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1. Introduction 

I t  has long been recognized that  entropy is, in some sense, a measure of spread 
or extent of the associated distribution. This idea is investigated from several 
points of view in the present paper. The basic result is that  e H is a measure of 
extent, where H is SI~A~ON'S [1] entropy in natural units. In  addition, it will be 
shown that  R~NYI's [2, 3] entropy of order ~ is also connected in a natural way with 
measures of spread. 

Tile measures of extent which are considered here are all, in one way or another, 
generalizations of the notion of range of a distribution. Indeed, for a uniform 
distribution, the exponential entropy e H is just the range. By the "range" of a 
distribution we mean the number of points in the sample space if the sample space 
is discrete, and the length of the interval on which the probability density function 
is different from zero if the sample space is the real line. This and other terminology 
will be defined more precisely in Section 2. 

In  Section 3 we examine the idea of range and its generalizations from a fairly 
direct and simple point of view. In  Section 4 we look at the probabilities of 
sequences of independent events and see how they can provide a measure of extent. 
This approach is closely related to the development of the coding theorems of 
information theory. In Section 5 we consider optimum ways of digitally recording 
the outcome of a random experiment. This leads to another interpretation of e H as 
a measure of spread. In  Section 6 some known properties of entropy are presented 
in a form which supports the interpretation of exponential entropy given here. 
Finally, in Section 7, the connection between concentration of the probability 
distribution and size of the measure of extent is investigated. 

2. Definitions and Preliminary Remarks 

In  order to avoid difficulties connected with the question of existence of 
product measures and Radon-Nikodym derivatives it will be assumed throughout 
the paper that all measures which occur are (r-finite. Two measures which are ab- 
solutely continuous with respect to each other will be called equivalent.  

Let (Q, ~ ,  P) be a probability space and let v be another measure on d which 
is equivalent to P. Then the gadon-Nikodym derivatives d P / d v  and d v / d P  
-= (dP/dv)  -1 exist. The measure v in our considerations will usually be a "natural" 
measure on Q. For example, if Q is a discrete space with points xl, x2 . . . . .  v might 
be counting measure which assigns to each set a measure equal to the number of 
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points in this set. In  this case dP/dv at  the point x, is just P(x,). As another 
example suppose that  1? is the Euclidean space En and tha t  the probability 
measure P is determined by  a probabili ty density functiofl. Then a natural  choice 
for v is Lebesgue measure on En. With this choice of v, dP/dv is just the probability 
density function. 

We will say tha t  the probabili ty distribution is uni/orm (with respect to v) if 
dP/dv is constant on 17 except for a set of probabili ty zero. 

By the range of the distribution (with respect to v) we mean v (17). This use of 
the word "range" differs slightly from some other usages which are connected 
with a random variable on 17. Frequently "range" means either the range space of 
the random variable or the size of this range space. 

In  analogy with the notation of HARDY, LITTLEWOOD, and POLYA [4] we define 
the mean of order t of the probability distribution by  

(1) Mt[~ ,P]  = [dPl  dP (t 4= O) 

and 

Here and subsequently, aIi integrals are over I?. I t  is easily shown that ,  when the 
integrals exist, 

lim Mt [f, P] = M0 [~, P] . 
t---~0 

In  addition, we define the entropy of the distribution (with respect to ~) by 

(3) H [v, P] = In 21//0 [v, P] 

and the entropy of order v. by  

(4) I s  [v, P] = In M I - ,  [v, P ] .  

I t  follows tha t  

lim Is  Iv, P] = H Iv, P] . 
~.--+1 

Equations (3) and (4) suggest the name "exponential entropy" for Mt which is 
used in the title of this paper. 

As a special case, let v be counting measure and l e t /2  be a finite space with 
points Xl . . . . .  xN and with P (xt) =- p,. Then 

2V 

H [v, P] = -- ~ Pi In p, 
i = l  

and 

1 i n  io~ ~ . I . [ v , P ] - -  1 - -~  \i=1 / 

Except  for the use of natural  logarithms instead of logarithms to the base 2, H 
and I s  are respectively the entropy of SUA~Xmr [1] and the entropy of order ~ of 
I~NYI  [2, 3]. 
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I f  ~ is Lebesgue measure, H and I~ are S ~ a ~ o ~ ' s  and R~NYfs entropies for a 
continuous distribution. I f  ~ is another probabihty measure, - -H[v ,  P] is the 
"information gain" of RI~Nu [ 8 ]  and the "directed divergence" of KULLBAC~ [5]. 

I t  should also be remarked that our notation differs from that  of Aczs and 
DARdCz~: [6, 7] who define a quantity M~ in such a way that  I~ = -- log M~. 
Rs165  [1, 2], ACZs and DA~gCzu [6, 7, 8] have studied axiomatic characteriza- 
tions of I~ and M~. 

