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1. Introduction 

Let (S, J ,  #) be a a-finite measure space and let 51 = LI(S,  Jr , / / ) .  I f  T is a 
linear operator of L1 to L1 then for each positive integer n we can define the linear 

n - - 1  

operator Tn = n - l ~  T ~. DUNFO~) and SCItWAI~TZ [4] have extended ItoeF's  
k = 0  

ergodic theorem [5] as follows: 

Theorem. Let T be a linear operator o/L1 to L1 with I] T U 1 <= 1 and ]] T Boo <= 1 ; 
the latter inequality means 

II Tg I1~- = ess. sup. 1 Tg <s) l =< ess. sup. I g (s) l = 11 g I1~, g ~ L~ n i ~ .  
s e S  s a S  

Then l im Tn [ (s) exists almost everywhere/or [ a L1. 
~-->oo 

I f  for an arbi trary e > 0 we still require tha t  ]] T I[oo _--< 1 but  allow ][ T I]1 - -  1 + e 
then a counterexample to the theorem may  be easily found. The problem of 
constructing a eounterexample for the case where H T H z = 1 but  H T 11o~ may  be 
unbounded was recently solved in [2], where it is indicated that  it is possible to 
obtain a eounterexample for the case where IIT Ill = 1 a n d  IIT Ii~ = t + e. W e  
obtain a result (Theorem 2) from which this follows as a corollary besides giving us 
an approximation result which strengthens Theorem 2 [3]. 

Our construction takes place on the unit interval with Lebesgue measure m. 
The method of proof of Theorem 1 consists in applying a refinement of the tech- 
nique in [2] to a regular parti t ion as defined below. We are dealing with point 
transformations ~ and associated mappings Tr  in L1 (see below). We remark tha t  
the non-existence of the limit lim TrnJ(x) for some [ ~ L110, 1] is sufficient to 

n-->oo 

guarantee tha t  the point transformation T has no non-trivial a-finite invariant  
measure absolutely continuous with respect to m. In  this respect the results here 
can be considered to be a continuation of those of [3]. The non-existence of an 
invariant measure as above follows trivially from the ratio ergodic theorem [1]. 

The author wishes to express his gratitude to Professor IIAFAnL V. C~ACO~ 
for suggesting the problem and for many  valuable discussions. 

2. Preliminaries 

Let  (X, ~ ,  m) denote the measure space consisting of the unit interval, Lebesgue 
measurable sets, and Lebesgue measure respectively. An invertible transformation 
T of X onto X is measurable if  B e N implies T (B) ~ ~ and ~-1 (B) e ~ and nonsin- 

* l~esearch supported in part by the National Science Foundation, Grant GP-1816. 
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gular if m (B) = 0 implies m (~ (B)) = m (~-i (B)) = 0. We let J denote the class of  
t ransformat ions  which are invertible, measurable, and nonsingular. I t  is easily 
seen tha t  ~ e J implies 7 n e J for each integer n. A topology is defined on J by  
the metric d (7, a) ---- m (7 # a). A t ransformat ion T is said to be antiperiodie if for 
each positive integer n ~n(x) :~ x for a.e. x, i.e. d(7 n, e) = 1 where e(x) = x, 
x e X.  We let 7' denote the R a d o n - R i k o d y m  derivative of  the measure m(7(-)) 
with respect to m. Given sets A and B of  positive measure, we say 7 maps A 
linearly onto B if ~(A) ---- B and ~' (x) = m ( B ) / m ( A ) ,  x e A .  W e  define the trans- 
format ion Tr  by  Tr  I (x) = ] (v - i  (x)) 7 -1' (x). The properties s tated in the following 
lemma follow easily f rom the definitions. 

Lemma 1. (1) ]] T~lli = 1, ]1T~Hoo = ]l 7 - i ' l ]~ ,  
and/or  each positive integer n we have 

(2) (Tn)' (x) = ] ~  7' (7i (x)), 
i = 0  

n 

(3) T~I (~) = t (~-~ (x))/ F[  7' (7-~ (~)), 
i = l  

n--1 

(4) m ( T n ( ] ~ ) )  = f NT' (Ti (x) )dm,  B f f 2 .  
B i = 0  

In  what  follows we will consider ~ to be a t ransformat ion which is not  defined 
on all of  X but  which is one-to-one, measurable, and nonsingular on its domain of 
definition. I n  Theorem 1 we extend the definition of  ~ so tha t  ~ e J .  I n  order to 
facilitate the verification of  certain points in the proof  of  Theorem 1 we introduce 
the following definitions and note some elementary properties. 

