# On the Dunford-Schwartz Theorem* 

N. Friedman

Received August 22, 1965

## 1. Introduction

Let $(S, \mathscr{I}, \mu)$ be a $\sigma$-finite measure space and let $L_{1}=L_{1}(S, \mathscr{I}, \mu)$. If $T$ is a linear operator of $L_{1}$ to $L_{1}$ then for each positive integer $n$ we can define the linear operator $T_{n}=n^{-1} \sum_{k=0}^{n-1} T^{k}$. Dunford and Schwartz [4] have extended Horf's ergodic theorem [5] as follows:

Theorem. Let $T$ be alinear operator of $L_{1}$ to $L_{1}$ with $\|T\|_{1} \leqq 1$ and $\|T\|_{\infty} \leqq 1$; the latter inequality means

$$
\|T g\|_{\infty}=\underset{s \in S}{\operatorname{ess.} \sup }|T g(s)| \leqq \underset{s \in S}{\operatorname{ess.} \sup .}|g(s)|=\|g\|_{\infty}, \quad g \in L_{1} \cap L_{\infty} .
$$

Then $\lim T_{n} f(s)$ exists almost everywhere for $f \in L_{1}$.
$n \rightarrow \infty$
If for an arbitrary $\varepsilon>0$ we still require that $\|T\|_{\infty} \leqq 1$ but allow $\|T\|_{1}=1+\varepsilon$ then a counterexample to the theorem may be easily found. The problem of constructing a counterexample for the case where $\|T\|_{I}=1$ but $\|T\|_{\infty}$ may be unbounded was recently solved in [2], where it is indicated that it is possible to obtain a counterexample for the case where $\|T\|_{1}=1$ and $\|T\|_{\infty}=1+\varepsilon$. We obtain a result (Theorem 2) from which this follows as a corollary besides giving us an approximation result which strengthens Theorem 2 [3].

Our construction takes place on the unit interval with Lebesgue measure $m$. The method of proof of Theorem 1 consists in applying a refinement of the technique in [2] to a regular partition as defined below. We are dealing with point transformations $\tau$ and associated mappings $I_{\tau}$ in $L_{1}$ (see below). We remark that the non-existence of the limit $\lim T_{r n} f(x)$ for some $f \in L_{1}[0,1]$ is sufficient to $n \rightarrow \infty$ guarantee that the point transformation $\tau$ has no non-trivial $\sigma$-finite invariant measure absolutely continuous with respect to $m$. In this respect the results here can be considered to be a continuation of those of [3]. The non-existence of an invariant measure as above follows trivially from the ratio ergodic theorem [1].

The author wishes to express his gratitude to Professor Rafael v. Chacon for suggesting the problem and for many valuable discussions.

## 2. Preliminaries

Let ( $X, \mathscr{B}, m$ ) denote the measure space consisting of the unit interval, Lebesgue measurable sets, and Lebesgue measure respectively. An invertible transformation $\tau$ of $X$ onto $X$ is measurable if $B \in \mathscr{B}$ implies $\tau(B) \in \mathscr{B}$ and $\tau^{-1}(B) \in \mathscr{B}$ and nonsin-

[^0]gular if $m(B)=0$ implies $m(\tau(B))=m\left(\tau^{-1}(B)\right)=0$. We let $\mathscr{I}$ denote the class of transformations which are invertible, measurable, and nonsingular. It is easily seen that $\tau \in \mathscr{I}$ implies $\tau^{n} \in \mathscr{I}$ for each integer $n$. A topology is defined on $\mathscr{I}$ by the metric $\mathrm{d}(\tau, \sigma)=m(\tau \neq \sigma)$. A transformation $\tau$ is said to be antiperiodic if for each positive integer $n \tau^{n}(x) \neq x$ for a.e. $x$, i.e. $d\left(\tau^{n}, e\right)=1$ where $e(x)=x$, $x \in X$. We let $\tau^{\prime}$ denote the Radon-Nikodym derivative of the measure $m(\tau(\cdot))$ with respect to $m$. Given sets $A$ and $B$ of positive measure, we say $\tau$ maps $A$ linearly onto $B$ if $\tau(A)=B$ and $\tau^{\prime}(x)=m(B) / m(A), x \in A$. We define the transformation $T_{\tau}$ by $T_{\tau} f(x)=f\left(\tau^{-1}(x)\right) \tau^{-1^{\prime}}(x)$. The properties stated in the following lemma follow easily from the definitions.