Some elementary properties of the mean Mt will now be noted. First of all, 

(5) M~[~, P] f d~ 
= dP dP = ~, (12), 

so that  the mean of order one is the range. Second, if the distribution is uniform, 
the derivative dv/dP is a constant which is easily seen to be v (~). In  this case it 
follows that  

(6) Mr[v, P] = v(tg). 

Finally, it can be shown [4] that  when s < t, 

(7) Ms [~, P] < Mt [~, P],  

with equality if and only if the probability distribution is uniform. 

3. Generalized Range 

The range, v (~), is perhaps the most elementary measure of extent of a distri- 
bution. The disadvantage of the range is that  it assigns the same weight to sets of 
low probability as to sets of high probability. In  consequence, the range is often 
infinite for simple probability distributions. As noted above, we can write 

F dv 
~, (.c2) = j -dF clP . 

A more useful measure of extent might be obtained by modifying the integrand in 
such a way that  the effect of small values of dP/dv is decreased. However, in 
making such a modification we should preserve homogeneity in v. That is, if the 
measure v is replaced by c ~, where c is a positive number, the measure of extent 
should also be multiplied by c. Clearly Mt [~, P] satisfies these requirements for 
t < I. Also, in view of (5) and (7), it follows that 

(8) Mr[v, P] <= v(Y2) (t <= 1). 

Thus Mt [v, P] (t < 1) has some desirable properties for a measure of extent. 
The mean M0 [~, P] is the mean which is least affected by variations in the 

value of dP/dv and on this ground merits some special consideration as a measure 
of extent. 

4. Sequences of Independent Events 

Frequently we are concerned with the number of possible outcomes if an 
experiment is performed many times, rather than with the number of possible 
outcomes if the experiment is performed once. Suppose the same experiment is 
performed m times (m => 1), that  the performances are independent, and that  the 
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probabilities of outcomes each time are given by the measure P. We are then 
concerned with events in the m-fold direct product of f2 with itself. Let  Pm and 
Vm denote the corresponding product measures. I f  the outcomes of the individual 
experiments are Yl, Y2 . . . .  , ym the Radon-Nikodym derivative is 

dVm dv dv dv 
dPm (yl . . . . .  ym) ---- ~ (yl) ~ (Y2) �9 �9 �9 ~p-  (ym). 

When the distribution is uniform, we have 

dPm ~-- \ dP ] = [v (~)]m. 

This suggests tha t  (dvm/dPm) 1Ira might approximate some useful measure of range 
even for non-uniform distributions. 

The above considerations lead us to consider 

(9) Rm = E [\dPm} 

as a measure of the extent of a distribution. Here, E denotes the mathematical  
expectation. Because the outcomes are independent and identically distributed, 
we have 

Letting m -+ ~ we obtain the measure of extent 

(11) Roo = lim Rm = M0[f, P ] .  

From (5) and (7) it will be seen tha t  {Rm} is a sequence which decreases mono- 
tonically from the range, R1, to M0 Iv, P]. 

I t  is interesting to note tha t  the approach to the coding theorems of informa- 
tion theory used by  K~I~CHIS~ [9], for example, utilizes the result that  

E [In [ dvm ~1/,~ \dPm]  ) = H[v,  P] .  

Equation (10) implies, on the other hand, tha t  

l _ r / d v ~  \~-t ,~ 1 
n, 'ltd,, ) 

This effect of interchanging the logarithm and expectation has been pointed out by 
1:r163 [10] in a somewhat different context. 

5. Digital Representation of Events 

In  many  situations digital data-processing systems are used to record and 
compute with the outcomes of random experiments. Frequently the experimenter 
will have some freedom in the choice of a way to record events. We wish to develop 
a way of comparing two different ways of recording the same event. 

Suppose that  a set A has the size v(A) 4= 0. The smaller A is, the more digits 
must  be recorded to specify A exactly. In  many  common situations, the number of 
digits necessary to specify A will be approximately -- log v(A), or possibly 
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- - log v (A) + constant. Now suppose tha t  there is another  method  of  recording A 
which assigns to A the size # (A)  =~ 0. This could occur either by  assigning the 
measures v (A) a n d / t  (A) to A directly, or by  mapping  the set A into two other sets 
of sizes v (A) and # (A). The difference in the number  of digits required in the two 
recording schemes is proport ional  to log/z (A) - -  log v (A). 

I f  /2 were a finite space with e lementary events A1, A2 . . . .  , the average 
difference in number  of digits in the two recording schemes would be proport ional  
to 

P ( A  d log ~(Ad 
v(Ad " 

I f / 2  is not  finite, we can form finer and finer part i t ions of  ~ and let the above 
expression pass to a limit. I f  the measures P , / z ,  v possess reasonable properties, 
this limit would be 

Thus A can be regarded as some measure of  the difference in storage requirements 
between the two recording methods associated with the measures # and v. 

