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Summary. The relation between the ergodic coefficient and deficiency re-
lative to the least informative experiment is investigated. The result is
applied to nonhomogeneous Markov chains (NMC’s). Our main result can
be described as follows: Given an NMC, define the experiments &Y for n= 1
consisting in observing the (n+j)-th state of the chain, the j-th state being the
unknown parameter. Then the chain is weakly ergodic if and only if for any
j, €Y converges as n— oo (with respect to deficiencies) to the least infor-
mative experiment. It is finally shown that in the homogeneous case, the rate
of convergence is always exponential.

1. Introduction

In [4] we studied the experiment &, obtained by observing the n-th state of a
finite Markov chain in order to obtain information about the initial state. As a
particular result it follows that &, converges to the least informative experiment
if and only if the Markov chain is ergodic. Here convergence means convergence
with respect to the deficiency introduced by LeCam [3]. It is furthermore
proved that the rate of convergence is exponential.

The present paper extends these results to the case of non-homogeneous
Markov chains (NMC’s) with arbitrary state spaces. This leads to a new
characterization of weak ergodicity of NMC’s.

The basic tool in our study is the ergodic coefficient introduced by Dobrugin
[1] and used in the study of weak ergodicity of NMC’s by e.g. Paz [6], Madsen
[5] and losifescu [2]. The relation between the ergodic coefficient and de-
ficiencies is derived using ideas from Torgersen [7]. A survey of the general
theory of deficiencies is given by Torgersen [8].

2. The Ergodic Coefficient and Deficiencies

Let 4 be a signed measure on some measurable space (y, /). By |/u|| we shall
mean the usual total variation norm.
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Let (y, /) and (%, #) be measurable spaces and let p be an .o/-measurable
measure on %, i.e. p is a real function on y X # such that

() p(x,-)is a signed measure on % for any xey

(ii) p(-,B)is an «/-measurable function for any Be4%.
We shall let the norm of an «/-measurable measure on # be given by

el =sup o x, ).

If p(x,-) for any xey is a probability measure on 4, then p will be called a
Markov kernel from (y, ) to (#%,4%). If in addition p does not depend upon x,
then p is called a constant Markov kernel.

Let P be a Markov kernel from (y, &) to (¥, %). The ergodic coefficient of
P,a(P), is given by

a(P)=1—7 sup |P(x,")=P(x",")|. 1)

x', x""ey
For convenience, we shall introduce the functional .*3(P)d=f 1—o(P).

Let P be a Markov kernel from (y, /) to (%, 4%). Then by losifescu [2] there
exists a constant Markov kernel E such that P=E+R and

IR[ <2¢&(P). @

Let P’ and P” be Markov kernels, respectively from (y, o) to (%, #) and from
(%, %B) to (Z,%). Then the composition P=P'P"” is defined to be the Markov
kernel from (y, &) to (&, %) defined by

P(x,C)=[P"(y,C)P'(x,dy); xey, Ce%. (3)
As is proved by Dobrusin [1]
e(P)=e(P)e(P"). (4)

The rest of this section is devoted to relating &(P) to the concept of
deficiencies, as defined by LeCam [3].

The deficiency 6(&, %) of an experiment & relative to an experiment %
measures the loss, under the least favorable conditions, by basing ourselves on &
rather than on % If 6(&, #)=0 then we say that & is more informative than &
and write this & = #

Let (@, ) and (y, &) be measurable spaces. Interpreting (x, .«) as the sample
space and @ as the parameter set, we shall let the experiment &, be defined by
Ep=(x, o, P(6,+); 0@), where P is a Markov kernel from (©, 7)) to (z, /). Let
now Q be a Markov kernel from (@,7) to (#,%), and assume that &5 is a
dominated experiment. Then, by Theorem 3 in LeCam [3], we have

0(8p, Eo)=inf[PM Q|

where infimum is taken over all almost Markov kernels M from (y, 27) to (%, %),

(see [8]).
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The Markov kernel PM is defined by (3), noting that the integration is valid
even if P”(y,*) is not a measure on (%, %).

Let # denote the least informative experiment, i.e. an experiment satisfying
&= % for any experiment & % may be represented by any experiment &p for
which P is a constant Markov kernel. & is obviously a dominated experiment.
Let Q be a Markov kernel from (@, 7)) to (%, %). Since P constant implies that
PM is a constant Markov kernel for any almost Markov kernel M, it is seen
that we have

HQ)=0(Z, 8= inf [P0 ©)

where infimum is taken over all constant Markov kernels P.
Let P be a Markov kernel from (©,7). The fundamental relation between
the ergodic coefficient and deficiencies is given by

e(P)I(P)=2¢(P). (6)

The right hand inequality of (6) follows from the considerations leading to (2).
The left hand inequality is proved as follows:

Let #>0. Then by (5) there is a constant Markov kernel Q@ such that
|P—Ql =I(P)+n. Let Q, denote the probability measure Q(6,). Then

(P(6,")—Qol ZI(P)+n  for all feo.
Hence, if 8 +=6"
[P, +) =P (0", )| =[P, ") = Qoll + | P(0",") — Qo l| 21 (P) +21.

