Birthing Markov Processes at Random Rates

A.P. Sant'Anna
Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA and Instituto de Matematica, Universidade Federal do Rio de Janeiro, C.P. 1835-ZC00 Rio de Janeiro 20000, Brazil

Abstract

Summary. This paper studies processes constructed by birthing the trajectories of a given Markov process along time according to random probabilities. Getoor has considered the case where the random probabilities are determined by comultiplicative functionals and proved for right processes that the post-birth process has the Markov property. Here randomizations of comultiplicative functionals are described which give rise to conditionally Markov processes. The main argument is developed for general Markov processes and the transition probabilities of the new process, including those from the pre-birth state, are explicited.

1. Introduction

Meyer, Smythe and Walsh [5], Getoor [1] and Millar [6, 7] studied processes obtained by birthing Markov processes according to comultiplicative functionals and randomized coterminal times. Comultiplicative functionals, introduced in [1], are processes satisfying properties suggested by those of $1_{(L, \infty)}$ where L is a coterminal time. Such properties are dual of those of a multiplicative functional in the sense that, if we consider a space of finite trajectories, comultiplicative functionals may be seen as multiplicative functionals on the reverse process. Getoor uses this duality to birth Markov processes with comultiplicative functionals in a manner dual to that by which multiplicative functionals are used to kill processes. This naturally generalizes the results of [5] but does not include the processes considered in [6] and [7] involving times that are not cooptional. In this paper we describe a class of processes constructed through a kind of optional decision about cooptional processes, that comprises comultiplicative functionals together with processes like those determined by randomized coterminal times such as the time of the minimum or the maximum.

We work with a space of trajectories. The idea of birthing a process randomly through time is clarified by the use of a birth operator and the
embedding of the original space into a larger space where its trajectories are born at all possible times. After a section on notation, the properties of the birth operator are discussed in Section 2. The notions of comultiplicative functional and randomized comultiplicative functional are studied in Sections 4 and 5. In Section 6 we determine the distribution of the process born according with a randomized comultiplicative functional. Finally Section 7 generalizes Sections 4 of [1] and [6].

2. General Notations

E and E_{δ} will denote separable metric spaces with Borel σ-fields \mathscr{E} and \mathscr{E}_{δ} respectively. E_{δ} is obtained from E by adjoining an isolated point δ.
Ω_{0} will be the set of all right continuous paths ω from $[0, \infty)$ to E and Ω will be the set of all right continuous $\omega:[0, \infty) \rightarrow E_{\delta}$ such that $\omega_{s}=\delta$ for all $s \leqq t$ if ω_{t} $=\delta$.
$X_{t}: \Omega \rightarrow E_{\delta}$ will be the $t^{\text {th }}$ coordinate map. $\mathscr{F}_{t}^{0}=\sigma\left(X_{s}, s \leqq t\right) . ~ \mathscr{F}=\sigma\left(X_{s}, 0 \leqq s\right.$ $<\infty) . \mathscr{F}^{0}=\mathscr{F}_{\Omega_{0}} . \mathscr{E}^{*}, \mathscr{E}_{\delta}^{*}, \mathscr{F}^{*}$ and \mathscr{F}_{t} will be the universal completions of $E, E_{\delta}, \mathscr{F}$ and \mathscr{F}_{t}^{0} respectively. $\mathscr{F}_{t^{+}}^{0}=\bigcap_{u>t} \mathscr{F}_{u}^{0}$ and $\mathscr{F}_{t^{+}}=\bigcap_{u>t} \mathscr{F}_{u}$.

3. The Birth Operator

In addition to the well known shift operator θ, we will make use of the killing operator, denoted by k, defined in [5], and its dual, the birth operator $b=\left\{b_{t}\right.$: $\Omega \rightarrow \Omega\}_{t \in[0, \infty)}$ defined through

$$
\left[b_{s}(\omega)\right]_{t}= \begin{cases}\omega_{t} & \text { if } t \geqq s \\ \delta & \text { if } t<s\end{cases}
$$

The measurability of the birth operator will be important in the construction of the probability space on which the processes birthed at given rates will be defined. In order to prove it we will consider each subset of Ω decomposed according with the birth time of each element.

Let $[\delta]=b_{\infty}(\omega)$ be the trajectory in Ω with all coordinates equal to δ. Analogously, let $[\delta]_{s}$ denote the $\omega \in E^{[0, s)}$ with $\omega_{t}=\delta$ for all $t \in[0, s]$. For each $\Lambda \subset \Omega,[\delta]_{s} \times \Lambda$ will denote the subset of Ω whose projection on $E^{[0, s)}$ is $\left\{[\delta]_{s}\right\}$ and whose projection on $E^{[s, \infty)}$ is Λ, i.e., the set of $\omega \in \Omega$ such that $\omega_{r}=\delta$ for all $r<s$ and $\left(\omega_{s+i}\right)_{t \geqq 0} \in \Lambda$.