Lemma 1. (1) $\left\|T_{\tau}\right\|_{1}=1,\left\|T_{\tau}\right\|_{\infty}=\left\|\tau^{-1^{\prime}}\right\|_{\infty}$, and for each positive integer $n$ we have

$$
\begin{align*}
\left(\tau^{n}\right)^{\prime}(x) & =\prod_{i=0}^{n-1} \tau^{\prime}\left(\tau^{i}(x)\right),  \tag{2}\\
T_{\tau}^{n} f(x) & =f\left(\tau^{-n}(x)\right) \mid \prod_{i=1}^{n} \tau^{\prime}\left(\tau^{-i}(x)\right),  \tag{3}\\
m\left(\tau^{n}(B)\right) & =\int_{B} \prod_{i=0}^{n-1} \tau^{\prime}\left(\tau^{i}(x)\right) d m, \quad B \in \mathscr{B} . \tag{4}
\end{align*}
$$

In what follows we will consider $\eta$ to be a transformation which is not defined on all of $X$ but which is one-to-one, measurable, and nonsingular on its domain of definition. In Theorem 1 we extend the definition of $\eta$ so that $\eta \in \mathscr{I}$. In order to facilitate the verification of certain points in the proof of Theorem l. we introduce the following definitions and note some elementary properties.

Definition 1. Let $B \in \mathscr{B}$ and $N$ a positive integer. $P(B, N)=\left\{\eta^{i}(B), 0 \leqq\right.$ $i \leqq N-1\}$ is said to be a partition of $B^{*}=\bigcup_{i=0}^{N-1} \eta^{i}(B)$ if the sets $\eta^{i}(B), 0 \leqq$ $i \leqq N-1$, are pairwise disjoint.

We say $P(B, N)$ has base $B$ and order $N$ and assume $\eta$ is not defined on $F=\eta^{N-1}(B)$.

Definition 2. $P(B, N)$ is a linear partition if $\eta$ maps $\eta^{i}(B)$ linearly onto $\eta^{i+1}(B), 0 \leqq i \leqq N-2$, and if $m(B) \geqq m\left(\eta^{i}(B)\right), 1 \leqq i \leqq N-1$.

Definition 3. $P(B, N)$ is an identity partition if $(1) \prod_{i=0}^{N-2} \eta^{\prime}\left(\eta^{i}(x)\right)=1$ for a.e. $x \in B$ and (2) $\eta^{\prime}(x) \leqq \beta$ for a.e. $x \in \eta^{i}(B), 0 \leqq i \leqq N-3$, where $1<\beta<\infty$.

In what follows we assume all identity partitions have the same order $R$ and satisfy Definition 3 (2) for the same number $\beta$.

Lemma 2. Let $P(B, R)$ be an identity partition.
(1) If $b \subset B$ then $P(b, R)$ is an identity partition, $m(b)=m\left(\eta^{R-1}(b)\right)$, and in particular $m(B)=m(F)$.
(2) If $f(x) \geqq K$ a.e. on $B$ then $T_{\eta}^{i} f(x) \geqq K \beta^{2-R}$ a.e. on $\eta^{i}(B), 0 \leqq i \leqq R-2$, and $T_{n}^{R-1} f(x) \geqq K$ a.e. on $F$.

Proof. (1) follows from Definition 3 and Lemma 1 (4). (2) follows from Definition 3 and Lemma 1 (3).

Briefly, Lemma 2 (2) implies that in transforming a function through an identity partition there can be at most a decrease in height by a factor of $\beta^{2-R}$ and the function regains its height on $F$.

