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1. Introduction

Let (8, 7, p) be a o-finite measure space and let Ly = L (S, 4, u). If T is a
linear operator of Ly to L then for each positive integer n we can define the linear

n—1
operator 7', = n—lz Tk, Dunrorp and ScHWARTZ [4] have extended Horw’s
E=0
ergodic theorem [§] as follows:
Theorem. Let T be a linear operator of Ly to Ly with | T|1 = 1 and | T = 1;
the latter inequality means

179 e = s%. Sup. | Tg(s)| = oss. sup. lg&) = 9], g€LiN Leo.

Then lim Dufls) exists almost everywhere for f e L.

n—>00

1If for an arbitrary &> 0 we still require that | 7|l <1 but allow | T'{; =14 ¢
then a counterexample to the theorem may be easily found. The problem of
constructing a counterexample for the case where | 7'[; = 1 but | 7|« may be
unbounded was recently solved in [2], where it is indicated that it is possible to
obtain a counterexample for the case where |T'; =1 and [T =1 + & We
obtain a result (Theorem 2) from which this follows as a corollary besides giving us
an approximation result which strengthens Theorem 2 [3].

Our construction takes place on the unit interval with Lebesgue measure .
The method of proof of Theorem 1 consists in applying a refinement of the tech-
nique in [2] to a regular partition as defined below. We are dealing with point
transformations 7 and associated mappings 7'z in Ly (see below). We remark that
the non-existence of the limit lim 7'y, f(x) for some fe L]0, 1] is sufficient to

Nn—>o0

guarantee that the point transformation 7 has no non-trivial ¢-finite invariant
measure absolutely continuous with respect to m. In this respect the results here
can be considered to be a continuation of those of [3]. The non-existence of an
invariant measure as above follows trivially from the ratio ergodic theorem [1].

The author wishes to express his gratitude to Professor RAFAEL v. CHACON
for suggesting the problem and for many valuable discussions.

2, Preliminaries

Let (X, #, m) denote the measure space consisting of the unit interval, Lebesgue
measurable sets, and Lebesgue measure respectively. An invertible transformation
7 of X onto X is measurable if B € % implies 7(B) € # and 7-1(B) € # and nonsin-
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gular if m (B) = 0 implies m (7(B)) = m(v1(B)) = 0. We let .# denote the class of
transformations which are invertible, measurable, and nonsingular. It is easily
seen that 7 € £ implies 7% € .# for each integer n. A topology is defined on .# by
the metric d(z, 0) = m (v * 0). A transformation 7 is said to be antiperiodic if for
each positive integer n 77(x) + « for a.e. z, i.e. d(7%, ¢) = 1 where ¢(z) = =z,
xr e X. We let 7' denote the Radon-Nikodym derivative of the measure m (7 ()
with respect to m. Given sets 4 and B of positive measure, we say 7 maps A
linearly onto B if r(A) B and r’ (ac) = m(B)/m(A4), x € A. We define the trans-
formation T'; by T+ f(x) = f(z 7~1"(x). The properties stated in the following
lemma follow easﬂy from the deﬁmtlons
Lemma 1. (1) | Tofy =1, | Tefoo = [ 7 [,
and for each posztwe integer n we have

n—1
@) () (@) = | | 7 (v (@)
i=0
3) @) = [ (@) [ 7 (),
=1
“4) m(t®(B)) = J'li[ dm, Be.

In what follows we will consider % to be a transformation which is not defined
on all of X but which is one-to-one, measurable, and nonsingular on its domain of
definition. In Theorem 1 we extend the definition of % so that € #. In order to
facilitate the verification of certain points in the proof of Theorem 1 we introduce
the following definitions and note some elementary properties.

Definition 1. Let Be % and N a positive integer. P(B, N) = {n?(B), 0 <

N-1

i £ N — 1} is said to be a partition of B* =[_J#*(B) if the sets #*(B), 0 <
i=0

1 = N — 1, are pairwise disjoint.

We say P (B, N) has base B and order N and assume # is not defined on
F = n™-1(B).

Definition 2. P (B, N) is a linear partition if # maps #?(B) linearly onto
nit1(B),0 =i < N — 2, and if m{B) = m(y*(B)), l<¢<N 1.

