Z. Wahrscheinlichkeitstheorie verw. Geb. 5, 226-231 (1966)

On the Dunford-Schwartz Theorem*

N. FRIEDMAN

Received August 22, 1965

1. Introduction

Let (S, \mathscr{I}, μ) be a σ -finite measure space and let $L_1 = L_1(S, \mathscr{I}, \mu)$. If T is a linear operator of L_1 to L_1 then for each positive integer n we can define the linear operator $T_n = n^{-1} \sum_{k=0}^{n-1} T^k$. DUNFORD and SCHWARTZ [4] have extended HOPF's ergodic theorem [5] as follows:

Theorem. Let T be a linear operator of L_1 to L_1 with $|| T ||_1 \leq 1$ and $|| T ||_{\infty} \leq 1$; the latter inequality means

$$\|Tg\|_{\infty} = \operatorname*{ess. \, sup.}_{s \in S} |Tg(s)| \leq \operatorname*{ess. \, sup.}_{s \in S} |g(s)| = \|g\|_{\infty}, \quad g \in L_1 \cap L_{\infty}.$$

Then $\lim T_n f(s)$ exists almost everywhere for $f \in L_1$.

If for an arbitrary $\varepsilon > 0$ we still require that $||T||_{\infty} \leq 1$ but allow $||T||_1 = 1 + \varepsilon$ then a counterexample to the theorem may be easily found. The problem of constructing a counterexample for the case where $||T||_1 = 1$ but $||T||_{\infty}$ may be unbounded was recently solved in [2], where it is indicated that it is possible to obtain a counterexample for the case where $||T||_1 = 1$ and $||T||_{\infty} = 1 + \varepsilon$. We obtain a result (Theorem 2) from which this follows as a corollary besides giving us an approximation result which strengthens Theorem 2 [3].

Our construction takes place on the unit interval with Lebesgue measure m. The method of proof of Theorem 1 consists in applying a refinement of the technique in [2] to a regular partition as defined below. We are dealing with point transformations τ and associated mappings T_{τ} in L_1 (see below). We remark that the non-existence of the limit $\lim_{n\to\infty} T_{\tau n}f(x)$ for some $f \in L_1[0, 1]$ is sufficient to

guarantee that the point transformation τ has no non-trivial σ -finite invariant measure absolutely continuous with respect to m. In this respect the results here can be considered to be a continuation of those of [3]. The non-existence of an invariant measure as above follows trivially from the ratio ergodic theorem [1].

The author wishes to express his gratitude to Professor RAFAEL V. CHACON for suggesting the problem and for many valuable discussions.

2. Preliminaries

Let (X, \mathscr{B}, m) denote the measure space consisting of the unit interval, Lebesgue measurable sets, and Lebesgue measure respectively. An invertible transformation τ of X onto X is measurable if $B \in \mathscr{B}$ implies $\tau(B) \in \mathscr{B}$ and $\tau^{-1}(B) \in \mathscr{B}$ and nonsin-

^{*} Research supported in part by the National Science Foundation, Grant GP-1816.

gular if m(B) = 0 implies $m(\tau(B)) = m(\tau^{-1}(B)) = 0$. We let \mathscr{I} denote the class of transformations which are invertible, measurable, and nonsingular. It is easily seen that $\tau \in \mathscr{I}$ implies $\tau^n \in \mathscr{I}$ for each integer n. A topology is defined on \mathscr{I} by the metric $d(\tau, \sigma) = m(\tau \neq \sigma)$. A transformation τ is said to be antiperiodic if for each positive integer $n \ \tau^n(x) \neq x$ for a.e. x, i.e. $d(\tau^n, e) = 1$ where e(x) = x, $x \in X$. We let τ' denote the Radon-Nikodym derivative of the measure $m(\tau(\cdot))$ with respect to m. Given sets A and B of positive measure, we say τ maps A linearly onto B if $\tau(A) = B$ and $\tau'(x) = m(B)/m(A), x \in A$. We define the transformation T_{τ} by $T_{\tau}f(x) = f(\tau^{-1}(x))\tau^{-1'}(x)$. The properties stated in the following lemma follow easily from the definitions.