It is easy to see that

$$
\Omega=\Omega_{0} \cup\left[\bigcup_{s \in(0, \infty)}\left([\delta]_{s} \times \Omega_{0}\right)\right] \cup\{[\delta]\} .
$$

This may be extended to general measurable subsets of Ω in the following manner.

Proposition 3.1. For all $\Lambda \in \mathscr{F}, A=\Lambda_{0} \cup\left[\bigcup_{s \in(0, \infty)}^{\cup}\left([\delta]_{s} \times \Lambda_{s}\right)\right] \cup[\Lambda \cap\{[\delta]\}]$ where
for all $s \in \mathbb{R}_{+}, \Lambda_{s} \in \mathscr{F}^{0}$.

Proof. Let $\Lambda_{0}=\Lambda \cap \Omega_{0}$ and $\Lambda_{s}=\theta_{s}\left[\Lambda \cap\left([\delta]_{s} \times \Omega_{0}\right)\right]$, for all $s \in(0, \infty) . \Lambda \subset \Omega$ implies

$$
\begin{aligned}
\Lambda & =\Lambda \cap \Omega=\left[\Lambda \cap \Omega_{0}\right] \cup\left[\Lambda \cap\left(\bigcup_{s \in(0, \infty)}[\delta]_{s} \times \Omega_{0}\right)\right] \cup[A \cap\{[\delta]\}] \\
& =\Lambda_{0} \cup\left[\bigcup_{s \in(0, \infty)}\left([\delta]_{s} \times \Lambda_{s}\right)\right] \cup[\Lambda \cap\{[\delta]\}] .
\end{aligned}
$$

Clearly $\Lambda_{s} \subset \Omega_{0}$ for all $s \in \mathbb{R}_{+}$.
It is also clear that $\Lambda_{0} \in \mathscr{F}$.
$[\delta]_{s} \times \Omega_{0}=\left[X_{t}=\delta\right.$ for all $\left.t \in[0, s] \cap Q ; X_{s} \in E\right] \in \mathscr{F}$ implies $\Lambda \cap\left([\delta]_{n} \times \Omega_{0}\right) \in \mathscr{F}$ so that $\Lambda_{s}=\theta_{s}\left[\Lambda \cap\left([\delta]_{s} \times \Omega_{0}\right)\right] \in \mathscr{F}$. This concludes the proof.

We will want to look at Ω as the image of Ω_{0} by b. The following theorem deals with the measurability aspects of this approach.
Theorem 3.1. b : $[0, \infty] \times \Omega_{0} \rightarrow \Omega$ is $\mathscr{B} \times \mathscr{F}^{0} \mid \mathscr{F}$-measurable.

$$
(t, \omega) \mapsto b_{t}(\omega)
$$

Proof. Since \mathscr{F} is generated by $\left\{\Lambda \subset \Omega: A\right.$ is a cylinder of $\left.E_{\delta}^{\mathbb{R}+}\right\}$ it is enough to show that $b^{-1}(\Lambda \cap \Omega) \in \mathscr{B} \times \mathscr{F}^{0}$ for all Λ, cylinder of $E_{\delta}^{\mathbb{R}^{+}}$.

Let s_{1}, \ldots, s_{n} be the indices of the nontrivial coordinates of one such Λ.
Let $m=\inf \left\{i: \delta \notin s_{i}^{\text {th }}\right.$ coordinate of $\left.\Lambda\right\}$ with the convention $\inf \emptyset=\infty$.
For the sake of compactness, let us also adopt the symbols $s_{0}=0, s_{\infty}=\infty$, $[\delta]_{\infty} \times \Lambda_{\infty}=\{[\delta]\}$.

Then $A \cap \Omega=\Lambda_{0} \cup\left[\bigcup_{s \in\left(0, s_{m}\right)}\left([\delta]_{s} \times A_{s}\right)\right]$ with $\Lambda_{0}=A \cap \Omega_{0} \in \mathscr{F}$ and $[\delta]_{s} \times \Lambda_{s}$ $=\Lambda \cap \Omega \cap\left[X_{r}=\delta\right.$ for all $\left.r \in[0, s): X_{s} \in E_{\Delta}\right] \in \mathscr{F}$ for all $s \in(0, \infty]$ so that $\Lambda_{s} \in \mathscr{F}^{0}$ for all $s \in[0, \infty)$ and $\Lambda_{s}=b_{s_{i}}^{-1}\left([\delta]_{s_{i}-s} \times \Lambda_{s_{i}}\right)$ if $s \in\left(s_{i-1}, s_{i}\right)$ for all $i \in\{1, \ldots, n, \infty\}$.

Thus $\left.b^{-1}(A \cap \Omega)=\left(\{0\} \times A_{0}\right) \cup\left[\bigcup_{i=1}^{m}\left(s_{i-1}, s_{i}\right)\right] \times b_{s_{i}}^{-1}\left([\delta]_{s_{i}} \times A_{s_{i}}\right)\right]$ with $A_{s_{i}} \in \mathscr{F}$ for all $i \in\{1, \ldots, n\}$, so that $b^{-1}(\Lambda \cap \Omega) \in \mathscr{B} \times \mathscr{F}^{0}$.