Definition 1. Let  B E ~ and N a positive integer. P ( B ,  N)  -~ {~(B) ,  0 

i =~ N - -  1} is said to be a par t i t ion of  B* ---- (.fl~i(B) if  the sets ~ ( B ) ,  0 ~= 
i = 0  

i ~ N - -  1, are pairwise disjoint. 
We say P ( B ,  N)  has base B and order N and assume ~ is not  defined on 

F = ~N-i (B). 

Definition 2. P ( B ,  N)  is a linear part i t ion if  ~ maps ~i(B) linearly onto 
~i+l(B), 0 --~ i ~ N --  2, and if  re(B) ~ m(~i(B)),  1 ~ i _~ N - -  1. 

N--2  
Definition 3. P ( B ,  N)  is an ident i ty  par t i t ion if (1) i ~ ' ( ~ ( x ) )  = 1 for a.e. 

i ~ 0  
x e B a n d ( 2 ) ~ ' ( x )  ~ f o r a . e . x ~ l ( B ) , 0 - - ~ i g N - - 3 ,  w h e r e l  ~ o o .  

I n  what  follows we assume all ident i ty  part i t ions have the same order R and 
satisfy Definition 3 (2) for the same number  ft. 

Lemma 2. Let P (B, R) be an identity partition. 

(1) I ] b  c B then P(b,  R) is an identity partition, re(b) = m(~R-l(b)), and in 
particular m (B) = m (F). 

(2) I / ]  (x) ~ K a.e. on B then T~/(x)  ~= K fl 2-~ a. e. on ~ ( B ) ,  0 _~ i ~ R - -  2, 
and T ~  -1/(x) ~ K a. e. on F.  

Proo/. (1) follows from Definition 3 and Lemma 1 (4). (2) follows from Defini- 
t ion 3 and L e m m a  1 (3). 
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Briefly, Lemma 2 (2) implies that  in transforming a function through an iden- 
t i ty  partition there can be at most a decrease in height by a factor of//2-R and the 
function regains its height on F. 

Definition 4. Given partitions P1 (B1, N1) and P2 (B2, N2) such that  B* c~ B2* = O, 
we extend ~ to map F1 linearly onto B~ and define the product partition 

PIP2 = P(B1, Ni  q- N~). 

Definition 5. Let Py(Bj ,  N~), 1 ~ j ~ J ,  be partitions such that  B~ n B~ = f), 
J 

i 4: j. We say ~ [  Pi  = P I " ' "  PJ  is a regular partition if each partition Py is 

either a linear partition or an identity partition and if m (B1) ~ m (By), 2 ~ j G J.  
The properties stated in the following lemma follow easily from the previous 

definitions and Lemmas 1 and 2. 

Lemma 3. Let P ( B, N)  be a regular partition. 
(1) I[  b c B then P (b, N)  is a regular partition and 

C~ : m ( ~  hr-1 (b))/m(b) : m ( F ) / m ( B )  ~ 1.  

(2) I[  [(x) ~ K a.e. on B then T~/(x)  ~ K f l  ~"-R a.e. on vi(B), 0 --~ i ~ 1V -- 1. 
Let P1 (B1, N1) and P2 (B% N~) be regular partitions such that B~ (~ B*2 = O. 

(3) I[  re(B1) ~ re(B2) then P I  Pu is a regular partition. 
(4) I / [ ( x )  ~ K a.e. on B~ then T ~ / ( x )  ~ K m ( B I ) / m ( B 2 )  a.e. on B~. 

3. Main Results 

Theorem 1. Let P ( B,  N)  be a regular partition. Let re(D) ~ 0 where D = X --  B*  
and let s ~ O. Then there exists a [unction ] e L1 [0, 1] such that ~1 can be extended to 
2' u D so that 

(1) lira sup T~f(x) _ c~ a.e.,  
~ t - - > o o  

(2) l i m i n f  T v n / ( x  ) : 0 a.e.,  
n - - - y  o o  

(3) ~ - l , ( x ) ~ l + e  on B k )  D .  