Lemma 1. (1) $|| T_{\tau} ||_1 = 1$, $|| T_{\tau} ||_{\infty} = || \tau^{-1'} ||_{\infty}$, and for each positive integer n we have

(2)
$$(\tau^n)'(x) = \prod_{i=0}^{n-1} \tau'(\tau^i(x)),$$

(3)
$$T^n_{\tau}f(x) = f(\tau^{-n}(x)) / \prod_{i=1}^n \tau'(\tau^{-i}(x)) ,$$

(4)
$$m(\tau^n(B)) = \int_B \prod_{i=0}^{n-1} \tau'(\tau^i(x)) dm , \quad B \in \mathscr{B}.$$

In what follows we will consider η to be a transformation which is not defined on all of X but which is one-to-one, measurable, and nonsingular on its domain of definition. In Theorem 1 we extend the definition of η so that $\eta \in \mathscr{I}$. In order to facilitate the verification of certain points in the proof of Theorem 1 we introduce the following definitions and note some elementary properties.

Definition 1. Let $B \in \mathscr{B}$ and N a positive integer. $P(B, N) = \{\eta^i(B), 0 \leq i \leq N-1\}$ is said to be a partition of $B^* = \bigcup_{i=0}^{N-1} \eta^i(B)$ if the sets $\eta^i(B), 0 \leq i \leq N-1$, are pairwise disjoint.

We say P(B, N) has base B and order N and assume η is not defined on $F = \eta^{N-1}(B)$.

Definition 2. P(B, N) is a linear partition if η maps $\eta^i(B)$ linearly onto $\eta^{i+1}(B), 0 \leq i \leq N-2$, and if $m(B) \geq m(\eta^i(B)), 1 \leq i \leq N-1$.

Definition 3. P(B, N) is an identity partition if (1) $\prod_{i=0}^{N-2} \eta'(\eta^i(x)) = 1$ for a.e. $x \in B$ and (2) $\eta'(x) \leq \beta$ for a.e. $x \in \eta^i(B), 0 \leq i \leq N-3$, where $1 < \beta < \infty$.

In what follows we assume all identity partitions have the same order R and satisfy Definition 3 (2) for the same number β .

Lemma 2. Let P(B, R) be an identity partition.

(1) If $b \in B$ then P(b, R) is an identity partition, $m(b) = m(\eta^{R-1}(b))$, and in particular m(B) = m(F).

(2) If $f(x) \ge K$ a.e. on B then $T^i_{\eta}f(x) \ge K\beta^{2-R}$ a.e. on $\eta^i(B)$, $0 \le i \le R-2$, and $T^{R-1}_{\eta}f(x) \ge K$ a.e. on F.

Proof. (1) follows from Definition 3 and Lemma 1 (4). (2) follows from Definition 3 and Lemma 1 (3).

Briefly, Lemma 2 (2) implies that in transforming a function through an identity partition there can be at most a decrease in height by a factor of β^{2-R} and the function regains its height on F.

Definition 4. Given partitions $P_1(B_1, N_1)$ and $P_2(B_2, N_2)$ such that $B_1^* \cap B_2^* = \emptyset$, we extend η to map F_1 linearly onto B_2 and define the product partition

$$P_1 P_2 = P(B_1, N_1 + N_2)$$

Definition 5. Let $P_j(B_j, N_j)$, $1 \leq j \leq J$, be partitions such that $B_i^* \cap B_j^* = \emptyset$, $i \neq j$. We say $\prod_{j=1}^{J} P_j = P_1 \cdots P_J$ is a regular partition if each partition P_j is either a linear partition or an identity partition and if $m(B_1) \geq m(B_j)$, $2 \leq j \leq J$.

The properties stated in the following lemma follow easily from the previous definitions and Lemmas 1 and 2.

