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1. Theorem 

Let B(t) denote a standard Brownian motion on the line. It is well known that the 
local asymptotic behaviour of sample paths at a prescribed time to>O and the 
uniform asymptotic behaviour on the interval 0<_ t <-1 are given by 

B(to + h) - B(to) (1.1) lim - 1 ,  a.s., 
h+O (2hloglog 1/h~ 

and 

B(t) -  B(s) 
lim = (1.2) 

It-sl+O (2 l t -s l logl / [ t -s]~  1, a.s., 
O<_t,s<=l 

respectively. 

These arguments show that there exist almost surely some time points which 
violate (1.1). About this phenomena, S. Orey and S.J.Taylor [6] have obtained 
the following results: 

Set 

E(~)={O<=t<=l. lim B(t+h)-B(t )> t 
' h o ( 2- o g12  = 1  ' 

and 

B(t+h)-B(t)  >1~ 
F(fl) = 0 < t < 1; limb+0 (2flhiog log l ~ f  = J" 

Then, they have 

dimE(~)= 1 - ~  ( 0 < a < l )  a.s., 

and 

c~-m(F(fl))=O (7 < f l -  1) a.s., 

= + o o ( 7 > f l - 1  ) a.s., 
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where q5 v - m  denotes the Hausdor f f  measure with respect to ~b~(s)=s(log 1/s) ~ 
(~ > 0). 

Motivated  by their results, we investigate irregularity points of  a Brownian 
path under  slightly different formulat ion,  but  give the exact Hausdorf f  measure 
of  the set according to an integral test. 

Let {Ba(t,o~);O<t<=l,a~EO} be a s tandard  Brownian mot ion  in R a on a 
complete  probabil i ty space (O, ~ ,  P) and q~ be a positive cont inuous  function 
such that  

q~(x)? + oo (x~0) 1. (1.3) 

Then we know that  for each 0 < t < 1, 

P(~ {(u~ v.)} ~ ,  

HBa(t + u., co)-  Ba ( t -  v~, co)l[ > ]/u.  + vn 4(u. + v.)) 2=O 

if and only if 

�9 J x-lg)a+2(x)e-4'2(x)/adx< +oo ([1]), (1.4) 
+ 0  

where ~ is a class of  all couples {(u., vn)}.G t of two sequences such that  u . >  0, 
v . > 0 ,  } > u . + v . > 0  and u .+v .~O (n~ + oo), and 

P(?8(co) > 0 ,  O<Vlt -s t<8(~o) ,  

IIBa(t, co)-  Ba(s, e))[I < l~-  sl ~b(It- s])) = 0  

if and only if 

J x -2  qSa+2(x) e -e~(~)/2 dx = + oo. (1.5) 
+ 0  

Therefore under  the condit ions (1.3), (1.4) and (1.5) 

E(cb, co) = {0 < i < 1 ; 3 {(u., v.)} e 5  p 

lIBa(t + u., co)-- Bd ( t -  v., o~)ll > ]/u.  + v. ~)(u. + v.)} 

has Lebesgue measure 0 but  is a non-empty  set a lmost  surely ([6]). So we are 
interested to give a more  exact m e a s u r e - H a u s d o r f f  m e a s u r e - o f  this set. 

We denote  by h- re (A)  the Hausdor f f  measure of a measurable Set A for a 
Hausdorf f  measure function h(x), that  is, a positive cont inuous  function such 
that  

h(x)$O (x$O), (1.6) 

and 

h(x)/x'~ + oo (x,[,O). (1.7) 

We write f(x)l.O(xTO) to indicate f(x) tends to zero as x decreases to zero, and f(x)< f(y) for 
0 <x <y sufficiently small. Similar expressions are to be interpreted analogously 
2 We denote by Ilxll, xeR d the usual Euclidean norm 
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Then, we will prove the following: 

Theorem. Under the conditions (1.3), (1.4), (1.6), (1.7) and 

3no, V n > n o  

~b(2-,-2) < 2 lo 10 -3 qS(2- ,-z  nS), 

we claim that 

h -m(E(~ ,oo) )=O (resp. +oo)  a.s. 

if  and only if  an integral test 

I(h, qS)= ~ x -2 qSa+2(x)e -e2(x)/2 h(x)dx  
+ 0  

converges (resp. diverges). 

Examples. (i) Let  qS(x)=] /2a log  l / x ,  0 < ~ < 1 ,  then 

h - m(g(o,  co)) = 0 (resp. + oo) a.s. 

if and only if 

x~-Z( log l / x )X+d/2h(x )dx<+ov  ( resp.= + oo), 
+ 0  

in particular,  

h~-m(E(4 ,  co))=0 if z > 0 ,  

= + oo if 5 < 0  a . s . ,  

where 

h~(x) = x 1 - ~(log 1/x)-  2 -e-d/2. 

(ii) Let  q~(x)=l /2 /? loglog 1/x, /~> 1, then 

h - m(E(qS, co)) = 0 (resp. + oo) a.s. 

if and only if 

x -2 ( log  1/x)-a(log log l/x)1 +e/2 h(x) dx < + 
+ 0  

in part icular  

h~ - m(E(O, co)) = 0 if e > 0, 

= +oo  if a < 0  a . s . ,  

where 

h~(x) = x(log 1/x) ~- 1(log log 1/x)-  2-~-~/e 

(resp. = + m), 

259 

(1.8) 
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2. P r e l i m i n a r y  L e m m a s  

Before starting the proof  of our  theorem, we prepare  some prel iminary lemmas 
about  the normal  distr ibution in R 2d, m o s t  of which are already well known. 

Let  (X, Y) be a r andom variable in R 2 having the bivariate normal  density 
centered at the origin with E X 2 = E y  2= 1 and E X Y = p ,  and (Xi, Y~), 1 <_i<d be 
independent  copies of (X, Y). Set 

x d = ( x l  . . . . .  x~), Y~=(Y,...,~) 
and 

~a(x)= P(LlXall > x), 

then we have 

L e m m a  1. For all x > 1 / ~ ,  

2 al x d- 2 e-x2/2 > dba(x) > al x a- 2 e-x2/2, (2.1) 

where ax = 2(F(d/2)2a/2) - 1 if d>  2 and a 1 = ( l / ~ - ) -  1 if d = 1. 

L e m m a  2. (i) For all y > x >__ l ~  and [p x yl < l, 

P(IIXaH > x, [1YdI[ > y) < a 2 ~a(x) ~a(y), (2.2) 

where a2 = ( l O + U / 2 a i  - 1). 

(ii) For all x > 1 ~ ,  

P(IIXaH >x ,  11 YaH > x ) < a  3 e - ~  -]P])x2/a2t~d(X), (2.3) 

where a 3 = 2 a/2 d a/2 a 1 + 2 3a/2 d d/2 . 

(iii) For all y > x > ] / ~  and x > ( 1  +lpl)y/2 + l / ~ ,  

e(llXdll > x, II grill >=Yi 

< (2al ya- 2 + a4) e-(2x-y-[ply)Z/8 rba(y), (2.4) 

where a,~ = 2 3a/2 d a/2 + 2al .  