Definition 4. Given partitions $P_{1}\left(B_{1}, N_{1}\right)$ and $P_{2}\left(B_{2}, N_{2}\right)$ such that $B_{1}^{*} \cap B_{2}^{*}=\emptyset$, we extend $\eta$ to map $F_{1}$ linearly onto $B_{2}$ and define the product partition

$$
P_{1} P_{2}=P\left(B_{1}, N_{1}+N_{2}\right)
$$

Definition 5. Let $P_{j}\left(B_{j}, N_{j}\right), 1 \leqq j \leqq J$, be partitions such that $B_{i}^{*} \cap B_{j}^{*}=\mathfrak{\emptyset}$, $i \neq j$. We say $\prod_{j=1}^{J} P_{j}=P_{1} \cdots P_{J}$ is a regular partition if each partition $P_{j}$ is either a linear partition or an identity partition and if $m\left(B_{1}\right) \geqq m\left(B_{j}\right), 2 \leqq j \leqq J$.

The properties stated in the following lemma follow easily from the previous definitions and Lemmas 1 and 2.

Lemma 3. Let $P(B, N)$ be a regular partition.
(1) If $b \subset B$ then $P(b, N)$ is a regular partition and

$$
\alpha=m\left(\eta^{N-1}(b)\right) / m(b)=m(F) / m(B) \leqq 1
$$

(2) If $f(x) \geqq K$ a.e. on $B$ then $T_{\eta}^{i} f(x) \geqq K \beta^{\mathrm{Z}-R}$ a.e. on $\eta^{i}(B), 0 \leqq i \leqq N-1$. Let $P_{1}\left(B_{1}, N_{1}\right)$ and $P_{2}\left(B_{2}, N_{2}\right)$ be regular partitions such that $B_{1}^{*} \cap B_{2}^{*}=\emptyset$.
(3) If $m\left(B_{1}\right) \geqq m\left(B_{2}\right)$ then $P_{1} P_{2}$ is a regular partition.
(4) If $f(x) \geqq K$ a.e. on $B_{1}$ then $T_{\eta}^{N_{1}} f(x) \geqq K m\left(B_{1}\right) / m\left(B_{2}\right)$ a.e. on $B_{2}$.

## 3. Main Results

Theorem 1. Let $P(B, N)$ be a regular partition. Let $m(D)>0$ where $D=X-B^{*}$ and let $\varepsilon>0$. Then there exists a function $f \in L_{1}[0,1]$ such that $\eta$ can be extended to $F \cup D$ so that

$$
\begin{array}{ll}
\limsup _{n \rightarrow \infty} \frac{T_{n}^{n} f(x)}{n}=\infty & \text { a.e., } \\
\liminf _{n \rightarrow \infty} T_{\eta n} f(x)=0 & \text { a.e., } \\
\eta^{-1^{\prime}}(x) \leqq 1+\varepsilon \quad \text { on } & B \cup D . \tag{3}
\end{array}
$$

Theorem 2. Let $\tau \in \mathscr{I}$ be antiperiodic and let $\varepsilon>0$. Then there exists $\eta \in \mathscr{I}$ and $f \in L_{1}[0,1]$ such that (1) and (2) of Theorem 1 hold and

$$
\begin{align*}
& d(\tau, \eta) \leqq \varepsilon  \tag{3}\\
& \left\|T_{\eta}\right\|_{\infty} \leqq M<\infty \tag{4}
\end{align*}
$$

Moreover if $\tau$ is measure preserving we may take $M=1+\varepsilon$ in (4).
The addition of conclusion (4) in the preceding theorem strengthens Theorem 2 [3].

Corollary. For each $\varepsilon>0$ there exists a class of linear transformations $T$ of $L_{1}[0,1]$ to $L_{1}[0,1]$ such that $\|T\|_{1}=1,\|T\|_{\infty}=1+\varepsilon$, and $\lim _{n \rightarrow \infty} T_{n} f(x)$ does not exist a.e. for some $f \in L_{1}[0,1]$.