4. Comultiplicative Functionals

A process $\left\{n_{t}\right\}_{t \geqq 0} \mathscr{E}^{*}$-measurable is a comultiplicative functional (comf) if and only if
(i) $0 \leqq n_{t} \leqq 1$ for all $t \geqq 0$
(ii) $n_{s} \circ \theta_{t}=n_{s+t}$ for all $t \geqq 0, s>0$
(iii) $n_{s}=n_{s} \circ k_{t} \times n_{t}$ for all $t \geqq s>0$
(iv) $n_{t} \circ k_{s}=1$ for all $t>s$.

If $\left\{n_{t}\right\}$ is right continuous, properties (ii) and (iii) extend to $s=0$.
Left continuous comf are more likely to arise. For instance, for all coterminal time $L, n_{t}=1_{[L<t]}$ defines a left continuous comf. With \leqq instead of $<$ we would still have (i), (ii) and (iv) but instead of (iii) we would have
(iii) $\quad n_{s}=\lim _{u \downarrow t} n_{s} \circ k_{u} \times n_{t} \quad$ for all $t \geqq s \geqq 0$.

Proposition 4.1. If $\left\{n_{t}\right\}_{t \geqq 0}$ is a comf and $n_{t^{+}}=\lim _{u \downarrow t} n_{u}$ for all $t \geqq 0$, then $\left\{n_{t^{+}}\right\}_{t \geqq 0}$ satisfies (iii)'.

Proof. For all $u>s \geqq 0$,

$$
\begin{aligned}
n_{s^{+}}=\lim _{v \downarrow s} n_{v} & =\lim _{v \downarrow s} n_{v} \circ k_{u} \times n_{u} \quad \text { by (iii) } \\
& =n_{s^{+}} \circ k_{u} \times n_{u} .
\end{aligned}
$$

Then for all $t \geqq s \geqq 0$,

$$
\begin{aligned}
n_{s^{+}} & =\lim _{u \downarrow t} n_{s^{+}} \circ k_{u} \times \lim _{u \downarrow t} n_{u} \\
& =\lim _{u \downarrow t} n_{s^{+}} \circ k_{u} \times n_{t^{+}} \quad \text { Q.E.D. }
\end{aligned}
$$

From Proposition 4.1 it follows immediately that every right continuous comf satisfies (iii)'.

More general processes are described replacing condition (ii) by
(ii)' $n_{t} \circ b_{t}=n_{t}$ for all $t \geqq 0$, or equivalently
(ii)" $n_{t} \circ b_{s}=n_{t}$ for all $t \geqq s \geqq 0$.

5. Randomized Comultiplicative Functionals

Consider a set H of $\mathscr{F}^{*} \mid \mathscr{B}$-measurable functions from Ω into [0, 1] and a process $\left(Z_{t}\right)$ with values in H. Assume the existence of a σ-field \mathscr{H} in H such that
a) Z_{t} is $\mathscr{F}_{t^{+}} \mid \mathscr{H}$-measurable for all $t \geqq 0$ and
b) $(h, \omega) \mapsto h(\omega)$ defines a $\mathscr{H} \times \mathscr{F}^{*} \mid \mathscr{B}$-measurable function on $H \times \Omega$.

Let $n_{t}(\omega)=\left[Z_{t}(\omega) \circ \theta_{t}\right](\omega)$ for all $\omega \in \Omega$ and all $t \geqq 0$.
For instance, $n_{t}=1_{[T \leqq t]}$ if $Z_{t}(\omega): \omega^{\prime} \mapsto 1_{\left[T\left(\phi\left(\omega, \omega^{\prime}\right)\right) \leqq t\right]}$ where

$$
\left[\phi\left(\omega, \omega^{\prime}\right)\right]_{s}=\left\{\begin{array}{ll}
\omega_{s} & \text { if } s<t \\
\omega_{s-t}^{\prime} & \text { if } s \geqq t
\end{array} \quad \text { for all } \omega, \omega^{\prime} \in \Omega\right.
$$

for any random time T.
Let $n(s, t)=\lim _{u \downarrow t} n_{s} \circ k_{u}$.
Assumption 5.1. $n_{s}=n(s, t) \times n_{t}$ for all $s \leqq t$.
Assumption 5.2. $Z_{t} \neq Z_{t} \circ b_{s} \Rightarrow n_{t}=n_{s}$ for all $s \leqq t$.
Assumption 5.3. n is $\mathscr{B} \times \mathscr{F}^{*} \mid \mathscr{B}$-measurable.
Any \mathscr{F}^{*}-measurable process n satisfying conditions (i), (ii)' and (iii)' of the last section can be described in the above terms with $Z_{t}(\omega)$ the same for all ω. In fact, in this case, $Z_{t}(\omega)=n_{t} \circ \theta_{t}^{-}$for all ω, with θ_{t}^{-}defined by

$$
\left[\theta_{t}^{-}(\omega)\right]_{s}=\left\{\begin{array}{ll}
\omega_{s-t} & \text { if } s \geqq t \\
\delta & \text { if } s<t
\end{array} \quad \text { for all } \omega .\right.
$$

If, in addition, (ii) is satisfied then $Z_{t}(\omega)=n_{0}$ for all t and ω.