I f  zJ = 0, the two methods of  recording events require the same average 
amount  of  digital storage space. This suggests the following. 

Definition 1. Let  (/2, s#, P)  be a probabi l i ty  space and let # and v be two 
equivalent  measures on ~/. The measures # and v are digitally equivalent ff the 
following integral exists and 

0 

I f  v is some natural  measure which is equivalent  to P we have seen tha t  v (/2) 
is a possible measure of  the extent  o f /2 .  I f  # is some other measure which is 
digitally equivalent  to v, then # (/2) is another  possible measure of  the extent  of/2.  
This suggests 

Definition 2. The intrinsic extent of the probabi l i ty  space (/2, ~/, P)  with 
respect to the measure v is 

K Iv] = i n f #  (/2), 

where the infimum is taken over the class of all measures which are digitally 
equivalent  to v. 

The intrinsic extent  can often be evaluated with the aid of  
Theorem 1. Let 0 < Mo Iv, P] < 0% where Mo is defined by (2). Then 

(13) K[v] = M0[v, P ] .  

This theorem follows easily f rom a theorem given by  IIoFFMA~ [11] in his 
derivation of  SzEcS's theorem. However,  a direct proof is short. Let  H = H[v,  P]  
= lnM0 [v, P].  I f  # is digitally equivalent to v we have 

f d# dv (/2) = dv ~ dP 

d~ H)  dP = eH f exp ( l n d ~  + ln ~ - 

e H 1 + In + In df i  -- H dP - - - -  e H . 

16" 



222 L.L. C~nm~LL: 

The inequality follows from the inequality eu >= 1 ~- u and the last equality 
follows from (12), the definition of H, and the fact tha t  P(/2) = 1. Thus for any # 
which is digitally equivalent to r, /z  (/2) ~ M0 [~, P]. Now consider the particular 
measure / t l  = M0 [~, P] P. I t  is easily shown tha t  #1 is digitally equivalent to 
and t h a t / z l  (/2) = M0 [~, P]. This completes the proof. 

I t  follows from (5) and (7) tha t  K[~] ~ ~(/2) with equality if and only if the 
distribution is uniform with respect to ~. 

Theorem 1 is closely connected with the coding theorem for a noiseless channel 
[12]. An essential par t  of the coding theorem states tha t  the minimum o f - -  ~ ~lnq~ 
is H = - -  ~ p~lnp~ when the minimization is performed subject to the constraint 
that  ~ q~ = 1. Theorem 1 states tha t  the minimum of ~ q~ subject to the con- 
straint ~ p~lnq~ = 0 is e ~. 

6. Special Properties 

In  this Section we mention some special properties of M0 If, P] which support 
the interpretation as a measure of extent. First the interpretation will be illu- 
strated by  a few special distributions. 

I f  D is a set of N points, each having probabili ty 1V-i, and ~ is counting 
measure, then M0 = N. I f  [2 is the interval a --< x _< b, if the probabili ty measure 
is determined by  the constant density function (b - -  a) -1, and if f is Lebesgue 
measure, then M0 = b - -  a. 

The normal or Gaussian probabili ty distributions in one and two dimensions 
also provide interesting illustrations. I f / 2  is the real line, ~ is Lebesgue measure, 
and P is the normal probabili ty distribution with mean m and standard deviat ion 
a, we have M0 = (2~e) 1/2 a. Thus the extent is proportional to the usual measure 
of spread, a. I f / 2  is the plane, ~ is Lebesgue measure in the plane, and the pro- 
bability distribution is the distribution of two normal random variables with 
standard deviations al  and a2 and correlation coefficient ~o, then 

M0 = 2~e( r ia2  V1 --  ~2. 

When the random variables are independent, so that  Q = 0, the extent is just the 
product of the extents of the two associated one dimensional distributions. 

There is another property of entropy which has a natural  interpretation in the 
present context. Let  X be a random variable with density function ] (x) and 
entropy (with respect to Lebesgue measure) 

o o  

g z  = - -  f / (x) ~n] (z) d~ .  
- - o o  

Let Y = a X  be a new random variable with density function l aI -1/ (a- ly) .  The 
entropy of Y is given by 

g y  -~- Hx d- l n l a  I �9 

In  terms of the extents this equation becomes 

Mo [~, Py] = ] a [ Mo [~, Px] . 