Definition 3. P (B, N) is an identity partition if (1) nn’(ni (%)) =1 for a.e.
ze Band (2) 5 (x) < ffora.e.xcqy’(B),0 =i <N —li%,owhere 1< f < oo

In what follows we assume all identity partitions have the same order R and
satisfy Definition 3 (2) for the same number §.

Lemma 2. Let P(B, R) be an identity partition.

1) If b c B then P(b, R) is an identity partition, m(b) = m(nF1(d)), and in

particular m(B) = m(F).

(2) If f{(x) = K a.e. on Bthen Tif(x) = Kp*Ra.c.onyi(B), 0 <i = R — 2,
and TE'f(x) = Ka.e.on F.

Proof. (1) follows from Definition 3 and Lemma 1 (4). (2) follows from Defini-
tion 3 and Lemma 1 (3).
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Briefly, Lemma 2 (2) implies that in transforming a function through an iden-
tity partition there can be at most a decrease in height by a factor of §>% and the
funetion regains its height on F.

Definition 4. Given partitions Py (B1, N1)and Pz (Bg, N2) such that B;“ N B;‘ =0,
we extend # to map F1 linearly onto Bj and define the product partition

P1Py=P(B;,N1-+ Ns).
Definition 5. Let P;(B;, N;), 1 < j < J, be partitions such that B n Bf = ¢,
J

t + j. We say HP,- = P;--» Py is a regular partition if each partition P; is
=1
either a linear p;rtition or an identity partition and if m(B1) = m(B;), 2 =] < J.
The properties stated in the following lemma follow easily from the previous
definitions and Lemmas 1 and 2.
Lemma 3. Let P (B, N) be a regular partition.
(1) Ijbc Bthen P(b, N)is aregular partition and

a = m(g¥ (b)) fm(b) = m(F)[m(B) < 1.
(2) Ij f(x) = K a.e. on Bithen Tif(x) = Kf* R a.e. on n*(B), 0 =i =N — 1.
Let P1(B1, N1) and P3(Bs, N3) be regular partitions such that Bf N Bf = 0.
(3) If m(B1) = m(Bg) then P1Ps is a regular partition.
4) Ij f(x) = K a.e. on By then TY*f(x) = Km(Bi1)/m(Bz) a.e. on By.

3. Main Results

Theorem 1. Let P(B, N) be a regular partition. Let m(D) > 0 where D= X — B*
and let £ > 0. Then there exists a function f € L1[0, 1] such that 5 can be extended to
F U D so that

(1) lim sup @ _ oo a.e.,
n—-oo 7
2) lminf Ty, f(®) =0 a.e.,
fn—> 0o
(3) V@) <l+e on BUD.

Theorem 2. Let T € .# be antiperiodic and let ¢ > 0. Then there exists vy € £ and
7 € Li[0, 1] such that (1) and (2) of Theorem 1 hold and

3) d(z,n) = ¢,
(4) 1 Tn]e0 = M < oo

Moreover if T is measure preserving we may take M = 1 + & (4).

The addition of conclusion (4) in the preceding theorem strengthens Theorem 2
(31

Corollary. For each e > 0 there exists a class of linear transformations T of
L1[0,1] to L1710, 1] such that | T|1 =1, | T =1 + ¢, and lim Ty f(x) does not

n—oa
exist a.e. for some f € L]0, 1].
Proof of Theorem 1. We first make some preliminary computations. Let ¢ be
a positive integer such that 1)g < &. Let £ be a positive integer and let « > 0. Let
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a set B have measure W. Following [2] we decompose B into k - 1 disjoint
subsets By, ..., By of measure wy and aqwy/(q + 1), 1 <1 < k, respectively by
selecting

3
(1) wr = W1 +a%21/(Q+l)]-
=1

We note that limw;, =0. Let A=(14+ &) landlet f=(1—- AL IfL>0

k—o0

we can then choose k so large that wy in (1) satisfies
2) Eaqug/(q + k) < L[8.