Theorem 2. Let ~ e J be antiperiodic and let s > O. Then there exists ~ e J and 
[ e LI[0, 1] such that (1) and (2) o/Theorem I hold and 

(3) d (~, ~) <= s ,  

(4) II T ,  1i~ = M < oo.  

Moreover i[ T is measure preserving we may take M : 1 Jr s in (4). 
The addition of conclusion (4) in the preceding theorem strengthens Theorem 2 

[3]. 
Corollary. For each e > 0 there exists a class o/ linear trans[ormations T o/ 

LI[0, 1] to LI[0, 1] such that ]] T[]I : 1, 1] TI[oo = 1 q- ~, and hm Tn / ( x )  does not 
n ---~ o o  

exist a.e. [or some [ E Ll[0, 1]. 
Proof o[ Theorem 1. We first make some preliminary computations. Let q be 

a positive integer such that  1/q =~ s. Let/c be a positive integer and let ~ ~ 0. Let 
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a set  B have  measure  W. Following [2] we decompose B into k + 1 disjoint 
subsets B0 . . . . .  Bk of measure  wk and ~qwk/(q + 1), 1 <-- l <~ k, respect ively  by  
selecting 

k 

(1) w~ = Will  + ~q y lt(q + 03. 
l = 1  

We note t h a t  lim wk : 0. Le t  A = (1 q- e) -1 and  let ~ = (1 - -  2) -1 . I f  L > 0 
k--> oo 

we can then  choose/c so large t h a t  w~ in (1) satisfies 

(2) ~ 2 q w z / ( q  § k) < L/8.  

We set P I : P ,  B I =  B, F I = F ,  N I = N ,  and D I = D  and proceed in- 
duct ive ly  in stages as follows. At  the i - th stage we have  a regular  par t i t ion  
Pi (B i ,  Ni) and m(Di) ~ 0 where Di = X - -  B/*. We have  ~] defined except  on 
Dt L) Fi and 7 -1 is defined except  on Di k) B4. For  the first step of the i - th stage 
we let ~i = m (Fi)/m (B4), Wt = m (Bi), and Ll = m (Di). We select/ci so large t h a t  

wk, in (1) satisfies (2) and also m((J~lJ(Bt ,  o)) ~ 2-h Here  B i = ~ J B i ,  l where 
/=o 4=0 

m(Bi ,  o) = w~ and m(Bt,  1) : ~iwk~q/( q q- l), 1 <~ l <_ lci. Since P/  is a regular  
par t i t ion  it  follows by  L e m m a  3 (1) t h a t  Pi,  4 = P (B/, I, N4) are regular  part i t ions,  

k~ 

0 ~< l ~< ki, and L e m m a  3 (3) implies I I  Pi,  1 is a regular  part i t ion.  Fu r the rmore  
l=O 

i t  follows f rom L e m m a  3 (1) t h a t  ~ - l ' ( x )  = ~i(q ~- I + 1)/(q q- l) =< 1 q- 1/(q Jr l) 
1 + e on Bi, 4+1, 0 ~< l _< ]ci - -  1. Therefore on the extension ~-1, (x) =< 1 q- s 

k~ 

a.e .  on [ . )  B/,l .  
4 = 1  

Let  mi = m(Fi, k~) = ~im(Bi,  k~) ---- ~ q w k j ( q  q- lci) by L e m m a  3 (1). Hence  
rni < L4/8 b y  (2). Le t  si be the  smallest  posi t ive integer such t h a t  simi ~ 5L4/8. 
Let  Did,  1 ~= ] ~= si, denote si disjoint subsets of Di each of measure  rot. Let  
m a p  Di , j  l inear]y onto Dt,s'+l~ 1 = j =< si - -  1, and let P~,~i+l : P(Di,  z, s~). I t  

k ~ + l  

follows t h a t  Pi,  ~i+* is a linear iden t i ty  par t i t ion  and ~ I  P~, z is a regular  part i t ion.  
1=0 

Fur the rmore  7 - i '  (x) = 1 a.e.  on D~,j, 1 ~ j =< si. We now have  extended ~/ 
to all of  Fi  and  more  t han  one half  of D~. Fu r the rmore  ~-1 is extended to more than  
one-half  of Dl and  all of  Bi except  Bi, 0. 