Lemma 3. Let P(B, N) be a regular partition.

(1) If $b \in B$ then P(b, N) is a regular partition and

$$\alpha = m(\eta^{N-1}(b))/m(b) = m(F)/m(B) \leq 1$$
.

(2) If $f(x) \geq K$ a.e. on B then $T^i_{\eta}f(x) \geq K\beta^{2-R}$ a.e. on $\eta^i(B)$, $0 \leq i \leq N-1$. Let $P_1(B_1, N_1)$ and $P_2(B_2, N_2)$ be regular partitions such that $B^*_1 \cap B^*_2 = \emptyset$.

(3) If $m(B_1) \ge m(B_2)$ then $P_1 P_2$ is a regular partition.

(4) If $f(x) \ge K$ a.e. on B_1 then $T_n^{N_1} f(x) \ge K m(B_1)/m(B_2)$ a.e. on B_2 .

3. Main Results

Theorem 1. Let P(B, N) be a regular partition. Let m(D) > 0 where $D = X - B^*$ and let $\varepsilon > 0$. Then there exists a function $f \in L_1[0, 1]$ such that η can be extended to $F \cup D$ so that

(1)
$$\limsup_{n \to \infty} \frac{T_{\eta}^n f(x)}{n} = \infty \quad a.e.,$$

(2)
$$\liminf_{n \to \infty} T_{\eta n} f(x) = 0 \quad a.e.,$$

(3)
$$\eta^{-1'}(x) \leq 1 + \varepsilon \quad on \quad B \cup D$$

Theorem 2. Let $\tau \in \mathcal{I}$ be antiperiodic and let $\varepsilon > 0$. Then there exists $\eta \in \mathcal{I}$ and $f \in L_1[0, 1]$ such that (1) and (2) of Theorem 1 hold and

- (3) $d(\tau,\eta) \leq \varepsilon$,
- $\|T_n\|_{\infty} \leq M < \infty .$

Moreover if τ is measure preserving we may take $M = 1 + \varepsilon$ in (4).

The addition of conclusion (4) in the preceding theorem strengthens Theorem 2 [3].

Corollary. For each $\varepsilon > 0$ there exists a class of linear transformations T of $L_1[0, 1]$ to $L_1[0, 1]$ such that $||T||_1 = 1$, $||T||_{\infty} = 1 + \varepsilon$, and $\lim_{n \to \infty} T_n f(x)$ does not exist a.e. for some $f \in L_1[0, 1]$.

Proof of Theorem 1. We first make some preliminary computations. Let q be a positive integer such that $1/q \leq \varepsilon$. Let k be a positive integer and let $\alpha > 0$. Let

a set B have measure W. Following [2] we decompose B into k + 1 disjoint subsets B_0, \ldots, B_k of measure w_k and $\alpha q w_k/(q+l)$, $1 \leq l \leq k$, respectively by selecting

(1)
$$w_k = W/[1 + \alpha q \sum_{l=1}^k 1/(q+l)].$$

We note that $\lim_{k\to\infty} w_k = 0$. Let $\lambda = (1 + \varepsilon)^{-1}$ and let $\xi = (1 - \lambda)^{-1}$. If L > 0 we can then choose k so large that w_k in (1) satisfies

(2)
$$\xi \alpha^2 q w_k / (q+k) < L/8$$
.