We set Py =P, By =B, F1=F, N1 =N, and D; = D and proceed in-
ductively in stages as follows. At the i-th stage we have a regular partition
P;(Bi, Ny) and m(D;) > 0 where D; = X — B¥. We have 7 defined except on
D; U F; and 51 is defined except on D; U B;. For the first step of the i-th stage
we let oy = m (Fy)jm (B;), Wy = m(By), and Ly = m(D;). We select k; so large that

Ne—1
wy, in (1) satisfies (2) and also m(\_Jn?(Bi,0)) = 277 Here BZ—UBM where
i=0 1=0
m(Bi,0) = wy, and m(By,1) = oagwy,q/(g + 1), 1 =1 = k. Since P; is a regular
partition it follows by Lemma 3 (1) that P@ 1 = P(By,1, N;) are regular partitions,

0 =1 =<k, and Lemma 3 (3) implies r P;, 1 is a regular partition. Furthermore
1=0
it follows from Lemma 3 (1) that =2 (2) = a{g + L+ Djig + 1) £ 1+ 1/(g + 1)

<1+ eon By 141, 0 =1 < k; — 1. Therefore on the extension nV(x) =1 4+ ¢
ki

a.e.on ) By,
=1
Let m; = m(FZ w) = am(B; ) = o2quy,/(q + ki) by Lemma 3 (I). Hence
my < L;{8 by (2). Let s; be the smallest positive integer such that s;m; > 5.L4/8.
Let Dy,;, 1 <4 S s;, denote s; disjoint subsets of D; each of measure m;. Let 4
map Di’j h'nearly onto Di,]‘-{-l: 1 § 7 é 85 — 1, and let Pi, Eitl = P(DL 1, 8;‘). It
ki+1
follows that P;, ;41 is a linear identity partition and H P;,1 is a regular partition.
i=o
Furthermore 5=1'(z) =1 a.e. on Dy 3,1 <7 =s;. We now have extended

to all of #; and more than one half of ;. Furthermore %~1is extended to more than
one-half of D; and all of B; except B;,o.

For the second step of the i-th stage we employ the positive integers ¢; defined
inductively as follows:

(3) bpi=t+s+mn, i=1; H=0.

The number n; is defined below. We set f(z) = f1(2) = ¢p% " 2N1qpp, (x) (where
@p denotes the characteristic function of B). Let fi(x) = T%f1(x) . pp, (x). We
will have f;( x) =0 on D; and have f;(x) = H; constant a.e. on F; where
H; = qpF 2 (4 + N;).We will extend % so that this holds for ¢ + 1. However
let us first show that it follows from the extension of # in the first step of the i-th
stage that 17 fi(x)/n = ¢ forsomen, ¢t + 1 <n < {; + & N;, a.e. on the set
Ni—1
ZU’lyj(Bi — Bi’ 0) =X — (B:‘jo V) Di). In fact let f:k (96) = f@ (x) (pFi'o(x) = H1

i=0
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a.e. on F;,. We then have TU-D¥+1f%(x) with support on Bj 1, 1 <1 = ki
Lemma 3 (4) implies that for n = ¢; + ({ — 1) N; + 1 we have

Ty (@) =2 T§~ VN4 ¥ (@) = Hym (Fy,0)/m(By,1) =
= BE2i(q + 1) (b + Ni) > BR-2i(t; + I Ny)

a.e.on By ;,1 =<1 < k;. Lemma 3 (2) then implies that forn = t; 4 (I — 1) N; +
+ 1 + jwehave Thfi(x}fn > i(t; + INy)/n = da.e.onpf(B;;),0 =j = N;— 1,
1 <1 = k;, which completes the verification of our assertion.

We now consider how #; is to be chosen. We select n; subsets D; 5,8 + 1 <

= s; + ns, of measure A7Sim; respectively from the set D; *ODL ; whose
measure exceeds L;/4 according to the definition of s;. This is possiglé because of
(2). Let Dyr1 = Dy -—SiUiDi,j and we note that m (Dyy1) > L;/8. Let n map Dy ;
linearly onto Dj, ;11, syl=—{1— 1 <j=<s+n—1, and let Py g0 = P(Di 11, m).
We now set P;.1 =kﬁPM and Lemma 3 (3) implies that P;yq is a regular parti-
tion. We have 5~V (lx=)0= Al=1-+¢cae on Dy, 8+ 1=4j= s+ n, hence
7V (x) =1 4+ ¢ a.e. on the extension. Now the first requirement that n; must

Ni—1
satisfy is that it be so large that T, f1(x) = 1/i on B¥ =|_Ju/(By) for n = f;41.
i=0

. ) i= .
This is possible because 7%f1(x) = 0 on B for t; + (ki + 1) ¥y << § = t341. The
second requirement is that n; be so large that Hi.q, the value of Tf;““ fi(x) on
D; g n, = Fii1, satisfies the condition

4) Hinn = qB% 200 + 1) (fisn + Nowa),
where
(5) Ny = (ke -+ 1) Ni 4 83 + n4.