6. The Distribution of the Process Birthed at a Random Rate

Let P denote a Borel transition function on (E, \mathscr{E}^{*}). Let μ denote a distribution on (E, \mathscr{E}) and P^{μ} (or E^{μ}) a distribution on $(\Omega, \mathscr{F} *)$ that makes $\left(X_{t}\right)_{t \geqq 0}$ Markov with respect to $\left\{\mathscr{F}_{t}\right\}_{t \geq 0}$ with transition function P and initial distribution μ. P_{n}^{μ} will denote the P^{μ}-distribution of the process obtained by birthing $\left(X_{t}\right)$ at different times at a rate given by n. For example, if $n_{t}=1_{[L \leqq t]}$ for a random time L, then P_{n}^{μ} will be the P^{μ}-distribution of the right continuous process

$$
\tilde{X}_{t}= \begin{cases}X_{t} & \text { if } t \geqq L \\ \delta & \text { if } t<L\end{cases}
$$

P_{n}^{μ} is obtained from P^{μ} by relocating the mass at each $\omega \in \Omega_{0}$ along $\left\{b_{t}(\omega)\right\}_{t \in[0, \infty]}$ according to the measure α_{ω} defined on $[0, \infty]$ by $\alpha_{\omega}([0, t])=\lim _{u \downarrow t} n_{u}(\omega)$.

More formally, P_{n}^{μ} is defined by $P_{n}^{\mu}(A)=E^{\mu} Z_{A}$ where $Z_{A}: \omega \mapsto \alpha_{\omega}(\{t:$ $\left.b_{t}(\omega) \in A\right\}$) for all $\Lambda \in \mathscr{F}$. Equivalently, since $Z_{A}(\omega)=\int_{[0, \infty]} 1_{A} \circ b_{t}(\omega) d n_{t}(\omega), E_{n}^{\mu}$ is defined by

$$
\begin{equation*}
E_{n}^{u}(Y)=E^{\mu} \int_{[0, \infty]} Y \circ b_{t} d n_{t} \tag{*}
\end{equation*}
$$

for all $Y: \Omega \rightarrow \mathbb{R}, \mathscr{F}$-measurable, bounded.
For all $n:[0, \infty) \times \Omega_{0} \rightarrow[0,1], \mathscr{B} \times \mathscr{M}$-measurable for some σ-field $\mathscr{M} \supset \mathscr{F}{ }^{0}$ and with nondecreasing trajectories, $(\omega,[0, t]) \mapsto n_{t}(\omega)$ defines a transition probability from $\left(\Omega_{0}, \mathscr{M}\right)$ to $([0, \infty], \mathscr{B})$, so that, if P^{μ} is a distribution on $\mathscr{M}, P^{\mu} \otimes d n_{t}$ is a distribution on $\mathscr{B} \times \mathscr{M}$ and $E^{\mu} \int_{[0, \infty]} W_{t} d n_{t}$ is defined for all $W \mathscr{B} \times \mathscr{M}$-measurable, bounded. Since, by Theorem $3.1, b$ is $\mathscr{B} \times \mathscr{H} \mid \mathscr{F}$-measurable, $Y \circ b$ is \mathscr{B} $\times \mathscr{M} \mid \mathscr{B}$-measurable for all $Y \mathscr{F} \mid \mathscr{B}$-measurable. Thus (*) defines a probability on \mathscr{F} for all nondecreasing $n:[0, \infty) \times \Omega_{0} \rightarrow[0,1] \mathscr{B} \times \mathscr{M}$-measurable, for every $\mathscr{M} \supset \mathscr{F}^{0}$ to which P^{μ} may be extended (in particular, for $\mathscr{M}=\mathscr{F}^{*}$).

From now on, Z and n will be as in Section 5. Y and f will be bounded random variables \mathscr{F}^{*} - and \mathscr{E}_{δ}^{*}-measurable respectively. $\left\{\mathscr{M}_{t}\right\}$ will be a family of σ-fields with $\mathscr{\mathscr { F }}_{t}^{0} \subset \mathscr{M}_{t} \subset \mathscr{F}_{t}^{+}$for all t, such that $\left(Z_{t}\right)_{i \geqq 0}$ is adapted to $\left\{\mathscr{M}_{t}\right\}_{t \geqq 0}$ and $\left(\mathrm{X}_{t}\right)_{t \geqq 0}$ is Markov with respect to $\left\{\mathscr{M}_{t}\right\}_{t \geqq 0}$.