We set $P_1 = P$, $B_1 = B$, $F_1 = F$, $N_1 = N$, and $D_1 = D$ and proceed inductively in stages as follows. At the *i*-th stage we have a regular partition $P_i(B_i, N_i)$ and $m(D_i) > 0$ where $D_i = X - B_i^*$. We have η defined except on $D_i \cup F_i$ and η^{-1} is defined except on $D_i \cup B_i$. For the first step of the *i*-th stage we let $\alpha_i = m(F_i)/m(B_i)$, $W_i = m(B_i)$, and $L_i = m(D_i)$. We select k_i so large that w_{k_i} in (1) satisfies (2) and also $m(\bigcup_{j=0}^{N_i-1} \eta^j(B_{i,0})) \leq 2^{-i}$. Here $B_i = \bigcup_{l=0}^{k_i} B_{i,l}$ where $m(B_{i,0}) = w_{k_i}$ and $m(B_{i,l}) = \alpha_i w_{k_i} q/(q+l)$, $1 \leq l \leq k_i$. Since P_i is a regular partition, $0 \leq l \leq k_i$, and Lemma 3 (3) implies $\prod_{l=0}^{k_i} P_{i,l}$ is a regular partition. Furthermore it follows from Lemma 3 (1) that $\eta^{-1'}(x) = \alpha_i (q+l+1)/(q+l) \leq 1 + 1/(q+l) \leq 1 + \epsilon$ on $B_{i,l+1}$, $0 \leq l \leq k_i - 1$. Therefore on the extension $\eta^{-1'}(x) \leq 1 + \epsilon$ a.e. on $\bigcup_{l=1}^{k_i} B_{i,l}$.

Let $m_i = m(F_{i,k_i}) = \alpha_i m(B_{i,k_i}) = \alpha_i^2 q w_{k_i}/(q+k_i)$ by Lemma 3 (1). Hence $m_i < L_i/8$ by (2). Let s_i be the smallest positive integer such that $s_i m_i > 5L_i/8$. Let $D_{i,j}$, $1 \leq j \leq s_i$, denote s_i disjoint subsets of D_i each of measure m_i . Let η map $D_{i,j}$ linearly onto $D_{i,j+1}$, $1 \leq j \leq s_i - 1$, and let $P_{i,k_i+1} = P(D_{i,1}, s_i)$. It follows that P_{i,k_i+1} is a linear identity partition and $\prod_{l=0}^{k_i+1} P_{i,l}$ is a regular partition. Furthermore $\eta^{-1'}(x) = 1$ a.e. on $D_{i,j}$, $1 \leq j \leq s_i$. We now have extended η to all of F_i and more than one half of D_i . Furthermore η^{-1} is extended to more than

For the second step of the *i*-th stage we employ the positive integers t_i defined inductively as follows:

(3)
$$t_{i+1} = t_i + s_i + n_i, \ i \ge 1; \ t_1 = 0.$$

one-half of D_i and all of B_i except $B_{i,0}$.

The number n_i is defined below. We set $f(x) = f_1(x) = q\beta^{R-2}N_1\varphi_{F_1}(x)$ (where φ_B denotes the characteristic function of B). Let $f_i(x) = T_{\eta}^{t_i}f_1(x) \cdot \varphi_{F_i}(x)$. We will have $f_i(x) \equiv 0$ on D_i and have $f_i(x) \equiv H_i$ constant a.e. on F_i where $H_i \ge q\beta^{R-2}i(t_i+N_i)$. We will extend η so that this holds for i+1. However let us first show that it follows from the extension of η in the first step of the *i*-th stage that $T_{\eta}^n f_1(x)/n \ge i$ for some $n, t_i + 1 \le n \le t_i + k_i N_i$, a. e. on the set $X_i = \bigcup_{j=0}^{N_i-1} \eta^j (B_i - B_{i,0}) = X - (B_{i,0}^* \cup D_i)$. In fact let $f_i^*(x) = f_i(x)\varphi_{F_{i,0}}(x) \equiv H_i$