For  the second step of the i - th stage we employ  the posit ive integers h defined 
induct ively  as follows: 

(3) h + i = h - { - s a q - n ~ ,  i__>l; t l = 0 .  

The number  ni is defined below. We  s e t / ( x )  = / l ( X )  = qfl~-2Niqat,,(x) (where 
& X . qOB denotes the characterist ic  funct ion of B). Le t  /i(x) = Tv / i (  ) q~, (x). We 

will have  /i(x) ~ 0 on Di and have  /i(x) =-Hi cons tant  a.e. on Ft  where 
Hi >= qfln-~, i(h q- N~).We will extend ,1 so t h a t  this holds for i q- 1. However  
let us first show t h a t  i t  follows f rom the extension of ~ in the first step of the  i - th 
stage t h a t  T~ / l  (x)/n >= i for some n, h q -  1 ~ < n ~ < t i q - k i N i ,  a . e .  on the set  

X~-- i 

B* Di). I n  fact  let/~*(x) /i (x) ~0u,.0 (x) ~- H i  X i  = U ~ ( B ~  - B i , 0 )  = X - -  ( ~,o w = 
] = 0  
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a.e. on F i o. We then have T(1-~)~v~+l/*,(x) with support  on Bf z, 1 <_ 1 ~< ki. 
Lemma 3 (4) implies tha t  for n ~ tt ~- (l - -  1)Ni -~ 1 we have 

T~/l(x) > T ( l -1 )~+l t~ (~  = H~m(Fi o)/m(Bi z) > 
> flR-2i(q ~- l) (t~ ~- Nl) > flR-ei(t~ ~- INi) 

a.e. on B~, l, 1 ~< l ~< ki. Lemma 3 (2) then implies t ha t  for n --~ t/-]- (l - -  1) N~ -~ 
~- 1 -~ ] w e h a v e  n i(ti INi)/n > T J l ( x ) / n >  ~- _ i a . e .  o n ~ J ( B ~ , l ) , O < = ] < N i - - 1 ,  
1 _< 1 ~< k~, which completes the verification of  our assertion. 

We now consider how ni is to be chosen. We select nl subsets Di,j, si ~ 1 < ] 
8t 

s~ ~-n~, of  measure ~J-Sim~ respectively from the set D i - - ~ J D ~ , j  whose 
] = 1  

measure exceeds L~/4 according to the definition of si. This is possible because of 
$ i ~ n i  

(2). Let  Dt+i = Di --~.JD~,i and we note thag m(D~+l) > L~/8. Let  ~7 map  Di, i  
] = 1  

linearly onto D~,j+I, s~ + 1 < ] =< s~ -~ ni - -  1, and let Pi,~i+2 -~ P(Di,si+~, hi). 
k~+2 

We now set P~+~ = ~-~ P~, ~ and Lemma 3 (3) imphes tha t  P~+~ is a regular parti- 
/ = 0  

tion. We have ~-~' (x) = 2-~ = 1 -~ ~ a.e. on D~, ~, s~ + 1 <= ] < s~ + n~, hence 
~-~' (x) __< 1 + ~ a.e. on the extension. Now the first requirement  tha t  n~ must  

Z~ - 1 

satisfy is t ha t  it be so large tha t  T,~/~(x) <= 1/i on B * = ( . J ~ ( B i )  for n = t/+~. 
i = 0  

This is possible because T~/~(x) = 0 on B ' f o r  tt ~- (kl ~- 1)N~ < ] < t~+~. The 
second requirement  is t ha t  nl be so large tha t  H~+~, the value of T~+n'/~ (x) on 
Di, s,+n~ -~ 1~i+1, satisfies the condition 

(4) Hl+~ > qf in-2(i  ~- 1) (t~+l ~- N~+I), 

where 

(5) N~+I = (k~ ~- 1)Ni + s~ -{- nt .  

This is possible because Hi+~ = Hi(1 ~- e) ~ and increases exponentially with 
respect to n~ whereas the r ight  side of  (4) only increases linearly with respect to n~ 
as seen from (3) and (5). 