Here,  the exact values of a l ,  ..., a4 are not  essential in the sequel. 
Since (i) and (ii) are essentially proved in [5, L e m m a  1.5 and 1.6-1, we give a p roof  

of (iii). 
Wi thout  loss of generality, we can assume that  p > 0. Then  we have 

P(I]Xa][ > x ,  I, Ya][ > y) = P  (llXal, > x, l ~ _  y >  I' YaH > y)  

+ P  (llX'~ll >_x, II ydl[ > 1 + p  y~ = 1 1 4 1 2 .  
--  - -  2 p  ! 
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Since X is expressed with a standard normal random variable Z independent of Y 
by 

X = p  Y + I / 1 - p 2 Z ,  

it follows that 

e >x-P[IYeI[  l + p y >  ix_- _- _->,) 

(2_ x - y -  py~  <2al(ya_ z + 1)e -(zx-y-p')2/8 fbd(y ). 
<r Vbd \ 21 /1_p2  ] 

On the other hand, 

(1 + y~d - 2 e-(1 + p)2,2/(sp~ P <2al ~fi-p ! 

< 2al(y/p)d - 2 e-(1 -p)y2/~8p~)-y~/2 

< a123,//2 da/2 yd- 2 e-(1 -p)y2/8 -y2/2 

< 23a/2 d a/z e-~1 -p)y~/8 fba(y ) 

< 2 3d/2 d d/2 e-(Z~-r-PY)2/s ~d(Y). 

Summing up the inequalities for Iz and 12 we have (2.4). 

3. Proof when I (h ,  r < + oe 

To prove that the convergence of I(h, 4) implies h -  m(E(O, co)) = 0 a.s., we need a 
lemma which is an extention to d-dimensional case of Lemma 2 in [3]. 

Let (S,m) denote a compact  metric space which satisfies the following 
condition; There exist a constant c~ and a positive integer N such that 

N(e, K) <= C 1 (d(K)/e) N, (0 < e < d(K)). (3.1) 

holds for any closed ball K of S, where N(e, K) is the minimal cardinal number  of e- 
nets on K (a subset A of K is said to be a a-net on K if for any t eK ,  there exists seA  
such that d(s, t) < ~) and d(K) is the diameter of K. 

Let {X(t); teS}  be a path continuous centered Gaussian process with EX(t )  2 = 1 
for all t e S  and {Xi(t)}~= 1 be independent copies of {X(t)}. We consider a d- 
dimensional Gaussian process 

x~(O = ( x  ~ (0  . . . . .  x~(t ) ) .  

Moreover  we assume that there exist a positive constant tl and a positive non- 
decreasing continuous function a with a(0)= 0 such that 

E ( X  (s) - X (t)) 2 < tl 2 aZ(m(s, t)). (3.2) 
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Then  we have 

L e m m a  3. [4] I f  there exist two positive constants c2 and ~ such that 

a(tx) < c2 t ~ (3.3) 
~(x) = 

holds .for any 0<t-<_l  and O<x<d(S), then 

P(sup 1[ Xa(t)[1 > x) <= cl c a c s N(~a-  l(1/(qx)), S) q)d(x) (3.4) tES 
holds for any x>= 1 + ~ c ~ , / ~ ,  where 

c a = 4 e r . . . .  /~2 r +,~ ~/o*~, 

c~ > l /N(1 /2  + 1)2~/~, 

C5=er + ~ eNZk+*qk(< +OO), 
k ~ 2  

qk=~d(Cr (1+ /~C2C4\~ ]/]/J]'//~' 

and ~ -  * (x) = inf{y; ~r(y) -- x}. 
We remark that c,, c a and c5 are independent of x and q. 

Proof This l e m m a  is p roved  just  the same m a n n e r  as that  of  L e m m a  2 in [3] by 
taking account  of  L e m m a  1 and 2. First  we take a closed ball K of S such that  

0 < t lxa(d(K)) =< 1, (3.5) 

and let {t!")}, 1-< iNN(e, ,  K) be the min imal  e,-net on K, where 

e,=d(K)e -z"§ n = 0 , 1 , 2  . . . . .  . 

Sett ing 

x .=c4q( l /2-1)2(~- l ) /2~(e ._O,  n = 1 , 2  . . . .  , 

we have  

Xk <Cctl ~ ~(d(g)e-U~)du 
k~l 0 

<1~c2c4  (in (3.3) let t=e  -"~ and x=d(g)) .  
= 2 ]//~x 

N o w  let 

A = ~sup liXa(t)ll > x t~K k=~ ( x >  1), 

A'J'i)={ ]lXd(t~j))[[ >~x-k g= l ~ xk} ' 

A,,= U a~,o, i <_i~N(ej,K) l<~j<n 

(3.6) 
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and 

M~: tl<=i<-N(ej, m a x  ][Xd(t!J))H ~x-I- k=l  ~ Xk}" 
" .  l < =j<=n  

Since we have 

A~ UA~, A~cA~+I, and A2cA,, 

it follows that  

P ( A )  < lira P ( A , ) .  
n ~  oo 

For  P ( A , ) ,  we have 

P ( A , )  <= P ( A ,  _ 1) + P ( A ,  c~A ~, _ ~) 
N (e~,  K )  

=<P(A.-1)+ ~ ~vPt~("i)"'~("-l'i')~*, , ,~,~- 1 j,  
i = i  

where i' is chosen such that  ..-,~zm(t!'), _,,t("- 1)~, <-_ e,  _ 1. To estimate the last term, we write 

x( t l" , -  1)) = ~x( t ! . ) )  + 1 /1  - ~ z ,  

where Z is a s tandard normal  r andom variable independent  of X ( t !  ")) and 

= Ex(t! ' ,  - ~))x(t!'))  

= 1 - E ( X ( t }  ")) - X(t~;  - a)))2/2 

=> 1 - ~ ~ ~ (re(t!"), tl , '-  " ) ) /2  

= > 1 - -  F/20"2(en - 1 ) /2  

= > 1 - ~ ~ : ( d ( K ) ) / 2  

> 1 - 1 / ( 2 x 2 ) > � 8 9  (3.7) 

By the tr iangular inequality, we have 

[I x d ( t !  n - 1))I[ ~ y ]l x d ( t l  n ) )  ]l - -  1/1 - r 2 I[ zd [l- 

Therefore  we have 

p i A ( n , i )  ~ d ( n -  1,i')c't 
~ z l  n ( i z x  n _ 1 ! 

< = P ( l l X d ( t l " ) ) l l > - x +  x k , 1 / 1 - - r 2 l l Z d l l > = r x , - - ( 1 - - r )  x +  k lXk  
k = l  

< ~d(X) 42d 1/1 - r 2 / " 
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Combining (3.5), (3.6) and (3.7), we have 

rx,  > c 4 ( ] / ~ _  1) 2(n_ 3)/2 ' 

Vl_-z7 = 

~+ 2 <Vl-r ~+ E 

2/~x / 

V~c2c , x / ~ 

and so 

It follows that  

P(A,) <= P(A,_ 1) + q, N (8,, K) q~ a(x). 