N. FRIEDMAN:

a.e. on $F_{i,0}$. We then have $T_{\eta}^{(l-1)N_i+1}f_i^*(x)$ with support on $B_{i,l}$, $1 \leq l \leq k_i$. Lemma 3 (4) implies that for $n = t_i + (l-1)N_i + 1$ we have

$$T_{\eta}^{n}f_{1}(x) \geq T_{\eta}^{(l-1)N_{i}+1}f_{i}^{*}(x) = H_{i}m(F_{i,0})/m(B_{i,l}) \geq \\ \geq \beta^{R-2}i(q+l)(t_{i}+N_{i}) > \beta^{R-2}i(t_{i}+lN_{i})$$

a.e. on $B_{i,l}$, $1 \leq l \leq k_i$. Lemma 3 (2) then implies that for $n = t_i + (l-1) N_i + 1 + j$ we have $T_{\eta}^n f_1(x)/n > i(t_i + lN_i)/n \geq i$ a.e. on $\eta^j(B_{i,l}), 0 \leq j \leq N_i - 1, 1 \leq l \leq k_i$, which completes the verification of our assertion.

We now consider how n_i is to be chosen. We select n_i subsets $D_{i,j}$, $s_i + 1 \leq j$ $\leq s_i + n_i$, of measure $\lambda^{j-s_i}m_i$ respectively from the set $D_i - \bigcup_{j=1}^{s_i} D_{i,j}$ whose measure exceeds $L_i/4$ according to the definition of s_i . This is possible because of (2). Let $D_{i+1} = D_i - \bigcup_{j=1}^{s_i+n_i} D_{i,j}$ and we note that $m(D_{i+1}) > L_i/8$. Let η map $D_{i,j}$ linearly onto $D_{i,j+1}$, $s_i + 1 \leq j \leq s_i + n_i - 1$, and let $P_{i,k_i+2} = P(D_{i,s_i+1}, n_i)$. We now set $P_{i+1} = \prod_{l=0}^{k_i+2} P_{i,l}$ and Lemma 3 (3) implies that P_{i+1} is a regular partition. We have $\eta^{-1'}(x) = \lambda^{-1} = 1 + \varepsilon$ a.e. on $D_{i,j}$, $s_i + 1 \leq j \leq s_i + n_i$, hence $\eta^{-1'}(x) \leq 1 + \varepsilon$ a.e. on the extension. Now the first requirement that n_i must satisfy is that it be so large that $T_{\eta n} f_1(x) \leq 1/i$ on $B_i^* = \bigcup_{j=0}^{N_i-1} \eta^j(B_i)$ for $n = t_{i+1}$. This is possible because $T_{\eta}^j f_1(x) \equiv 0$ on B_i^* for $t_i + (k_i + 1)N_i < j \leq t_{i+1}$. The second requirement is that n_i be so large that H_{i+1} , the value of $T_{\eta}^{s_i+n_i} f_i(x)$ on $D_{i,s_i+n_i} = F_{i+1}$, satisfies the condition

(4)
$$H_{i+1} \ge q \,\beta^{R-2}(i+1) \,(t_{i+1}+N_{i+1}),$$

where

(5)
$$N_{i+1} = (k_i + 1) N_i + s_i + n_i$$
.

This is possible because $H_{i+1} = H_i(1 + \varepsilon)^{n_i}$ and increases exponentially with respect to n_i whereas the right side of (4) only increases linearly with respect to n_i as seen from (3) and (5).

Setting $B_{i+1} = B_{i,0}$ we have $P_{i+1} = P(B_{i+1}, N_{i+1})$. At the end of the *i*-th stage η^{-1} is defined except on $B_{i+1} \cup D_{i+1}$ where $m(B_{i+1} \cup D_{i+1}) < 2^{1-i}$. Furthermore η is defined except on $F_{i+1} \cup D_{i+1}$ where $m(F_{i+1} \cup D_{i+1}) \leq 2^{-i}$. Therefore our construction implies we can write $X = X^* \cup -X^*$ where $\eta(X^*) = X^*$, η is invertible, measurable, and non-singular on X^* , and $m(X^*) = 1$. We set $\eta(x) = x$, $x \notin X^*$, hence $\eta \in \mathscr{I}$.