Let $K^{t, x, h}(Y)=\frac{E^{t, x}(Y \times h)}{E^{t, x}(h)}$ for all $h \in H, x \in E, t \in[0, \infty)$, with the convention $\frac{0}{0}$ $=0 . E^{t, x}$ is defined as usual through $E^{t, x} f\left(X_{s}\right)=P_{t, s} f(x)$.
$E^{t, X_{t}}(Y)$ will denote the mapping $\omega \mapsto E^{t, X_{t}(\omega)}(Y)$. Also $K^{t, X_{t}, Z_{t}}(Y)$ will denote the mapping $\omega \mapsto K^{t, X_{t}(\omega), Z_{t}(\omega)}(Y)$. The superscript μ will be omitted in the expressions involving $E^{\mu}, P^{\mu}, E_{n}^{\mu}$ and P_{n}^{μ}.

Let $K^{t, \delta, Z_{t}}(Y)=\frac{E_{n}\left(\left[X_{t}=\delta\right] ; Y \circ \theta_{t}\right)}{P_{n}\left[X_{t}=\delta\right]}$ for all $t \in[0, \infty)$.
Let $K_{s, t}(x, f)=K^{s, x, Z_{s}}\left[f\left(X_{t}\right)\right]$ for all $s, t \in[0, \infty)$ and all $x \in E_{\delta}$.
Lemma 6.1. $E\left[Y \circ \theta_{t} \times n_{t} \mid \mathscr{M}_{t}\right](\omega)=E^{t, X_{t}(\omega)}\left[Y \times Z_{t}(\omega)\right]$ for P-a.a. ω.
Proof. $E\left[Y \circ \theta_{t} \times n_{t} \mid \mathscr{M}_{t}\right](\omega)=E\left\{\left[Y \times Z_{t}(\omega)\right] \circ \theta_{t} \mid \mathscr{M}_{t}\right\}(\omega)$

$$
=E^{t, X_{t}(\omega)}\left[Y \times Z_{t}(\omega)\right] \text { for P-a.a. } \omega .
$$

In fact for all $\phi: H \times \Omega \rightarrow \mathbb{R}, \mathscr{H} \times \mathscr{F}^{*}$-measurable,
$E\left[\phi\left(Z_{t}, \theta_{t}\right) \mid \mathscr{M}_{t}\right](\omega)=E^{t, X_{t}(\omega)}\left[\phi\left(Z_{t}(\omega), \theta_{0}\right)\right] \quad$ for P-a.a. ω.
It is enough to show this for $\phi=1_{A \times B}, A \in \mathscr{H}, B \in \mathscr{F}^{*}$. In this case, for all $W \mathscr{H}_{i}^{-}$ measurable,

$$
E\left[W \phi\left(Z_{t}, \theta_{t}\right)\right]=E\left[W 1_{A}\left(Z_{t}\right) P^{t, X_{t}}(B)\right]
$$

and

$$
\begin{aligned}
E^{t, X_{t}(\omega)}\left[\phi\left(Z_{t}(\omega), \theta_{0}\right)\right] & =E^{t, X_{t}(\omega)}\left\{1_{A}\left[Z_{t}(\omega)\right] \times 1_{B}\right\} \\
& =1_{A}\left[Z_{t}(\omega)\right] \times P^{t, X_{t}(\omega)}(B) \quad \text { for } P \text {-a.a. } \omega .
\end{aligned}
$$

Lemma 6.2. For all \mathscr{M}_{t}-measurable random variable W_{i},

$$
E_{n}\left[W_{t} \times\left(Y 1_{\Omega_{0}}\right) \circ \theta_{t}\right]=E_{n}\left[\left[X_{t} \in E\right] ; W_{t} \times K^{t, X_{t}, Z_{t}}(Y)\right]=E V_{t}
$$

where V_{t} is defined in Ω_{0} by

$$
V_{t}(\omega)=\left[\int_{[0, t]} W_{t} \circ b_{r} d \eta(r)\right](\omega) \times E^{t, X_{r}(\omega)}\left[Z_{t}(\omega) \times Y\right]
$$

η denoting the distribution on $[0, t]$ determined by $\eta([0, r])=n(r, t)$.
Proof. We want to show that

$$
\begin{aligned}
E \int_{[0, t]}\left[W_{t} \times\left(Y 1_{\Omega_{0}}\right) \circ \theta_{t}\right] \circ b_{r} d n_{r}= & E \int_{[0, t]}\left\{W_{t} \times 1_{\left[X_{t} \in E\right]} \times K^{t, X_{t}, Z_{t}}(Y)\right\} \circ b_{r} d n_{r} \\
= & E V_{t} \\
E \int_{[0, t]}\left[W_{t} \times\left(Y 1_{\Omega_{0}}\right) \circ \theta_{t}\right] \circ b_{r} d n_{r}= & E\left\{Y \circ \theta_{t} \int_{[0, t]} W_{t} \circ b_{r} d n_{r}\right\} \\
= & E\left\{Y \circ \theta_{t} \times n_{t} \times \int_{[0, t]} W_{t} \circ b_{r} d \eta(r)\right\} \\
& \text { by Assumption } 5.1 \\
= & E V_{t} \text { by Lemma 6.1. }
\end{aligned}
$$