By induct ion it follows from (3.1) tha t  

P(An)<=q er eN2~+lqk eba(x). 
\ k = 2  

If we choose the constant  c4 greater  than 1 / N ( ] / 2 + 1 ) 2  s/2, then by virtue of 
L e m m a  1, 

eN2k+~qk 
k = 2  

converges, and so we have 

P(A) <= cl cs q)d(x). 

Finally let {si}, 1 <=i< N(�89 S) be the minimal a - l ( 1 / ( t l x ) ) / 2 - n e t  on S 
and set 

K i = {s; re(s, sl) <=a- *(1~(fix))~2}. 

Then Ki is a closed ball of S such that  

d(K,) <= ~-  *(1/if/x)), 

and 

0 < rlxa(d(K,)) <<- 1. 
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Therefore we have 

P supllXa(t)ll > x +  ~ xk 
\ t~S k ~  1 

_<_ ~ P supIlXd(t)ll > x  

< cl c5 N(�89 l(1/(y/x)), S) 4~(x). 

Setting 

y=x-~ ]~c2c~ 
2 ] ~ x  " 

we have 

y < x + 1~-c2 c4/(2 lf~), 

N(�89 1 (1/(r/x)), S) <= N (�89 a(1/(rl y)), S), 

and 

~ a(x) = ~ d(Y -- 1 ~  C2 C 4/( 2 ] f  ~ x) 

_ y 2 / 2  4 1/~C2C4Y 
<=4al yd- Z e 2 l /~x  

< c 3 ~ '~(Y) .  

This completes the proof of Lemma 3. 
Now we begin the proof of Theorem when I(h, qS) < + oo. Let 

[s, 0={u;  s<u<~}, 
2 n + l - - 1  

K={(s,t)e[O, l J 2 ; O < t - s < � 8 9  = U U K,,i, 
n = l  i = 1  

K~,~= {(s,t);2-"- l < t - s < 2 - ' , i 2 - ' -  l <t<_(i + l )2- , -1} ,  

n=  1,2,...,  1 <i_<2"+1-- 1, 

I,,~= {t; (i--2)2- '-1<_t<_(i+1)2-'-1},  i=2 ,3  . . . .  ,2n+1-- 1, 

I~,i ={t;  0_<t<2- '} ,  

and 

A~,i={co; sup [IBd(t, co)--Bd(s, co)Jl/l/~--s > O(2-")}. 
(s,t)eKn, i 

We denote by X,.f the indicator function of A,,~ and for convenience we understand 
that 1 . I = I  and 0I=q~ for a time interval I. Then for each co, we set 

2 n + l _  1 

In(O)= U Xn, iln, i and 1(o9)= (~ U I.(o~). 
i = 1  m = l  n ~ m  
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Now we show that  

E(d), co) = I(co). (3.8) 

In fact, for each tEE(d), co), by definition there exists {(u., v.)}~D f such that  

IlBa(t + u , , co) -  B d ( t -  v,, co)ll > ]/u.  + v. d)(Uo + V.). 

On the other  hand, for each n there exists (m., i.) such that  m.~ + ~ (nl" + ~ )  and 
( t -  v., t + u.) ~ Km,~, i.. gO we have 

sup rl Bd( t', co) - Bd( s', co)II/l/t' - s' 
(s ' ,  t ' ) s  Kmn ' in 

Il Bd( t + u., co)--Bd(t-  v., co)II /1/-U-~ + V. 

> r + v.)_>_ d)(2-'~). 

Since this means co~A.~.,~., we have 

t ~ [ t - v . , t + u . J c X . , . , J m . , ~ ,  for all n 

which implies (3.8). 
In order  to apply L e m m a  3 to estimate the probabil i ty  P(A.,~), we let K..~ be a 

compact  metr ic  space with the usual two dimensional  Euclidean metric, and by 
easy calculation, we have 

t S t co  2 B(t,co)_-B( , )] <9.+5/211(~ f l - ( r  tqll 
f = -  " " - "  " " ' "  

(B(t ,  o9) -- B(s, co) 
E \ ] / t - s  

Therefore  setting 

C l = l  , C 2 = 1  , 

N = 2, ~ = 1/2 

in L e m m a  3, we have 

C4 > 8 ( ] / 2  + 1), 

and o'(x) = l / x ,  

P( sup IIB%co)-B%co)ll/!/t-s>=d)(2-')) 
(s , t )~K~,~ 

~< 5.25 c3esd)g(2-")(bd(d)(2-")), for d)(2-")> 1 + ] ~ c 4 1 f 2 .  

Combining L e m m a  1 and (3.9), we have 

2 n ' l  -- 1 

~ P(A.,i)h(ll..~f) 3 

< • 5.25 c3 c52"+1 d)4(2-. )~a(d)(2-.)) h ( 3 . 2 - " -  1) 
n 

<=3.5.28 a l c 3 c s Z ( 3 . Z - " - 3 . 2 - ' - l ) ( 3 . Z - ' ) - Z  d)d+2(3.2 -"-1)  
n 

. e-~2(3 - 2 . . . .  )/2 h(3- 2 - " -  i) 

~_~ 3 '  5" 2 8 a 1 c 3 e 5 ~ x -  2 d)d+ 2(X ) e-4~2(~)/2 h(x) dx < + o o .  

+0 

3 We denote by ]I[ the Lebesgue measuer of a time set 1 

(3.9) 
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It follows that 

2 n+l -- 1 

~, ~ h(Xn, illn, i[)<+oo a.s. 
n i = 1  

With the help of Theorem 3.2 of Roger's book [7], we have 

h-m(I(co))=O a.s.. 

This yields the proof of Theorem when I(h, 4)) < + oo. 

Remark. To prove the convergent case of I(h, 4)), we have used only the conditions 
(1.3) and (1.6). 

Remark. For a Gaussian process {X(t); 0__<t< 1} such that 

E(X(t)- X(s)) 2 < ~2(i t_ sl), 

if Lemma 3 is applicable, then 

S [ 0 - -  I(O'(X)/4)(X))] --2 4 ) d - 2 ( X  ) e-e2(x)i2 h(x) dx < + oo 
+0 

implies h -  m(E~(4), co))= 0 a.s., where E,(4), co) is a co-set replacing o(x) instead of 

1 ~  in E(4), co). 

4. Proof when I(h, 4))= + 

The proof of this part is much more complicated than that of the previous section. 
First we need the following lemma to impose an additional condition on 4)(x). 

Lemma 4. Without loss of generality, we can assume that 4)(x) satisfies the following 
condition: 

4)(x) ~1/3 log 1Ix. (4.1) 

Proof. Let 

~(x) = min(4)(x), 1/3 log l/x), 

then by the same technique as that of Lemma 1 of [3], we can prove that I(h, ~) = 

+ oo. Since 4)(x) and ~ satisfy (1.3), (1.4) and (1.8) so does ~(x). Moreover 

1/3 log 1Ix being of the upper class with respect to the uniform continuity, we have 

E(4),co)=E(~,co) a.s. 

This yields the proof of Lemma 4. 
The next lemma allows us to impose an additional condition to h(x). 