Proof of Theorem 1. We first make some preliminary computations. Let $q$ be a positive integer such that $1 / q \leqq \varepsilon$. Let $k$ be a positive integer and let $\alpha>0$. Let
a set $B$ have measure $W$. Following [2] we decompose $B$ into $k+1$ disjoint subsets $B_{0}, \ldots, B_{k}$ of measure $w_{k}$ and $\alpha q w_{k} /(q+l), l \leqq l \leqq k$, respectively by selecting

$$
\begin{equation*}
w_{k}=W /\left[1+\alpha q \sum_{l=1}^{k} 1 /(q+l)\right] . \tag{1}
\end{equation*}
$$

We note that $\lim w_{k}=0$. Let $\lambda=(1+\varepsilon)^{-1}$ and let $\xi=(1-\lambda)^{-1}$. If $L>0$ $k \rightarrow \infty$
we can then choose $k$ so large that $w_{k}$ in (1) satisfies

$$
\begin{equation*}
\xi \alpha^{2} q w_{k} /(q+k)<L / 8 . \tag{2}
\end{equation*}
$$

We set $P_{1}=P, B_{1}=B, F_{1}=F, N_{1}=N$, and $D_{1}=D$ and proceed inductively in stages as follows. At the $i$-th stage we have a regular partition $P_{i}\left(B_{i}, N_{i}\right)$ and $m\left(D_{i}\right)>0$ where $D_{i}=X-B_{i}^{*}$. We have $\eta$ defined except on $D_{i} \cup F_{i}$ and $\eta^{-1}$ is defined except on $D_{i} \cup B_{i}$. For the first step of the $i$-th stage we let $\alpha_{i}=m\left(F_{i}\right) / m\left(B_{i}\right), W_{i}=m\left(B_{i}\right)$, and $L_{i}=m\left(D_{i}\right)$. We select $k_{i}$ so large that $w_{k i}$ in (1) satisfies (2) and also $m\left(\bigcup_{j=0}^{N_{i}-1} \eta^{j}\left(B_{i, 0}\right)\right) \leqq 2^{-i}$. Here $B_{i}=\bigcup_{l=0}^{k_{i}} B_{i, l}$ where $m\left(B_{i, 0}\right)=w_{k_{i}}$ and $m\left(B_{i, l}\right)=\alpha_{i} w_{k i} q /(q+l), \mathbf{1} \leqq l \leqq k_{i}$. Since $P_{i}$ is a regular partition it follows by Lemma 3 (1) that $P_{i, l}=P\left(B_{i, l}, N_{i}\right)$ are regular partitions, $0 \leqq l \leqq k_{i}$, and Lemma 3 (3) implies $\prod_{l=0}^{k_{i}} P_{i, l}$ is a regular partition. Furthermore it follows from Lemma 3 (1) that $\eta^{-1^{\prime}}(x)=\alpha_{i}(q+l+1) /(q+l) \leqq 1+1 /(q+l)$ $\leqq 1+\varepsilon$ on $B_{i, l+1}, 0 \leqq l \leqq k_{i}-1$. Therefore on the extension $\eta^{-1^{\prime}}(x) \leqq 1+\varepsilon$ a.e. on $\bigcup_{l=1}^{k_{i}} B_{i, l}$.

Let $m_{i}=m\left(F_{i, k_{i}}\right)=\alpha_{i} m\left(B_{i, k_{i}}\right)=\alpha_{i}^{2} q w_{k_{i}} /\left(q+k_{i}\right)$ by Lemma 3 (1). Hence $m_{i}<L_{i} / 8$ by (2). Let $s_{i}$ be the smallest positive integer such that $s_{i} m_{i}>5 L_{i} / 8$. Let $D_{i, j}, l \leqq j \leqq s_{i}$, denote $s_{i}$ disjoint subsets of $D_{i}$ each of measure $m_{i}$. Let $\eta$ $\operatorname{map} D_{i, j}$ linearly onto $D_{i, j+1}, 1 \leqq j \leqq s_{i}-1$, and let $P_{i, k_{i}+1}=P\left(D_{i, 1}, s_{i}\right)$. It follows that $P_{i, k_{i}+1}$ is a linear identity partition and $\prod_{l=0}^{k_{i}+1} P_{i, l}$ is a regular partition. Furthermore $\eta^{-1^{\prime}}(x)=1$ a.e. on $D_{i, j}, \mathrm{l} \leqq j \leqq s_{i}$. We now have extended $\eta$ to all of $F_{i}$ and more than one half of $D_{i}$. Furthermore $\eta^{-1}$ is extended to more than one-half of $D_{i}$ and all of $B_{i}$ except $B_{i, 0}$.