On the other side,

$$
\begin{array}{rlrl}
E & \int_{[0, t]}\left\{W_{t} \times 1_{\left[X_{t} \in E\right]} \times K^{t, X_{t}, Z_{t}}(Y)\right\} \circ b_{r} d n_{r} \\
& =E \int_{[0, t]} W_{t} \circ b_{r} \times K^{t, X_{t}, Z_{t}}(Y) d n_{r} & & \text { by Assumption } 5.2 \\
& =E \frac{V_{t}}{E^{t, X_{t}}\left(Z_{t}\right)} \times n_{t} & & \text { by Assumption } 5.1 \\
& =E V_{t} & & \text { by Lemma } 6.1 .
\end{array}
$$

Proposition 6.1. $K_{s, t-s}(\delta, f)=\frac{E\left[f\left(X_{t}\right)\left(n_{t}-n_{s}\right)\right]+\left(1-E n_{t}\right) f(\delta)}{1-E n_{s}}$ for all $s \leqq t \in[0, \infty)$.

Proof. We must show that

$$
\begin{aligned}
E_{n}\left\{\left[X_{s}=\delta\right] ; f\left(X_{t}\right)\right\}= & E\left[f\left(X_{t}\right)\left(n_{t}-n_{s}\right)\right]+\left(1-E n_{t}\right) f(\delta) \\
E_{n}\left\{\left[X_{s}=\delta\right] ; f\left(X_{t}\right)\right\}= & E_{n}\left[f\left(X_{t}\right)\right]-E_{n}\left\{\left[X_{s} \in E\right] ; f\left(X_{t}\right)\right\} \\
= & E_{n}\left\{\left[X_{t} \in E\right] ; f\left(X_{t}\right)\right\}+P_{n}\left[X_{t}=\delta\right] \times f(\delta) \\
& -E_{n}\left\{\left[X_{s} \in E\right] ; f\left(X_{t}\right)\right\} \\
E_{n}\left\{\left[X_{t} \in E\right] ; f\left(X_{t}\right)\right\}= & E\left[f\left(X_{t}\right) \times n_{t}\right] \quad \text { by Lemma 6.2. }
\end{aligned}
$$

Also $E_{n}\left\{\left[X_{s} \in E_{s}\right] ; f\left(X_{t}\right)\right\}=E\left[f\left(X_{t}\right) \times n_{s}\right]$ by Lemmas 6.1 and 6.2. Finally

$$
\begin{aligned}
P_{n}\left[X_{t}=\delta\right] & =1-P_{n}\left[X_{t} \in E\right] \\
& =1-E n_{t} \quad \text { by Lemma 6.2 }
\end{aligned}
$$

Theorem 6.1. Under $P_{n}^{\mu},\left(X_{t}\right)_{t \geqq 0}$ is conditionally Markov with respect to $\left\{\mathscr{M}_{t}\right\}_{t \geqq 0}$ given $\left(Z_{t}\right)_{t \geq 0}$ with transition function K and entrance law given by $P_{n}\left[X_{t} \in A\right]$ $=E\left(\left[X_{t} \in A\right] ; n_{t}\right)$ for all $A \in \mathscr{E}$.
Proof. The P_{n}-distribution of X_{t} is given in Lemma 6.2 considering $W_{t}=1_{A}\left(X_{t}\right)$, $A \in \mathscr{E}$ and $Y=1_{\Omega_{0}}$. Notice that then

$$
V_{t}(\omega)=1_{A}\left(X_{i}\right) \times E^{t, X_{t}(\omega)}\left[Z_{t}(\omega)\right]
$$

so that $P_{n}\left[X_{t} \in A\right]=E\left(\left[X_{t} \in A\right] ; n_{t}\right)$ by Lemma 6.1.
The conditional Markov property is

$$
E_{n}\left[W_{t} \times\left(Y \circ \theta_{t}\right)\right]=E_{n}\left[W_{t} \times K^{t, X_{t}, Z_{t}}(Y)\right]
$$

for all bounded random variables W_{t} and $Y, \mathscr{M}_{t^{-}}$and \mathscr{F}^{*}-measurable respectively.

It was proved before that

$$
E \int_{[0, t]}\left[W_{t} \times\left(Y \circ \theta_{t}\right)\right] \circ b_{r} d n_{r}=E \int_{[0, t]}\left[W_{t} \times K^{t, X_{t}, Z_{t}}(\omega)\right] b_{r} d n_{r}
$$

$W_{t} \circ b_{r}(\omega)=W_{t}([\delta])$ for all ω if $r>t$, because $\left[X_{t}=\delta\right]$ is an atom of $\mathscr{F}_{t^{+}}$by right continuity of the elements of Ω.