Lemma 5. Without loss of generality we can assume that h(x) satisfies the following 
condition: 

X-- 14)d + 2 (X) e-  ~2(x~/2 h (x) =< 1. (4.2) 
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Proof. I t  is sufficient to prove  that  we can const ruct  a posit ive cont inuous  function 
h(x) such that  

(i) h(x) N h(x), 
(ii) h(x)$0 ( x ~ 0 ) ,  

(iii) h(x)/x'[ + oo (x ~ O), 
(iv) I(h, q~)= + 0% 
(v) h(x) satisfies (4.2). 

Since we are interested in only small  x, we can assume that  qbd+g(X)e -r is 
non-decreas ing  and also mul t ip lying by a constant ,  if necessary,  we can assume that  
there exists gno=2 -"~ such that  

8~o 1 qb a+ 2(8no ) e -4'2(~n~ h(gno ) ~ 1/2. 

By (1.3) and (1.6), we have 

X-- 1 (]sd+ 2 (X) e -  ~b2 (x)/2 h(x) < 2e#o i q~e+ 2 (e.o) e -  ~176 h(e.o) 

< 1  for 8,o+i < x < e ~ o  . (4.3) 

Let  n, be the first n (>no )  which violates the inequali ty 

e2i~ae+2(e,)e-C'~(~,)/2h(e~)<=l/2, (e~ = 2 - " ) .  (4.4) 

I f  there is no such n 1, taking account  of  (4.3), h(x) satisfies (4.2) for all x < e,o, so we 
have  nothing to do. When  there is such n ,, we define a new function h, (x) as follows: 

hl(x)=h(x) if e ~ _ l  < x  <e~o, 

=h(8,,,_l)x/e,,l_ 1 if e,~x<-_e,,l_l, 
=�89 h(x)/h(en,) if x<e,, .  (4.5) 

Then  by (1.6) and (1.7), hi(x) satisfies (i), (ii) and  (iii) for all x < eno, and (iv) is also 
fulfilled f rom I(h, ~b)= + oo. By definit ion and (4.3), h~(x) satisfies (4.2) for all 
% + 1 --< x < e,o, moreove r  

8-i 4d+2(Sm_i) e-42(~nl-i)/Zhi(eni_i ) 
nl-- i 

>= 2-18~ 1 ~)a+ 2 (8,,j e-4,2(~,,0/2 h(e,,j 

> 1/4. (4.6) 

By induct ion assume tha t  we have const ructed hm_ i (x) which satisfies (i), (ii), (iii) for 
all x < eno with (iv), (4.4) for all no < n < nm_ i, and (4.6) for nm_ 1 - 1. Then  let n~ be 
the first n ( > nm 1) which violates (4.4) for hm- 1 (x) instead of h(x). I f  there is no such 
n, we define h(x) by hm_ i (x) then h(x) is a desired funct ion by taking account  of  
(4.3). If  there exists such nm, then hm(x) is defined by 

hm(x)=hm_i(x) if ~,m_l <x__-<~ o 

=hm_l(~nm-1)x/~.=-i if e,m<X<%~_i 
=�89 _l) hm_l(x)/hm_l(SnJ if x<e~ . 
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Then by the same procedure  with hi(x), hm(x) satisfies (i), (ii) and (iii) for all x < e.0 
with (iv), (4.2) for all e..~ + 1 < x < e.o and (4.6) for nk -- 1, 1 <-- k < m. N o w  it is enough to 
invest igate the case tha t  there exists an infinite sequence of such {n,.},.~ 1. Let  

h(x)=h,,(x) if e . . . .  _1 <x_-<e,o. 

Then obviously h(x) satisfies (i), (ii) and (v). By (4.6) we have 

I(h, 4 ) =  j x -2  4a+2(x) e-4"2(x)/2h(x) dx 
+ 0  

~nm - -  2 

> 2  ~ x-24a+2(x)e-+2(*)/2h~(x) dx 
m ~nm _ 1 

1 - 1  ~ 2 ~ , ~ n m _  ,~d+2(~ x --4)2(en --i)/2. 
= i v" t ~ . ~ -  1) e ~ n m l g n ~ - -  1) 

m 

+ oo. 
m 

Since h(x)/x is m o n o t o n e  by definition, if we assume that  h(x)/x is bounded,  say by 
C, then we have 

X -2  4a+2(x) e-r dx<= C j X-14d+2(X) e-4O2(x)/2dx< + oo, 
+ 0  + 0  

which contradicts  with (iV), which shows that  (iii) is verified. This completes  the 
p roof  of  L e m m a  5. 

N o w  we begin the p roo f  of  our  Theo rem when I(h, 4) = + o% with the help of  
several lemmas.  We recall that  by virtue of  L e m m a  4 and L e m m a  5, we can assume 
that  4(x)  and h(x) satisfy the addi t ional  condit ions (4.1) and (4.2) respectively. 

Fo r  sufficiently large n, let 

e. = 2 - " ,  6n=aS en+ Z/42(gn+ 2), as= lOS dd/Z 23d/2 ' 

A n = [en  + 2 / a n  -] 4,  

A("lk,~,j----{c~ IiBa(ke. + 2e.+ 2 +j 6., co). Be(ke. + i6., cn)[I 

> ] / 2 g . + z + ( j - i ) f i  . ~b(z.+2)}, (l<=i,j<=A., 0__<k_<2"-1) 

X . , k = t h e  indicator  function of ~ A(~,~,j for 0 < k < 2 " - 1 ,  
1 <=i,j<=An 

= 0  otherwise, 
and 

P(X.,k= 1 ) = p . .  

Then we have 

Lemma 6. 

2 a l a ; 2  4d+ 2@:n+ 2) e- ,2(  . . . .  )/2>~ ptA(.) 
- -  ~, k , i , j !  

t , j  

>=p.>=0.8 ~ P(A~",!,j)>O.2ala~ z 4d+2(en+2) e -~2( . . . .  )/2. 
t~J 

(4.7) 

We denote by [x] the integral part of x 
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Proof. Since we have 

~P(A~?~,j)~p.>=~P(A~), j )-  Z P'A(') c~A(n) ' , , I O, i , j  O , i ' , j ' ] ,  
i , j  i , j  ( i , j ) * ( i ' , j ' )  

let us find the upper  bound  of the last term by (2.3). 
Setting 

x = B ( 2 e , +  z +j (i,,)- B(i 6,,) 

]//2e,+2 + ( j -  i) 6, 

B(2e, + 2 +J' 6 , ) -  B(i' 6,) 
Y -  

]//2~.+ 2 + ( f - -  i') 5 . 

we have 

1-EXY>=(lj- j ' l -q- l i - i ' l )  3 * e2 a,5,, 

= (IJ -J ' l  + l i -  i'1) 12-  *as qS- 2(e, + 2). 