For the second step of the $i$-th stage we employ the positive integers $t_{i}$ defined inductively as follows:

$$
\begin{equation*}
t_{i+1}=t_{i}+s_{i}+n_{i}, i \geqq \mathbf{l} ; \quad t_{1}=\mathbf{0} . \tag{3}
\end{equation*}
$$

The number $n_{i}$ is defined below. We set $f(x)=f_{1}(x)=q \beta^{R-2} N_{1} \varphi_{F_{1}}(x)$ (where $\varphi_{B}$ denotes the characteristic function of $\left.B\right)$. Let $f_{i}(x)=T_{n}^{t_{i}} f_{1}(x) . \varphi_{F_{i}}(x)$. We will have $f_{i}(x) \equiv 0$ on $D_{i}$ and have $f_{i}(x) \equiv H_{i}$ constant a.e. on $F_{i}$ where $H_{i} \geqq q \beta^{R-2} i\left(t_{i}+N_{i}\right)$. We will extend $\eta$ so that this holds for $i+1$. However let us first show that it follows from the extension of $\eta$ in the first step of the $i$-th stage that $T_{\eta}^{n} f_{1}(x) / n \geqq i$ for some $n, t_{i}+1 \leqq n \leqq t_{i}+k_{i} N_{i}$, a. e. on the set $X_{i}=\bigcup_{j=0}^{N_{i}-1} \eta^{j}\left(B_{i}-B_{i, 0}\right)=X-\left(B_{i, 0}^{*} \cup D_{i}\right)$. In fact let $f_{i}^{*}(x)=f_{i}(x) \varphi_{F_{i, 0}}(x) \equiv H_{i}$
a.e. on $F_{i, 0}$. We then have $T_{\eta}^{(l-1) N_{i}+1} f_{i}^{*}(x)$ with support on $B_{i, l}, 1 \leqq l \leqq k_{i}$. Lemma 3 (4) implies that for $n=t_{i}+(l-1) N_{i}+1$ we have

$$
\begin{aligned}
T_{\eta}^{n} f_{1}(x) & \geqq T_{n}^{(l-1) N_{i}+1} f_{i}^{*}(x)=H_{i} m\left(F_{i, 0}\right) / m\left(B_{i, l}\right) \geqq \\
& \geqq \beta^{R-2} i(q+l)\left(t_{i}+N_{i}\right)>\beta^{R-2} i\left(t_{i}+l N_{i}\right)
\end{aligned}
$$

a.e. on $B_{i, l}, l \leqq l \leqq k_{i}$. Lemma 3 (2) then implies that for $n=t_{i}+(l-1) N_{i}+$ $+1+j$ we have $T_{\eta}^{n} f_{1}(x) / n>i\left(t_{i}+l N_{i}\right) / n \geqq i$ a.e. on $\eta^{j}\left(B_{i, l}\right), 0 \leqq j \leqq N_{i}-1$, $1 \leqq l \leqq k_{i}$, which completes the verification of our assertion.