Setting B~+~ = B~,0 we have P~+~ = P(B~+~, N~+~). At  the end of the i-th 
stage ~-~ is defined except on B~+~ w Dt+~ where m (B~+~ ~ D~+~) < 2 ~-~. Further-  
more ~ is defined except on F~+~ w D~+~ where m (F~+~ w D~+~) ~ 2-~. Therefore 
our construct ion implies we can write X = X *  w - -  X *  where ~(X*)  = X*, ~7 is 
invertible, measurable, and non-singular on X*, and m (X*) ----- 1. We set ~ (x) = x, 
x ~ X*,  hence ~? z ~ .  

We have T~/~(x)/n > i for some n, ti + 1 <_ n <~ t~ ~- kiNl,  a.e. on X~ where 
m(Xi)  > 1 - -  2 ~-i and Tvn/~(x) <~ 1/i for n = t~+~ on B * 3 X ~ .  Properties (1) 
and (2) of  Theorem 1 follow and our construct ion implies (3) holds. 

Proo/ o/ Theorem 2. We will first construct  an ident i ty  par t i t ion and then 
utilize Theorem 1 to obtain the desired t ransformation.  As in the proof  of  Theorem 
2 of  [3], it follows from Lemma 6, Theorem 1, and remark 2 of  [3] t ha t  there exists 
a e ~r A e ~ ,  and a positive integer N such tha t  a generates a par t i t ion P (A,/V) 
with A* = X and d(a,  ~) < e/2 independent ly  of  how a maps  a~-~(A)  onto A. 
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We decompose  A into  k d is jo in t  subsets  A 1, 1 ~ j ~ k, such t h a t  m (Aj) = m (A)/k, 

1 < ]  < k, and  t ake  ]c so large t h a t  m((, .Jai(A~))  < e/2. Le t  E j =  a~T-lrA.~ 
i = 0  

k - -1  N - - 1  

1 g ] ~ k - - 1 ,  E = U E j ,  and  D = U ~ i ( A ~ ) .  W e  define U ( x ) =  ~(x) for 
]=1 i=1 

x~ E w D w A~,  hence i t  follows t h a t  d (U, v) ~ e i ndependen t ly  of  how U is defined 
on E ~) D w A~. Le t  ~i be an inver t ib le  measure  preserving t r ans fo rma t ion  of  A i 
onto Aj+I ,  1 ~ ?' ~ ]c - -  1, and  le t  U(x) = ~ i (u -~V +l ( x ) ) , x~E j ,  1 ~ ] ~ ]c - -  1. 
Le t  B = A 1 ,  R = ( l c - - 1 ) N - k  1, and  P = P ( B , R ) .  We note  t h a t  F : A ~  
= U ~ - I ( B ) .  The defini t ion of  U implies  t h a t  i f  x e A 3. then  U~(x) = Sj.(x) e A j e l ,  
1 ~ ] ~ k - -  1. Therefore for a .e .  x ~ B we have  

R - - 2  

[~I  V' (V i (x ) )  = V (~-~)N'(x)  = $1~-1 (~k-2 ( ' ' "  (~I(X)) "" ")' = 1 
i = 0  

since ~. = 1 a .e .  on A~, 1 ~ ] ~ k - -  1. Moreover  i t  follows f rom r e m a r k  1 of [3] 
and  our cons t ruc t ion  t h a t  there  exists  a and  b such t h a t  0 < a ~ ~]' (x) ~ b < oo 
for a.e.  x r F ~) D. Le t t ing  fi = b i t  follows t h a t  P (B, R) is an i d e n t i t y  par t i t ion .  
W e  now a p p l y  Theorem 1 to ex t en t  ~ to F [J D. Therefore  (1), (2), and  (3) of 
Theorem 2 are satisfied. Le t t ing  M = m a x ( l / a ,  1 ~- e) we sa t is fy  (4). I f  ~ is 
measure  preserving then  i t  is easi ly shown t h a t  we m a y  t ake  a = b = 1 above,  
hence M = 1 + e in this  case. 

Proof o/Corollary. Let  ~ be measure  preserving in Theorem 2. I t  then  suffices 

to t ake  T = T~. 
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