Applying L e m m a  2, (ii), we have 

p( A(on)i,j ~ A(~)i '' j,) <= a3 e=a,(Ij- j'l + li-i'1)1384- (~ d(~(en + 2)), 

and 

P~A (') c~ A (~) I, O, i , j  O , i ' , j ' )  
( i , j ) * ( i ' , j ' )  

k 

<4a3E Y, 2 e-~162 
i , j k = l k ' = O  

=< o.2 Y, e~(4,(~, + 2)). 
i , j  

It follows that 

P(X. ,  o = 1) => 0.s F, P(A~?,,j). 
i , j  

The rest of (4.7) are easily obtained by (2.1). 
N o w  for each sufficiently large n, we correspond three integers n" > n' > fi ( > n), 

which are possibly choosen from (1.6), (1.7), (4.2) and l(h, 4)) = + 0% satisfying the 
following condit ions:  

225 h (e, + 2) en+12 ~ h (e, + 2) g~-+~2 > 224 h (g, + 2) gn+12, (4.8) 

h(e,,+z) <n_Z, (4.9) 
g n + 2 h ( g n + 2 )  

h(e,, +2) e,+2 =>4a2 h(ea+ 2) gn'+ 2, (4.10) 

and 
n" 

2-5  h(g.+2) e~-+i2 <= Z h(em+2) pmgm+2~--i 2 - 4 h ( e . . 2 )  ~-+12. (4.11) 
m = n' 
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Since we are interested in only large n, we assume that  n satisfies the following 
condit ions:  

2 - n  1 

x -  l Od+ 2(x)e-O2(iO/Z dx <20-  l a~ l a21a 2, (4.12) 
+ 0  

l o g  ~ ) ( e n +  2) (2a I ( ~ d + 2 ( e n + 2 )  + a ~  ~b4(e.+ 2)) e - S l ~  ~ : (  . . . .  ) <0-02a25, (4.13) 

and 

q~ (e. + 2) > 104 de. (4.14) 

Let  

I . ,k={t;  ken+e.+2<t<ka.+2en+2},  

' kh(e,+3e~2+2A 

Y~(.")k' = I-[ (1 - Xm, k'+ s) I J  (1 - -  X m -- 1, [k ' /2]  + s) 
b ~ , m > l s [ >  1 bn, m_l__> Is[> 1 

�9 "" 1-I (1 --X.',~k'Z.'-~+s), 
bn, n'>=lsl> l 

Z~!k '= [1 ( 1 - X  . . . .  ~k'2-q), 
m--n' >_s>_ l 

<_, I(nm 'k)= { X m ,  k ' '  YJ'])k'" Z(~!k ' Im ,  k'; k' varies such that  k e . _ k  e m < ( k +  1) e.}, 

I("k)= U I1,~ 'k), 
n'<m<n,, 

H~ 'k)= ~ h(llm, k,I), 
Ira, k,el(~, k) 

and 
n "  

H(,, k) = ~ H~' k), 
m~ n' 

here we recall that  1 - I = I  and 0 1 =  ~b, and we exclude 0 f rom a family of  open 
intervals I~ '  k) which depends on a path.  

Under  the above  formula t ion  we prove  the following: 

Lemma 7. 

EH(n, k) <= 221h (e, + 2) 

and 
EH(., k) ~ 217h (gn + 2). 

Proof. Easily we have 

(k+  1) 2 " n - n - -  1 

EH~ 'k) <- ~ EXm, k, h(llm,k,]) -1 _ =e .+2  e.,+2 h(em+2)p~, 
k '=k2m-n  

(4.15) 

(4.16) 
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and 
n"  

EH(n'k)~en+ 2 ~, e~nl+ 2h(gm+ 2) pm~221h(en+ 2), (by (4.8) and (4.11)). 
m =  n' 

It  is m o r e  compl ica ted  to p rove  (4.16) than  that  of (4.15). First  we have  

EH~'k)>= Z h(~m+2)E ,.,k' 1 -  E xj, Ek,2~-..~ 
k'=k2 m-n j=n' 

j=n' b . , ~ > [ s [ >  1 

( k +  1)2 . . . .  1 ( j~=n' / p m - m - l E X m ' k "  
= 2 h(em+ 2) Xj,[k'2J-ml 

k'=k2m-n 

f z Omen) 
j=n' b~,d>[s[>_ l 

F o r  the third term, we have  

~ pmPj<--__2pm ~, b,,jpj 
j=n' bn,j~ls]2> l j=n' 

n" 
< 4pro ~ e~ + 2 h (ej + 2) h (e~ + 2) -  t e ~ � 8 9  pj 

j =  n' 

< 2 - 2 p m  (by (4.11)). 

To  es t imate  the second term, setting 

x _ B ( k  ~j + 2~j+ 2 + v' bj)- B(k gj + u' bj) 

1/2 ~j + 2 + (v' - u') a~ 

B(k' em+ 2era+ 2 + v am) -B(k '  em +u am) 
Y ~  

l/2em+ z +(V-U) bm 

for n' < j  < m -  1, we have 

O<=EXY<]~/2 if j = m -  1, 

and 

O<EXY<]/32 (j-")/2 if n'<j<=m-2. 

We divide into the following two cases: 

Case (I). Assume that  m -  10 log (~(em+ 2) <J < m -  1. 

By L e m m a  4, we have  

m - 10 log ~b (e~ + 2) > m - 6 log m, 

and 

,~j+ 2~,~,m+ 2 mS. 

(k=Ek '2J -m] )  

(4.17) 

(4.18) 

(4.19) 
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Combin ing  this with (1.3) and (1.8), we have 

4 (E~ + 2) /4  (~; + 2) < r ( ~  + 2) /4  (8~ + 2 m ~) < 21 o 1 O-  3. 

With the help of  (4.14) and (4.19), we have 

2-1(1 + r) (o(E~+ z) + l/2-d <= O.935 4(gm+ 2) <= O.975(a(%+ 2) <= 4(ey+ 2), 

where r = EX Y. 
It  follows f rom (2.1), (2.4) and (4.7) that  

u,~  u' , /2'  

< 2 Y', (2 a a 4 a-  2 (gin + 2) + a4) e - * ' l  o-~ r (~+ ~) ea  (4 (e,, + 2)) 
u,t) u ' ,v '  

< 1.25 a 7 2 (2 al 4 a+ 2 (era + 2) + a4 4 4 (gin + 2)) e -  8.1 o-442( . . . .  )Pro' 

Therefore  we have 

2 EXm,k' X j, 
m--  10 log(a(em+ 2)<=j<=m - 1 

< 12.5a;  2pro log 4(am+ 2)(2al 4 e+ 2(e,~ + 2) @ a4 44(gm + ~)) e -  s-1 o- ~ 4~(~= +_,) 

<4- 1pro. (by (4.13)) (4.20) 

Case (II). Assume that  n' __<j < m - 10 log 4(e~ + 2). 

By (4.19) 

r 4(era+ 2) 4(e j+ 2) < 42(e,,+ 2)]fl ~2-5'~ r  + ~) 

__<1/34-1(~+2)< 1. 

It  follows f rom (2.1) and (2.2) tha t  

EXm,k, Xj,~ < E E a2 qse(4(e~ + 2)) ~ba(4(ej + 2)) 
u,/) u ' , u '  

_-< 2.5al a2a~ 2p,,4a+ 2(ej+ 2)e-4~(~J+ :)/2. 