We now consider how $n_{i}$ is to be chosen. We select $n_{i}$ subsets $D_{i, j}, s_{i}+1 \leqq j$ $\leqq s_{i}+n_{i}$, of measure $\lambda^{j-s_{i}} m_{i}$ respectively from the set $D_{i}--\bigcup_{j=1}^{s_{i}} D_{i, j}$ whose measure exceeds $L_{i} / 4$ according to the definition of $s_{i}$. This is possible because of (2). Let $D_{i+1}=D_{i}-\bigcup_{j=1}^{s_{i}+n_{i}} D_{i, j}$ and we note that $m\left(D_{i+1}\right)>L_{i} / 8$. Let $\eta$ map $D_{i, j}$ linearly onto $D_{i, j+1}, s_{i}+1 \leqq j \leqq s_{i}+n_{i}-1$, and let $P_{i, k_{i}+2}=P\left(D_{i, s_{i}+1}, n_{i}\right)$. We now set $P_{i+1}=\prod_{l=0}^{k_{c}+2} P_{i, l}$ and Lemma 3 (3) implies that $P_{i+1}$ is a regular partition. We have $\eta^{-1^{\prime}}(x)=\lambda^{-1}=\mathrm{I}+\varepsilon$ a.e. on $D_{i, j}, s_{i}+\mathrm{I} \leqq j \leqq s_{i}+n_{i}$, hence $\eta^{-1^{\prime}}(x) \leqq 1+\varepsilon$ a.e. on the extension. Now the first requirement that $n_{i}$ must satisfy is that it be so large that $T_{m n} f_{1}(x) \leqq 1 / i$ on $B_{i}^{*}=\bigcup_{j=0}^{N_{i}-1} \eta^{j}\left(B_{i}\right)$ for $n=t_{i+1}$. This is possible because $T_{\eta}^{j} f_{1}(x) \equiv 0$ on $B_{i}^{*}$ for $t_{i}+\left(k_{i}+1\right) N_{i}<j \leqq t_{i+1}$. The second requirement is that $n_{i}$ be so large that $H_{i+1}$, the value of $T_{\eta}^{s_{i}+n_{i}} f_{i}(x)$ on $D_{i, s_{i}+n_{i}}=F_{i+1}$, satisfies the condition

$$
\begin{equation*}
H_{i+1} \geqq q \beta^{R-2}(i+1)\left(t_{i+1}+N_{i+1}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{i+1}=\left(k_{i}+1\right) N_{i}+s_{i}+n_{i} \tag{5}
\end{equation*}
$$

This is possible because $H_{i+1}=H_{i}(1+\varepsilon)^{n_{8}}$ and increases exponentially with respect to $n_{i}$ whereas the right side of (4) only increases linearly with respect to $n_{i}$ as seen from (3) and (5).

Setting $B_{i+1}=B_{i, 0}$ we have $P_{i+1}=P\left(B_{i+1}, N_{i+1}\right)$. At the end of the $i$-th stage $\eta^{-1}$ is defined except on $B_{i+1} \cup D_{i+1}$ where $m\left(B_{i+1} \cup D_{i+1}\right)<2^{1-i}$. Furthermore $\eta$ is defined except on $F_{i+1} \cup D_{i+1}$ where $m\left(F_{i+1} \cup D_{i+1}\right) \leqq 2^{-i}$. Therefore our construction implies we can write $X=X^{*} \cup-X^{*}$ where $\eta\left(X^{*}\right)=X^{*}, \eta$ is invertible, measurable, and non-singular on $X^{*}$, and $m\left(X^{*}\right)=1$. We set $\eta(x)=x$, $x \notin X^{*}$, hence $\eta \in \mathscr{I}$.

We have $T_{\eta}^{n} f_{1}(x) / n \geqq i$ for some $n, t_{i}+1 \leqq n \leqq t_{i}+k_{i} N_{i}$, a.e. on $X_{i}$ where $m\left(X_{i}\right) \geqq 1-2^{1-i}$ and $T_{n n} f_{1}(x) \leqq 1 / i$ for $n=t_{i+1}$ on $B_{i}^{*} \supset X_{i}$. Properties (1) and (2) of Theorem 1 follow and our construction implies (3) holds.