We have $T_{\eta}^{n}f_{1}(x)/n \geq i$ for some $n, t_{i} + 1 \leq n \leq t_{i} + k_{i}N_{i}$, a.e. on X_{i} where $m(X_{i}) \geq 1 - 2^{1-i}$ and $T_{\eta\eta}f_{1}(x) \leq 1/i$ for $n = t_{i+1}$ on $B_{i}^{*} \supset X_{i}$. Properties (1) and (2) of Theorem 1 follow and our construction implies (3) holds.

Proof of Theorem 2. We will first construct an identity partition and then utilize Theorem 1 to obtain the desired transformation. As in the proof of Theorem 2 of [3], it follows from Lemma 6, Theorem 1, and remark 2 of [3] that there exists $\sigma \in \mathscr{I}, A \in \mathscr{B}$, and a positive integer N such that σ generates a partition P(A, N)with $A^* = X$ and $d(\sigma, \tau) \leq \varepsilon/2$ independently of how σ maps $\sigma^{N-1}(A)$ onto A.

 $\mathbf{230}$

We decompose A into k disjoint subsets $A_j, 1 \leq j \leq k$, such that $m(A_j) = m(A)/k$, $1 \leq j \leq k$, and take k so large that $m(\bigcup_{i=0}^{N-1} \sigma^i(A_k)) \leq \varepsilon/2$. Let $E_j = \sigma^{N-1}(A_j)$, $1 \leq j \leq k-1, E = \bigcup_{j=1}^{k-1} E_j$, and $D = \bigcup_{i=1}^{N-1} \sigma^i(A_k)$. We define $\eta(x) = \sigma(x)$ for $x \notin E \cup D \cup A_k$, hence it follows that $d(\eta, \tau) \leq \varepsilon$ independently of how η is defined on $E \cup D \cup A_k$. Let ξ_j be an invertible measure preserving transformation of A_j onto $A_{j+1}, 1 \leq j \leq k-1$, and let $\eta(x) = \xi_j(\eta^{-N+1}(x)), x \in E_j, 1 \leq j \leq k-1$. Let $B = A_1, R = (k-1)N + 1$, and P = P(B, R). We note that $F = A_k$ $= \eta^{R-1}(B)$. The definition of η implies that if $x \in A_j$ then $\eta^N(x) = \xi_j(x) \in A_{j+1}, 1 \leq j \leq k-1$.

$$\prod_{i=0}^{k-2} \eta'(\eta^i(x)) = \eta^{(k-1)N'}(x) = \xi_{k-1}(\xi_{k-2}(\cdots(\xi_1(x)))) = 1$$

since $\xi'_j = 1$ a.e. on A_j , $1 \leq j \leq k-1$. Moreover it follows from remark 1 of [3] and our construction that there exists a and b such that $0 < a \leq \eta'(x) \leq b < \infty$ for a.e. $x \notin F \cup D$. Letting $\beta = b$ it follows that P(B, R) is an identity partition. We now apply Theorem 1 to extent η to $F \cup D$. Therefore (1), (2), and (3) of Theorem 2 are satisfied. Letting $M = \max(1/a, 1 + \varepsilon)$ we satisfy (4). If τ is measure preserving then it is easily shown that we may take a = b = 1 above, hence $M = 1 + \varepsilon$ in this case.

Proof of Corollary. Let τ be measure preserving in Theorem 2. It then suffices to take $T = T_n$.

References

- [1] CHACON, R. V.: Operator averages. Bull. Amer. math. Soc. 68, 351-353 (1962).
- [2] A class of linear transformations. Proc. Amer. math. Soc. 15, 560-564 (1964).
- [3] -, and N. FRIEDMAN: Approximation and invariant measures. Z. Wahrscheinlichkeitstheorie verw. Geb. 3, 286-295 (1965).
- [4] DUNFORD, N., and J. T. SCHWARTZ: Convergence almost everywhere of operator averages. J. Math. Mech. 5, 129-178 (1956).
- [5] HOFF, E.: The general temporally discrete Markoff process. J. Math. Mech. 3, 13-45 (1954).

University of New Mexico Department of Mathematics Albuquerque, New Mexico (U.S.A.) 231