Hence  by (4.12), we have 

2 E X m , k ' X j ,  k 
n'<=j<=m - 1010g~b(em + 2) 

< 2.5al a2a52pm ~ Oa+ 2(ej+ 2)e -r 2)/2 
j = tff 

2 - n , - 1  

<5ala2aTZpm ~ x-~4e+2(x)e-~(~)/2dx 
+ 0  

< 4 -1  p,,. (4.21) 
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Combining (4.17), (4.18), (4.20) and (4.21), we have 

EH~,k) > 4-1 -1 e,+ 2em+ 2h(e~+ 2)p~, 

and 
n"  

EH("'k)>4-1e,+ 2 ~, ~l+2h(gm+2)Pm~217h(g.+2), 
ttl~ n' 

(by (4.8) and (4.11)). 

This completes the proof  of (4.16). 

L e m m a  8. Let  

L(", k ) = E(H(", k) _ EH(,,k)) 2" 

Then 

12n,k) ~ 224 n-  __ 2en+ zh2(gn+ 2). (4.22) 

Proof. We calculate 12n, k) by dividing several parts: 

n"  

I ~ n ' k ) =  2 E(H(~'k)--EH~'k)) 2 + 2  ~ E(H~'k)--EH(~'k))(H~;k)--EH(~ :k)) 
m =  n' n' < m  < m '  < n "  

n" 

= Z 12~) + 2 Z I32!m" 
m= n' n' <m <m'  <n"  

c%~= E(H}U ~ - ~H~,~)) ~ 
( k +  1)2 m - n -  1 

= Z hZ(em+z) E(Xm,k, Y~".)k,Z~Ik,-EXm,k, Y~,~,Z~Ik') 2 
k ' = k 2 m - n  

+ 2 ~ h2(em+ 2) E(X,,,,k, v(,) 7(,) * m,k'  ,t~m,k' 
k2m-n<-k"  <k'" <-(k+ 1)2 m - n -  1 

- -  E X m ,  k, y(mn)k , Z(nm?k ,) ( X m , k , ,  Y~(?),, Z ( ~ ) k  ,, - -  E X m ,  k .  Y~,~,, Z(dla,,) 
__121) 1(1),~ -6 ~m . 
- -  m, 1 ,~ 

Obviously we have 

(k+  1)2 m - n -  1 

-em+2e,+2h (era+ 2)P,,. g(ml), 1 =< 2 h 2 ( g m +  2 ) g X m , k  ' __ 1 2 
k ' = k 2 m - n  

(4.23) 

v(,) 7(,) if I k' - k"] > 4 b, ,, e,, e2, 1, it Since v v(,) 7(,) is independent of X,,,k,, ~,~,k"~,,,k- xx m,k'  am,k'  Z~m,k' 

follows that  

12~!2 G2 ~ h2(em+ 2)EXm,k' Xm,k '' 
k 2 m - n < k ' < k  '' 

<k'  +4bn,n ,en,  e~ 1 
< ( k +  1)2 m - n  

NSbn, n,g.n, gne~n2h2(~;m+ 2)p2. (4.24) 
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F o r / 3 2 )  se t t ing  m~tn'~ 

(k+1)2 m-~- t (k+1)2 m'-n 1 

h ( • m +  2) h ( ~ m ,  + 2 )  E X m ,  k' rrt ' ,k",  m,ra" 
k , = k 2 r n - n  k " = k 2  m" n 

where  

Z~,!k, = Xm k' V(.) 7(.) _ EXm k' v(.) W(.) , * m , k " ~ m , k  ' , -~m,k'Z~m,k ' 

a n d  

)~'),k" -- g g(n) 7(n) -- EXm' k" v-(n) 7(n) 
- - X X m ,  k,, a m , , k , , L , m , , k , ,  , a m ' , k " L ' m ' , k " ~  

we e s t i m a t e  E_~ (") ,7(.) by  d i v i d i n g  in to  th ree  cases :  m,k'  li .  m', k "  

Case ( I ) .  If  k " e . ~ , - ( k '  + 1)~, .> 4b . , . .G .  or  k'a,,~-(k"+ 1)e~. >4b.,. ,e. , ,  t hen  we have  
EYe") -~") = 0  b ec a u se  3Z (~) is i n d e p e n d e n t  of  )2~.),k.,. x~ re,k" xx m', k "  m,k '  

Case ( I I ) .  I f  0 < k era, - (k + 1)~m < 4 b . . ,  e., o r  0 _ k s., - (k" + 1)era, < 4b.,,,, e.., t hen  
we have  

E~(.) ~7(.) ~EXm.k,X, . ,  k,,=pmp.~,. 

' _ < "  (k" Case ( I I I ) .  In  case  of  k a ~ _  k am' < + 1)e~, < (k' + 1)era, it  is m o r e  diff icul t  t h a n  
the  p r e v i o u s  ones.  I f  1 < m' - m < 10 log  ~b(em, + 2), by  the  s a m e  a r g u m e n t  as the  case  
(I) of  the  p r o o f  of  L e m m a  7, we have  

-(n) -(n) EX.,,k, X,,,,, k,, = EX,~,k, X,~,, k" 

<= l.25 p.,,a~ 2(2al ~d+ z(~,  + 2) + a,~(o4(e,,,, + z))e- S. l o-~2( . . . .  2) 

O n  the  c o n t r a r y ,  if  m ' - m  > 10 log  qS(e~,+ 2), t hen  by  the  s a m e  a r g u m e n t  as the  case  
(II) of  the p r o o f  of  L e m m a  7, we have  

E X  ("~.,,k, X("~,..,k,, < EX,.,~, X,.,,k,, 

G 2.5al a2a~ 2p~.dpd+ Z(sm+ z)e-4~2( . . . .  ~/2 

<= 12.5a2pmpm,. 

S u m m i n g  up  al l  cases,  if 1 < m ' -  m < 10 log ~b(Sm,+ 2), t hen  

(k+ 1)2 m - n  1 

/32)m,m "<= 2 (8bn,n'~'n"?'m'lh(~m+2) h(em'+2)PmPm " 
k ' = k 2 m - n  

+ 1.25eme;? h(sm+ 2) h(e.,.+2)pm, a~ 2(2al  qSd + 2(s~. + 2) 

q- a4 q~ 4(~m, + 2)) e -  8.1 o 4 q~ 2 (~. ,+ 2)) 

<8b.,..s.,e,,ey. ~,s~,) h(sm+ z) h(em,+ z)pmp,~, 

+ 1.25 s . G )  h(s,.+ z) h(s~. + 2)Pro' a ;  2(2a~ q5 d+ z(sm, + 2) 

+ a4 q54 (s,~, + z)) e -  s. a o 44~ (~,., + ~), (4.25) 
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and if m' - m > 10 log qS(e~, + 2), then 

( k+  1 )2  m - n -  1 

~2) < Z (8bn,n 'gn'g~n'lh(Gn+z)h(gm'+z)pmp,n' m, ol" 
k '=k2m-n  

+ 12.5 a2,gmg~n, 1 h(em+ 2) h(e.,,+ 2)PmPm') 

=8b.,..%,%e2~ l ef.,l h(e~+ z) h(a,., + 2)pmPm , 
+ 12.5az%e2,) h(em+2) h(gm, +2)PmPm" (4.26) 