Then

$$
E \int_{(t, \infty]}\left[W_{t} \times\left(Y \circ \theta_{t}\right)\right] \circ b_{r} d n_{r}=W_{t}([\delta]) E^{\mu} \int_{\{t, \infty]} Y \circ \theta_{t} \circ b_{r} d n_{r} .
$$

Also

$$
\begin{aligned}
E \int_{(t, \infty]}\left[W_{t} \times K^{t, X_{t}, Z_{t}}(Y)\right] \circ b_{r} d n_{r} & =W_{t}([\delta]) \times K^{t, \delta, Z_{t}}(Y) \times E\left(1-n_{t}\right) \\
& =W_{t}([\delta]) \times K^{t, \delta, Z_{t}}(Y) \times P_{n}\left[X_{t}=\delta\right] \\
& =W_{t}([\delta]) \times E_{n}\left\{\left[X_{t}=\delta\right] ; Y \circ \theta_{t}\right\}
\end{aligned}
$$

Thus the proof is concluded if

$$
E_{n}\left\{\left[X_{t}=\delta\right] ; Y \circ \theta_{t}\right\}=E \int_{(t, \infty]} Y \circ \theta_{t} \circ b_{r} d n_{r}
$$

which follows from $X_{t}\left(b_{r}(\omega)\right) \in E$ for all $r \in[0, t]$ and all $\omega \in \Omega_{0}$.

7. The Post-Birth Process

The next results will refer to the process $\left(X_{\alpha+t}\right)_{t>0}$ where $\alpha=\inf \left\{t: X_{t} \in E\right\}$. In the case of a comultiplicative functional n constructed from a coterminal time L, $X_{\alpha+t}{ }^{\circ} b_{L}=X_{L+t}$ and the P_{n}^{μ}-mass on $b_{L}(\omega)$ is the P^{μ}-mass on ω so that $\left(X_{\alpha+t}\right)_{t>0}$ under P_{n}^{μ} has the same distribution of $\left(X_{L+t}\right)_{t>0}$ under P^{μ}.

Let $\alpha_{i}=\inf \left\{\frac{k}{2^{i}}: \alpha \leqq \frac{k}{2^{i}}, k \in \mathbb{N}\right\}$ for all $i \in \mathbb{N}$.
Proposition 7.1. α and α_{1} for all i are stopping times with respect to $\left\{\mathscr{F}_{t}^{0}\right\}_{t \in[0, \infty)}$.
Proof. $[\alpha \leqq t]=\left[X_{t} \in E\right] \in \mathscr{F}_{t}{ }^{0}$.

$$
\left[\alpha_{i} \leqq t\right]=\bigcup_{\frac{k}{2^{i}}<t}\left[\alpha_{i}=\frac{k}{2^{i}}\right] \text { and }\left[\alpha_{i}=\frac{k}{2^{i}}\right]=\left[\alpha \leqq \frac{k}{2^{i}}\right] \cap\left[\alpha>\frac{k-1}{2^{i}}\right] \in \mathscr{F}_{\frac{k}{2^{i}}}^{0} .
$$

Proposition 7.2. Under $P_{n}^{\mu},\left(X_{\alpha_{i}+t}\right)_{t \geqq 0}$ is, given $\left(Z_{t}\right)_{t \geqq 0}$, Markov with respect to $\left\{\mathscr{M}_{\alpha_{i}+t}\right\}_{t \geqq 0}$ with K as transition function.
Proof. It is enough to show that for all s and all bounded random variables W $\mathscr{A}_{\alpha_{i}+s}$-measurable,

$$
E_{n}\left(W \times Y \circ \theta_{\alpha_{i}+s}\right)=E_{n}\left(W \times K^{\left.\alpha_{i}+s, X_{\alpha_{i}+s}, Z_{\alpha_{i}+s}(Y)\right)}\right.
$$

Let $J_{k}=1{\left[\alpha_{i}=\frac{k}{2^{i}}\right]}$ for each $k \in \mathbb{N}$.

$$
\begin{aligned}
E_{n}\left[W \times Y \circ \theta_{\alpha_{i}+s}\right] & =\sum_{k=0}^{\infty} E_{n}\left[W J_{k} Y \circ \theta_{\alpha_{i}+s}\right] \\
& =\sum_{k=0}^{\infty} E_{n}\left[W J_{k} Y \circ \theta_{\frac{k}{2 i}+s}^{2^{i}}\right] \quad \text { by Theorem } 6.1 \\
& =\sum_{k=0}^{\infty} E_{n}\left[W J_{k} K^{\frac{k}{2^{i}}+s, x \frac{k}{2^{i}}+s, Z_{2^{i}}^{k}+s}(Y)\right] \\
& =\sum_{k=0}^{\infty} E_{n}\left[W J_{k} K^{\alpha_{i}+s, X_{\alpha_{i}+s}, Z_{\alpha_{i}+s}}(Y)\right] \\
& =E_{n}\left[W \times K^{\alpha_{i}+s, X_{\alpha_{i}+s}, Z_{\alpha_{i}+s}}(Y)\right]
\end{aligned}
$$

Let us now suppose P a homogeneous transition function and $\left(X_{t}\right)$ a right process under P^{μ} (as defined in [8] or [2]).