This is possible because H;i; = H;(1l 4 &)™ and increases exponentially with
respect to n; whereas the right side of (4) only increases linearly with respect to n;
as seen from (3) and (5).

Setting B;y1 = By, we have Pyyy = P(Bgy1, Nit1). At the end of the i-th
stage 1 is defined except on Byy1 U Dy where m (By1 U Dyyq) << 2174 Further-
more 7 is defined except on Fyq1 U Diig where m (Fip1 U Dyr1) =< 274 Therefore
our construction implies we can write X = X* U — X* where n(X*) = X*, 5 is
invertible, measurable, and non-singular on X*, and m (X*) = 1. We set 5y (x) = =,
2z & X*, hence 5 € £,

We have T} fi(x)/n = i forsome n, f; + 1 =% = &; + ki Ny, a.e. on X, where
m(X) =1—21"" and T, f1(x) = 1/t for » = {341 on Bf > X;. Properties (1)
and (2) of Theorem 1 follow and our construction implies (3) holds.

Proof of Theorem 2. We will first construct an identity partition and then
utilize Theorem 1 to obtain the desired transformation. As in the proof of Theorem
2 of [3], it follows from Lemma 6, Theorem 1, and remark 2 of [3] that there exists
oge S, A e, and a positive integer N such that ¢ generates a partition P (4, V)
with A* = X and d (o, 7) < &/2 independently of how ¢ maps ¢¥~1(4) onto 4.
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We decompose A into k disjoint subsets A;, 1 < j < k, such that m (4;) = m(4)/k,

N-1
1 <4<k and take k so large that m(U ot (Ay)) < &/2. Let E; = oV 1(4;),
r—1 frany
1<j<k—1, E=\JE;, and D=\ o*(dx). We define #(x)= o(x) for
j=1 i=1

x¢ E U .DU Ay, henceit follows that d(y, ) < ¢ independently of how # is defined
on B U DU Ay. Let & be an invertible measure preserving transformation of A;
onto 441, 1 =§ =<k —1,and let n(x) = &(n Y (@),zel;,1 <j<k— 1
Let B=A;, R=(k—1)N + 1, and P = P(B, R). We note that F = 4;
= nf~1(B). The definition of # implies that if x € A; then 7~ (z) = &;(x) € 4;11,
1 =4 =<k — 1. Therefore for a.e. x € B we have

R-2

[T () = ¥ (&) = & G (- (E1(a)) ) = 1

=0
since 5; =1la.e ond;,1=<7j=<Fk— 1 Moreover it follows from remark 1 of [3]
and our construction that there exists @ and b such that 0 < a < #%'(2) £ b < oo
for a.e. # ¢ F U D. Letting § = b it follows that P (B, R) is an identity partition.
We now apply Theorem 1 to extent 5 to F U D. Therefore (1), (2), and (3) of
Theorem 2 are satisfied. Letting M = max(l/a, 1 + &) we satisfy (4). If 7 is
measure preserving then it is easily shown that we may take a = b = 1 above,
hence M =1 + ¢ in this case.

Proof of Corollary. Let © be measure preserving in Theorem 2. It then suffices

to take 7' = T,

References

[11 Cuacon, R. V.: Operator averages. Bull. Amer. math. Soc. 68, 351 —353 (1962).
[2] — A class of linear transformations. Proc. Amer. math. Soc. 15, 560—564 (1964).
[3] —, and N. FRIEDMAN: Approximation and invariant measures. Z. Wahrscheinlichkeits-
theorie verw. Geb. 8, 286 —295 (1965).
[4] Duxworp, N., and J. T. ScEWARTZ: Convergence almost everywhere of operator averages.
J. Math. Mech. 5, 1290—178 (1956).
[6] Horr, E.: The general temporally discrete Markoff process. J. Math. Mech. 3, 13—45
{1954).
University of New Mexico
Department of Mathematics
Albuquerque, New Mexico (U.S.A.)