Combining (4.10), (4.13), (4.23), (4.24), (4.25) and (4.26), we have 

n "  

I3"'~)< ~ (e2,1+2%+ 2h2(e,,+2)pm+8b.,n'%'ene2,2h2(e,,+ 2)p2~) 
m=n' 

+2  ~. {8bn,~.e.,%~xe~)h(~+2)h(~,~,+2)p,~pm. 
n' <ra.<m" <n'" 

ra '--  m ~ 10 log q~(em, + 2) 

+ 1.25 %G)  h(gm+ 2) h(gm.+2)pm, a5 2(2a1 ~a+ 2(gin, +2) 
q-ar 8" i0-  4r 2)} 

+2  ~ (8b.,.,%,e.e2, te2,)h(e,.+2)h(e,.,+z)pmp,., 
m' -- m ~ 10 log ~(em, + 2) 

+ 12.5a2%G) h(em+ 2) h(em,+2)pmP,,,) 
n "  

<e,+2h(%'+2)(m~,e2,1+ah(e~+2)Pm ) 

n" )2  

+(8b,,,c%,%+ 2 +12.5a2e,+ 2e,, + 2) ( ~ G l+ 2h(e,,+ 2)p,, 
~m= n' 

n" 

n" ) 2  

+9b.,.,%,e.+a ( ~ e~nl+2h(g,m+2) Pm 
= , rn 

<22~n- 2e,+ 2h2(e,+ 2), 

(by (4.8)-(4.11) and the definition of b,.,,,). This yields Lemma 8. 

By virtue of (4.16), (4.22) and Ceby~ev's inequality, we have 

P(0 =< 3 k N 2 ~ -- 1, I H ~'k) - EH("'k)[ > �89 (~'k)) 
<2-1On-2 

which is a convergent sequence of n. Therefore by Borel-Cantelli lemma, there 
exists almost surely finite integer n(co) such that for all n > n(co) and all 0 _< k _< 2" - 1, 
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H(., k) > �89 k) 

n" 

>2-3e,+2 ~ ~2~l+2h(em+z)Pm 
m~n"  

> 2- 8 e, + 2 ~-+~2 h(e,+ 2) (by (4.11)) 

> 2' 6 h(e, + 2) (by (4.8)) 

> 21 ~ h(e,) (by (1.7)). (4.27) 

The final step will be cleared if for any positive number M ( >  1), we can 
construct a subset N of E(qS, co) almost surely such that the Hausdorffouter measure 
h - m * ( N )  is greater than M. With the help of Jarnik's method [-2] for diophantine 
approximation theory, we will accomplish this procedure. 

First by (1.7) we can choose sufficiently large n(> n(co)) such that 

h(E, + 2)e2~}2 > 223 M.  (4.28) 

Now let 

~1 = {i(,,k); 0_<k_<2"- 1}. 

We recall that the Y-(")~,v and Z~! k, in the definition of I~ 'k) force all the intervals of 
i(,,,k) (they are at least two by (4.27)) to be disjoint-even separated by a certain 
distance. Since they are contained in [ke,+e,,+2, (k+ l )e , -2e , ,+2] ,  all the 
intervals of ,31 are also disjoint-even separated by a certain distance. 

2 n -  1 

h(llI)= ~ H("'k)>2a%2~2h(e~+2)>227M. (4129) 
I~51 k= 0 

For each Ie31,  there exist n(I) and k(I) such that 

I = {t; k(I)e~( o < t <(k(I)+ 1)e.a)}. 

Therefore setting 

.~(I) -- I ("(~'k(r~, 

and 

-~2 -- ~ ,  ~(I), 

we have 

h(lI'l) = H(n(I)'k(*)) >_ 214 h(ll I). 
r~(I) (4.30) 

By induction we can construct a family of open intervals 

~"~n+ 1= ~) ~(I), 

which consists of mutually disjoint open intervals-even separated by a certain 
distance as is explained above. 
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By definition, for any I~.3,+ 1 there exists the unique I'~.3, such that I ~ I'. Let 

v.= U I, N--  vo, 

then obviously we have 

V n + l = V n ,  N = E ( ~ ,  (.o), 

and so N is compact. 
Let 926 be any covering of N by open intervals, each element of which has the 

length less than 5. Since N is compact, there exists a finite sub-covering 9.1~ of 9~6. If 
5 is less than the minimum of the distances between the elements of-~1, each 
element W of 9.1~ has non-empty intersection with 0nly one element from -~1. We 
denote by W' the intersection of Wwith such element from .~1 and let 9~J be a set of 
all elements of W'. Then ~ s  is a finite covering of N by open intervals such that 
each element of ~ s  is included by a unique open interval of 31. 

Let 

A(~a)= ~ h(lll) , 
I e q.l,3 

then clearly 

A (9~) >__ A (9~) >__ A (9a7). 

Now we define some terminologies. 

Definition 1. We say that a time set Wmeets with another time set I when W n  I + ~b. 

Definition 2. We say that an open interval Wis of degree n when Wis included by an 
open interval I of .~,, and meets with at least two different elements of .~(I). 

Definition 3. We say that an open interval is normal when its degree is defined. 
We remark that the degree for an open interval is uniquely defined if it is 

possibly defined, in fact if an open interval W is of degree n, then there exists the 
unique I of.~, which includes W, and it is impossible that Wmeets with two different 
intervals of .~ for any l=< n. 

Since Win the cover is an open set, there exists n such that Wwill meet with at 
least two intervals of some ,~,. Let n be the minimal such value. Then restrict Wto 
the intervals of,~n_ 1 it meets. Now the restricted interval W' is of degree n -  1 and 
nothing was lost. The family 9/*s of all such W' is also a covering of N by open 
intervals such that 

A(9.IJ) _> A (gA~s). 

The above arguments conclude that it is sufficient to consider only finite coverings 
which consist of normal intervals. 

Definition 4. We say that a point P attaches to a normal interval Wof degree n which 
is included by J~.~n when there exists I~3(J) such that I meets with Wand includes 
P. 

We remark that every point P of W~ N attaches to the normal interval W. 



The Exac t  Hausdor f f  Measu re  of I r regu la r i ty  Poin ts  for a Brownian  Pa th  279 

Definition 5. A finite family of normal intervals 9.I~ having the lengths less than ~, is 
said to be an estimating system of N when each point of N attaches to some 
elements of 9.1~. 

We remark that the previous 9i *I is an estimating system of N. 

Definition6. An estimating system is said to be irreducible when 9I~ does not 
contain proper sub-family which is an estimating system. 

We remark that any estimating system contains at least one irreducible 
estimating system. 

Definition 7. An estimating system is said to be of degree I when it contains at least 
one open interval of degree 1 but does not contain any open intervals of degree n, 
n>=l+l. 

Since each estimating system consists of only finite normal intervals, we can 
always define our degree. 