From (1) follows, since # was arbitrarily chosen, that e(P)<I(P).

3. Application to Non-Homogeneous Markov Chains

By Dobrusin [1] (see also Iosifescu [2]), a non-homogeneous Markov chain
(NMC) can be considered as a sequence of measurable state spaces (x;» <) and
Markov kernels /P from (y;, o) to (;, 1,9, 1);j=0,1,2,.... Then "P(x;, 4, ,) is
the probability of being in 4;, €y, , at time j+ 1, conditional on being in x;ey;
at time j. The n-step transition probability /P” is a Markov kernel from (x> )
10 (4> ;4 0): j20, n21, defined by

ip"=(iP)(*1pP)...("+i~1Pp)

where composition of Markov kernels is defined by (3).

Following losifescu [2] we shall say that an NMC is weakly ergodic if
lim e(!P")=0 for all j=0.

Given an NMC we may for any j=0 define a sequence of experiments
{69}, where &Y is the experiment of observing the chain at time n+j, the
state at time j being the unknown parameter. Hence &Y is an experiment with
parameter space y; defined by the Markov kernel /P" from (y;,2/;) to

J
(Xn+j’ "Q{rx+j)'
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Theprem 1. An NMC is weakly ergodic if and only if for any j=0, the sequence
{6V},51 converges to the minimal informative experiment (with respect to de-
ficiencies ).

Proof. &7 is defined by 'P"*/. Hence 6(&, %) =I(P"*J), which by (6) tends to 0
as n— oo if and only if ¢(/P"*/) - 0. But this means by definition that the NMC
is weakly ergodic. [

We shall finally study homogeneous Markov chains (HMC). A HMC is
completely determined by a measurable state space (x,.«/) and a Markov kernel
P from (y,.+/) to (1,/). Now the n-step transition probabilities /P* equal P"
=PP ... P, so the sequences {§Y},., are identical for j=0,1,.... Hence it is
enough to consider the experiments c;“’n, n21, with parameter space y, and which
are given by the Markov kernel P". Theorem 1 immediately implies

Corollary 1. An HM C is weakly ergodic if and only if the sequence {&,} converges
to the minimal informative experiment.

From [4] it follows that this resuit holds if y is a finite set. Furthermore, [4]
proves that 6(%,&,) converges to 0 with exponential speed. The next theorem
extends this result to the case of general state space.

Theorem 2. Assume that the sequence {&,} is constructed from a HMC. If
0(&#,8,)—0 as n— o, then the rate of convergence is exponential.

Proof. Tt is by (6) enough to prove that &(P")—0 with exponential speed
whenever P defines a weakly ergodic HMC. Since by assumption ¢(P")—~0 we
must have e(P™)=n<1 for some ny=1. Then given n, choose i and 05j<n,
such that n=in,+j. By (4)

g(P")=¢(P™ ) < [e(P )] e(PY) S eyl

for some ¢>0 independent of n. The result follows.

References

1. Dobrusgin, R.L.: Central limit theorem for nonstationary Markov chains, I, II. Theor. Probability
Appl. 1, 65-80 and 329-383 (1956)

2. losifescu, M.: On two recent papers on ergodicity in nonhomogeneous Markov chains. Ann.
Math. Statist. 43, 1732-1736 (1972)

3. LeCam, L.: Sufficiency and approximate sufficiency. Ann. Math. Statist, 35, 1419-1455 (1964)

4. Lindqvist, B.: How fast does a Markov chain forget the initial state? A decision theoretical
approach. Scand. J. Statist, 4, 145-152 (1977)

5. Madsen, R.W.: A note on some ergodic theorems of A. Paz. Ann. Math. Statist, 42, 405-408
(1971)

6. Paz, A.: Ergodic theorems for infinite probabilistic tables. Ann. Math. Statist, 41, 539-550 (1970)

7. Torgersen, E.N.: Deviations from total information and from total ignorance as measures of
information. Statist. research report, Univ. of Oslo. (1976)

8. Torgersen, E.N.: Comparison of statistical experiments. Scand. J. Statist, 3, 186-208 (1976)

Received September 12, 1977