That  is, the extent has been multiplied by the scale factor l a l, as would be 
expected. 
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Finally,  there are two results due to I-IltCSCrr~tA~r [13] which are significant in 
this context.  The first relates M0 to the moments  and the second shows tha t  there 
is an uncer ta in ty  relation similar to the uncer ta in ty  relation for s tandard  deviations. 
Let  /(x) be a probabi l i ty  densi ty  funct ion and let 

q) = [ f  [ x - I �9 

- - o o  

I f  v is Lebesgue measure and P is the probabil i ty measure associated with ] (x), 
one of  I-IIRSeJ~AN's inequalities becomes 

Mo Iv, P] < 2 q(1-q)/q el/q ./ '(q-l) m (a, q). 

For  the second result, let 

and let 

o o  

T(x) ,,~ ~ q5 (y) e2~i~y dy 
- -  r  

c o  o o  

 l l dx= Sl 12dy = 1 .  
- - r  - - r  

Let  r be Lebesgue measure and let P1 and P2 be the probabi l i ty  measures asso- 
ciated with the densi ty  functions [~12 and ]~5 le. I n  our notat ion,  HmSCrfMAN's 
second result is t ha t  

M0 [v, P1] M0 [v, P2] > 1. 

This result  is an analogue of  the uncer ta in ty  principle of quan tum mechanics 
which makes a similar assertion about  the product  of two s tandard  deviations. 

7. The Significance of Small Values of Mt * 

I f  the s tandard  deviat ion of  a r andom variable is small it is a consequence of 
the T c ~ i c ~ r ~ v  inequal i ty  t h a t  mos t  of  the probabi l i ty  distr ibution of  the r andom 
variable is concentrated in some small interval  around the mean. I f  Mt [v, P]  is 
to be interpreted as a measure of  extent  one would expect similarly t h a t  a small 
value of  Mt Iv, P]  should imply  tha t  most  of  the probabi l i ty  measure is con- 
centrated on a set of  small v-measure. For  0 < t =_< 1 this is true. For  t = 0 this 
s ta tement  is no t  necessarily true. However,  if M0 [v, P]  is small, it  is possible to 
demonst ra te  the existence of  a set E such tha t  v (E)/P (E) is small. Thus, at  least 
some of  the probabi l i ty  measure is concentrated on a set of relatively small 
v-measure. 

First  we derive a pair  of  inequalities which are somewhat  analogous to  the 
TC~EBICJZEV inequality.  Let  

E c =  o ) : m e f 2 , ~ - v  (co) > c  

and let E2 be the complement  of Ec. Then, for 0 < t ~ 1, 

c-tp(Ec)  ~-.  ~c-tdP < .~ dP dP <= (Mt[v, p]) t .  
E* Et  

�9 The author is indebted to 1)rofessor A. R~r165 for pointing out the importance of the 
question which is treated in this section and for suggestfllg some of the results which are 
presented here. 
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Thus, 

(14) 

Also, 

P(Ec) ~= 1 - -  ( c M t )  t . 

cl-tv(Ec) ~= ~ ~ -  ~ dP ~= (Mt) ~. 
Ec 

Thus 

( c M t )  t 
(15) v(Ec) < 

= G " 

From the definition of Mt it follows tha t  dr/dP g Mt on some non-void set. 
Hence, as long as c < (Mr) -1, the set Ec is not  void. Thus, when 0 < t < 1, ff Mt 
is small there exists a set of  small r-measure whose probabil i ty is close to one. 

I f  t = 0, the inequalities (14) and (15) are still true, bu t  they  are trivial. Let  

E =  r ~ : c o + D , T F ( ~ ) < M 0  . 

Since 

l n M o =  Sln dp dP,  
a 

E is no t  void and P (E) > 0. Then 

dv 
v(E) = f ~ d P  <= MoP(E).  

Hence 

y ( E )  
(16) < M0.  P(E)  = 

Therefore, ff Mo is small, there exists a set whose v-measure is small relative to its 
probabil i ty measure. 

The fact  t h a t  the whole probabil i ty measure is not  necessarily concentrated 
on a set of small r-measure when M0 is small is easily shown by  an example. Let  v 
be Lebesgue measure and let Pn  be the probabil i ty measure which has the densi ty 
funct ion 

1 
n O < x <  2n 

1 /n(x) = 1 ~ < x < l  

0 otherwise.  

Then 

Mo [v, Pn] = n-lJ 2. 

For  large n, M0 is small, while the distr ibution is not  concentrated on a small set. 
However,  there is a set on which the distr ibution is relatively highly concentrated.  
For,  if  E is the interval (0, 1/2n), 

P(E) 
v(E) -- n. 
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I t  was remarked earlier t ha t  the range M1 is no t  always a good measure of 
ex ten t  because i t  is no t  sensit ive to var ia t ions  in  the probabi l i ty  density.  I t  

appears t h a t  M0 is too sensitive to the presence of sharp peaks in  the density.  
Possibly Mt for some in termedia te  value of t will prove to be more useful t h a n  

either M0 or M1. 
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