For an estimating system 92[~ of degree I, let 

A(9.1~)= ~ h(/wl)+2 -~4 ~ h(Iwl) if 1>1, 
w~ ~,~ w~ ~,~ 

of degree < ( I-- 1) of degree I 

and 

- ~ ( ~ ) = 2  -~4 Y h(Iwl) 

then 

if l = l ,  

h - m*(N) > lim inf A (9.1~) 

> lira inf/l(gX~), 

where "inf"  runs among all irreducible estimating system of N having the lengths 
less than 3. 

Now we prove two key lemmas in the Jarnik's method. 

Lemma 9. Let  W be a normal interval of  degree l, which is included by an open 
interval d of  3 ~ and we assume that W meets with intervals I j of  ~( d), j = 1, 2 , . . . ,  t > 2 
(by  definition). Then 

I W ] > 2 - 2 7 1 j  I h(ld]) -~ ~ h(]I;]). (4.31) 
j = l  

Proof. Reordering {I;})= 1 if necessary, we can assume that {I;})= 1 are placed in 
order in the interval d = {t; ke, < t < (k + 1)e,}. Assume that Ia z I ~  '1') and I 2 e I ~ ?  ), 
m < m '  then the distance d(I1, I2) between 11 and 12 is greater than b,,me~ and we 
have 

d(I~,I2)>=2-Z(b~,,.e,~+b..m,~.,,) (by b,,,mz,~>=2-~b..,~,sm.) 

> (h(e,. + 2) + h(e,.,+ 2)) en + 2 h(e~ + 2)- 1 

>(h(l l l l )+h(lI2l))2-  2se.+ zh(e.+ 2) -1 (by (4.8)) 

> 2 -  27 IJI h(ldl)- 1(h([Ii1 + h(lI2 I)). 
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It follows that 

IWl>= ~ d(1j, Ij+x)>=2-271Jlh(lJI)-i h(llj[). 
j = l  j = l  

Lemma 10. Let 9.I~ be an irreducible estimating system of N of degree I(> 1), then 
there exists an estimating system 92('~ e of degree (1-1) such that 

X(gx;) > Zi(9~;e). 

Since each normal interval of degree l (there exists at least one by definition) is 
contained in a unique open interval of.3 z_ 1 (not .3 ~ !), let J1, ..., Jr, t > 1 be different 
such intervals of-3z_ 1. Set 

9.I;~, =9/,~u {Ji}~= 1 - U {WcJi; W6N~ of degree / o r  l - l } .  
i = 1  

We show that 9.I; ~, is an estimating system of N of degree (l - 1). In fact each Ji is a 
normal interval of degree (1-1), so we need only to prove that 9~; ~, is an estimating 
system of N. If WE~I~ is of degree l, for each point P of N which attaches to W,, there 
exists I~.~ ~+ 1 such that I meets with Wand P~I, but Wis included by some Ji and I 
is included by J/, so P attaches to Ji. On the contrary, if Weg.i~ is of degree ( l -  1) 
included by J~, then for each point P on N which attaches to W,, there exists I6.3~ 
such that I meets with Wand P~I,  but again I is included by J~, so P attaches to J/. 
This concluds that 9.1; e is an estimating system of N. 

Next we show that any normal interval W of 9.I~ to which a point P of N c~ J,. 
attaches is of degree (1- 1) or I. In fact suppose that Wis of degree m <  l -  1, then 
there exists an interval JS'~m+ 1 such that P~J and J meets with W,, but this implies 
that J~ is included by J because of m + 1 < l - 1. Therefore every point P of N c~ Ji 
attaches to W. On the other hand, by definition there exists at least one W' c J~ and 
in 9.1~, W' of degree I. I fP  attaches to W', then P~J~ since W' is of degree l and J~ is in 
-~ 1. Therefore every point P of N which attaches to W', attaches also to W. This 
follows that the family that excludes W' from ~l~ is also an estimating system, which 
contradicts the irreducibility of g[~. 

Let W1... Wm be normal intervals of degree ( l -  1) included by J/(it may be m = 0) 
and assume that .3(J~) consists of {U1... U~, U~+I, ..., U~}, where Uj meets with at 
least one of {Wk}kQ1 for l < j < d ,  but does not meet with any VVk, l<_k<_m for 
?t<j<a. By (4.30), we have 

h(I gjl)> 214 h(lJ~l). 
j = l  

We proceed by dividing into two cases. 

(I) If ~ h(lUjl)>213h(IJil), by Lemma9 we have 
j = l  

I Vfkl => 2-  27 IJ~l h(lJ~l)- ~ Y',' h(I Ujl), 
(k) 
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where ~ '  sums up all Uj s which meet with Wk, and 
(k) 

h([ Wd)> h [W~[ (by (1.7)) 
k = l  k--1 

>h  (2 271Jilh(lJ/I) - I  ~ ~'h(lUjl)) 
k= i (k) 

j = l  

_>h(2- ~4 IJ~l) 

=> 2- a 4 h(lJil) 

(II) On the contrary we assume that 

h([ U~I) ~ 2~3 h(I,Jgl). 
j = h + l  

By definition, Us; ?t<s<a does not meet with any Wk, 1 <_k<_m, so any point P of 
N n Us can not attach to a normal interval of degree ( l -  1), this follows that there 
exists at least one normal interval V of degree I included by US and P attaches to V, 
because every point of N c~ J~ must attach to a normal interval of degree 1 or (1- 1). 
Now let 1/1... Vb, b > 1 be the elements of 9.I~ of degree l included by Us, then by 
Lemma 9, 

I Vkl ~ 2- 27tU~ ] h([ Us])- 1 ~'h(lII), 
(k) 

where ~ '  sums up all Is3(Us) which meets with V k, and 
(k) 

h(lVkl)>h~=l]Vkl ) 
k = i  

( ) >h  2-271Us]h(IUSl) -1 2 2'h(llI)  
k= 1 (k) 

~h(2-2vlGIh(IUsl)- i  ~ h(]II)) 
Ie~(Us) 

__>h(2-131U~J)=>2-13h(lU~l ) (by (4.30)). 

Finally we have 

~'h(lV])>_ ~ 2-~3h(IU~l)~h(IJ~l), 
a<s<a  

where ~ '  sums up all V~9.1~ of degree 1 included by Ji. Taking account of the 
definition of A we conclude Lemma 10. 
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At last we have reached the final step of the proof. With the help of Lemma 10, it 
is sufficient to estimate A(~I~) of an estimating system of degree 1. By (4.31) 

d(~g)=2-  14 ~ h(I WI) 
We~lg 

=>2-14  E h ( Z - 2 7 1 J I h ( I d l ) - l ~ ' h ( l l J [ ) )  
W e ~  

W cJ  e.3~ 

>2 - ~  ~ h(2-271Jlh(IYl)-~ ~ ~'h(llsl)) 
J~.% W c J  

h(lI])) 
Ie.~(J) 

>2 -14 ~ h(2-271jlh(ISl)-1 
Jc-% 

>2-14 • h(2- 13 Idl) 
Je.% 

>2 -2v ~ h(LJI)>M, 
Jell 

where ~ '  sums up all Is~.~(J ) which meets with W, and each point of N (~ I s must 
attach to at least one W c J. 

This completes the proof! 

The author would like to thank the referee for his helpful comments and suggestions. 
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