Proof of Theorem 2. We will first construct an identity partition and then utilize Theorem 1 to obtain the desired transformation. As in the proof of Theorem 2 of [3], it follows from Lemma 6, Theorem 1, and remark 2 of [3] that there exists $\sigma \in \mathscr{I}, A \in \mathscr{B}$, and a positive integer $N$ such that $\sigma$ generates a partition $P(A, N)$ with $A^{*}=X$ and $d(\sigma, \tau) \leqq \varepsilon / 2$ independently of how $\sigma$ maps $\sigma^{N-1}(A)$ onto $A$.

We decompose $A$ into $k$ disjoint subsets $A_{j}, 1 \leqq j \leqq k$, such that $m\left(A_{j}\right)=m(A) / k$, $\mathrm{I} \leqq j \leqq k$, and take $k$ so large that $m\left(\bigcup_{i=0}^{N-1} \sigma^{i}\left(A_{k}\right)\right) \leqq \varepsilon / 2$. Let $E_{j}=\sigma^{N-1}\left(A_{j}\right)$, $1 \leqq j \leqq k-1, E=\bigcup_{j=1}^{k-1} E_{j}$, and $D=\bigcup_{i=1}^{N-1} \sigma^{i}\left(A_{k}\right)$. We define $\eta(x)=\sigma(x)$ for $x \notin E \cup D \cup A_{k}$, hence it follows that $d(\eta, \tau) \leqq \varepsilon$ independently of how $\eta$ is defined on $E \cup D \cup A_{k}$. Let $\xi_{j}$ be an invertible measure preserving transformation of $A_{j}$ onto $A_{j+1}, \mathrm{l} \leqq j \leqq k-1$, and let $\eta(x)=\xi_{j}\left(\eta^{-N+1}(x)\right), x \in E_{j}, 1 \leqq j \leqq k-1$. Let $B=A_{1}, R=(k-1) N+1$, and $P=P(B, R)$. We note that $F=A_{k}$ $=\eta^{R-1}(B)$. The definition of $\eta$ implies that if $x \in A_{j}$ then $\eta^{N}(x)=\xi_{j}(x) \in A_{j+1}$, $\mathrm{l} \leqq j \leqq k-\mathrm{l}$. Therefore for a.e. $x \in B$ we have

$$
\prod_{i=0}^{R-2} \eta^{\prime}\left(\eta^{i}(x)\right)=\eta^{(k-1) N^{\prime}}(x)=\xi_{k-1}\left(\xi_{k-2}\left(\cdots\left(\xi_{1}(x)\right) \cdots\right)^{\prime}=1\right.
$$

since $\xi_{j}^{\prime}=1$ a.e. on $A_{j}, 1 \leqq j \leqq k-1$. Moreover it follows from remark 1 of [3] and our construction that there exists $a$ and $b$ such that $0<a \leqq \eta^{\prime}(x) \leqq b<\infty$ for a.e. $x \notin F \cup D$. Letting $\beta=b$ it follows that $P(B, R)$ is an identity partition. We now apply Theorem 1 to extent $\eta$ to $F \cup D$. Therefore (1), (2), and (3) of Theorem 2 are satisfied. Letting $M=\max (1 / a, 1+\varepsilon)$ we satisfy (4). If $\tau$ is measure preserving then it is easily shown that we may take $a=b=1$ above, hence $M=1+\varepsilon$ in this case.

Proof of Corollary. Let $\tau$ be measure preserving in Theorem 2. It then suffices to take $T=T_{\eta}$.

## References

[1] Chacon, R. V.; Operator averages. Bull. Amer. math. Soc. 68, 351-353 (1962).
[2] - A class of linear transformations. Proc. Amer. math. Soc. 15, 560-564 (1964).
[3] -, and N. Friedman: Approximation and invariant measures. Z. Wahrscheinlichkeitstheorie verw. Geb. 3, 286-295 (1965).
[4] Dunford, N., and J. T. Schwartz: Convergence almost everywhere of operator averages. J. Math. Mech. 5, 129-178 (1956).
[5] Hopf, E.: The general temporally discrete Markoff process. J. Math. Mech. 3, 13-45 (1954).


[^0]:    * Research supported in part by the National Science Foundation, Grant GP-1816.

