U AV

and

o((x1, X1 %X (=00, y2])=0((x1, X3 ] X (=00, y DAV=WAV.
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Set Z=0(A4%(x,, y,)) and the required probability is

PHUAV)V(W AV)<Z]
where U, V, W, Z are independent and for any Ae%(R?) P[o(A)>t]=e "™ Set 1,
=v((x1, X1 X (¥, Y21} A2 =v({(— 00, X, 1% (y1, ;1) A3 =v((x1, x21 X (— 00, y1]), A4

=v(A%(x,, y,)). Performing the required calculation by capitalizing on inde-
pendence gives

PLY hits (x5, x,] % (y1, y21]

1 1 { i
:i —— —_— —_
4{14+11+12+x3+z4 Tt iatia 11+/12+/14}

provided A,>0 while if 1, =0 the required probability is PLU A V) v (WA V)< 0]
=1 since U, V, W are each exponentially distributed. If 1, >0 we observe that the
hitting probability is positive iff 1, +1,>0 and A; + 45 >0. This leads to:

Theorem 7. Let Y be extremal in R* with df G and exponent measure v. Then
(%1, --v» X )ER(Y) iff for all £>0

V{(— 00, xy el X x (=00, %,y el X (x;—& X;+e] X (— 00, X, +¢]
XX (—o0, X, +e]} >0  for i=1,... k.

Equivalently we have

RY)={(x1, ..., x)| x;=sup{y;lyed},i=1,..., k for some A =suppv}.
=suppvvsuppvyv ---vsupp v(k-times)=supp G

(cf. Balkema and Resnick, 1977).

Notice when G is simple stable the support of v has the form suppv
={x|@esupp S} where Tx=(r,0) and ve T~ !(dr,d6)=r"2drS(d6).

We now consider the following problem: Let 1< T; <T,<--- be the times Y
jumps past t=1. For convenience set Ty=1. When is {Y(T,)—Y(T,_,),n=1} a
sequence of iid random vectors? We begin by reviewing and completing the
situation for k=1 (cf. Resnick and Rubinovitch, 1973).

If Y is extremal in one dimension generated by F(x) set Q(x)= —logF(x)
=vy(x, c0). Suppose a=inf{x|{F(x)>0}. If the jumps of Y are iid then

{Y(T;,),n_Z_O}i{ZO—i—Zn:Zj,ngO} (30)

1

where {Z,, n=>1} are iid rv’s with common df H(x). Note (30) holds iff V xe Z(Y)
1-0()/Q(x)=H(y—x) (31)

for y=x (cf. 29). The following facts are evident
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(1) #(Y)=suppv,
(ii) tesupp H iff 120 and t=x, —x, where x,, x,esuppv. This follows from
31).
( )(iii) If x;,x,eZ(Y) and x; <x, then VY ze Z(Y)
2+ (%, —x,)eR(y).
This is clear since x, —x,esupp H.
(iv) Either #(y)=(a, o0)
or Z(y)={xg+nd, —oco<n<oo and xg+nd=a},d>0.
This is easily seen once one defines

d=inf{y—x|y>x, x, ye Z(Y)}.

Thus one is led to the possible structure of Z(Y) when independent jumps are
present. Analyzing (31) leads to functional equations which Q must satisfy. These
equations are easily solved and the result is: Y has iid jumps iff

(i) £(Y)=(a, ), —ooZaand F is of type

e~°7, x=a
F(x):{0

x<a

or (ii) Z(Y)={x,+nd, Vn such that x,+nd>a}
and F concentrates on {x,+nd} and is of the form

for xo+ndza

e —-p"
d
Flxg+nd)= { otherwise

where O <p<1.

We now consider the problem in R* so suppose the jumps of Y(+)=
(Yi(), ..., Y(+)) are iid vectors. We are going to prove that the process is then
one-dimensional; i.e. that Z(y) is contained in a straight line. Obviously the slope of
this line has to be positive. Pick two arbitrary components of ¥. These components
constitute an extremal process in R? and the jumps are iid pairs. The desired result
will be proved if we prove the result for any two components of Y; i.e. it suffices to
suppose k=2.

Suppose in order to get a contradiction the process is not concentrated on a line.
Then there are points (X, x,), (¥, yz)e@(Y) with (say) X <y, X, >y,. Itisevident
that the following points must be in Z(Y):

{z(n,m)}:={(y +n(y; —x1), X5 +m(x;—y,))}

where n= —1, m= —1, n, m integers but we exclude n=m= —1. Define g(n, m)
=v{A°(z(n,m))}. Referring to (29) and using the asumption of iid jumps we have
that g(n-+r, m+s)/g(n, m) does not depend on normforr, s=0, 1, .... Call this ratio
f(r, s) so that

gn+r,my=g(n,m f(r,0).
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From this we deduce
Jr+s0)=71(r0)f(s,0)

and thus f(r,0)=e* for some constant o which entails
g(n,m=e*""Vg(1, m).

Similar analysis on the second variable shows

g(n,my=e""~Delm=Deg(1, 1)

=ce*mefm

where ¢, o, § are constants and ¢ >0.
Since g must be decreasing in n and m we must have <0, f<0.
Define sets

m=1z1 )y =)y —x)<z; Sy, +ny; —x,),
Xyt (m—1)(x3—y,) <z £x,+m(xy —y))}

for n,m=1,2, ... say and note

V(By w)=—g(n—1,m—1)+g(n—1,m)+g(n, m—1)—g(n,m)
=—ce™efm(e*~1)(e f-1)<0

which gives the desired contradiction.

Thusif Y has iid jumps then Y is one-dimensional. The structure of 2(Y) and the
possible distributions of the process are then obtained from the one-dimensional
results.
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