Theorem 7.1. If $\left(n_{t}\right)_{t \geqq 0}$ is right continuous, then $\left(X_{\alpha+t}\right)_{t>0}$ is, given $\left(Z_{t}\right)_{t \geqq 0}$, Markov with respect to $\left\{\mathscr{F}_{\alpha+t^{+}}\right\}_{t>0}$ with transition function K.
Proof.
$E_{n}\left[f\left(X_{\alpha+i}\right) \mid \mathscr{F}_{\alpha+s^{+}}\right]=\lim _{i \rightarrow \infty} E_{n}\left[f\left(X_{\alpha_{i}+i}\right) \mid \mathscr{F}_{\alpha_{i}+s^{+}}\right]=\lim _{i \rightarrow \infty} K^{X_{\alpha_{i}+s}} Z_{\alpha_{i}+s}\left[f\left(X_{t-s}\right)\right]$
by Proposition 7.2 for all continuous f.
Then the theorem is proved if we show that
a) for all sequences of $\left\{\mathscr{F}_{t}+\right\}$-stopping times $\left\{T_{i}\right\}_{i \in \mathbb{N}}$, if $T_{i} \downarrow T \geqq \alpha$, then, for all r, all continuous f and P_{n}-a.a. ω,

$$
E^{X_{T_{i}}(\omega)}\left[f\left(X_{r}\right)\left[Z_{T_{i}}(\omega)\right]_{0}\right] \rightarrow E^{X_{T}(\omega)}\left[f\left(X_{r}\right)\left[Z_{T}(\omega)\right]_{0}\right]
$$

and
b) for all $s \in(0, \infty), P_{n}\left\{\omega: E^{X_{\alpha+s}(\omega)}\left[Z_{\alpha+s}(\omega)\right]_{0}=0\right\}=0$.
a) The P^{μ}-a.s. right continuity of $\left(n_{t}\right)$ gives

$$
f\left(X_{r+T_{i}}\right) n_{T_{i}} \rightarrow f\left(X_{r+T}\right) n_{T} P^{\mu} \text {-a.s. } \quad \text { as } T_{i} \downarrow T
$$

Then

$$
E\left[f\left(X_{r+T_{i}}\right) n_{T_{i}} \mid \mathscr{F}_{T_{i}}\right] \rightarrow E\left[f\left(X_{r+T}\right) n_{T} \mid \mathscr{F}_{T}\right]
$$

i.e.,

$$
E^{X_{T_{i}}(\omega)}\left[f\left(X_{r}\right)\left[Z_{T_{i}}(\omega)\right]_{0}\right] \rightarrow E^{X_{t}(\omega)}\left[f\left(X_{r}\right)\left[Z_{T}(\omega)\right]_{0}\right]
$$

for P^{μ}-a.a. ω.
Finally, since

$$
\begin{aligned}
& 1_{\left\{\omega: E^{X_{T}(\omega)}\left[f\left(X_{r}\right)\left[Z_{T_{t}}(\omega)\right]_{0}\right] \rightarrow E^{X T(\omega)}\left[f\left(X_{r}\right)\left[Z_{T}(\omega)\right]_{0}\right], T(\omega) \geqq \alpha\right\}} \circ b_{s} \\
& \quad=1_{\left\{\omega: E^{X_{T}(\omega)}\left[f\left(X_{r}\right)\left[Z_{T_{t}}(\omega)\right]_{0}\right] \rightarrow E^{X_{T}(\omega)}\left[f\left(X_{r}\right)\left[Z_{T}(\omega)\right]_{0}\right], T(\omega) \geqq \alpha\right\}}
\end{aligned}
$$

for all $s \in \mathbb{R}_{+}$,

$$
\begin{aligned}
& P_{n}\left\{\omega: E^{X}{T_{i}(\omega)}\left[f\left(X_{r}\right)\left[Z_{T_{i}}(\omega)\right]_{0}\right] \rightarrow E^{X_{T}(\omega)}\left[f\left(X_{r}\right)\left[Z_{T}(\omega)\right]_{0}\right]\right\} \\
& \quad=P\left\{\omega: E^{X_{T_{i}}(\omega)}\left[f\left(X_{r}\right)\left[Z_{T_{i}}(\omega)\right]_{0}\right] \rightarrow E^{X_{T}(\omega)}\left[f\left(X_{r}\right)\left[Z_{T}(\omega)\right]_{0}\right]\right\}
\end{aligned}
$$

if $T \geqq \alpha$.
b) Let \mathscr{F}_{T}^{μ} denote the completion of \mathscr{F}_{T} with respect to P^{μ} for all time T. Let $\left(Y_{t}\right)_{t \geq 0}$ be a $\left\{\mathscr{F}_{t}^{\mu}\right\}$-optional process such that for all finite $\left\{\mathscr{F}_{t}^{\mu}\right\}$-optional time T, $Y_{T}=E\left(n_{T} \mid \mathscr{F}_{T}^{\mu}\right)$. The existence of such a process is proved in [4], for instance.

By the same argument used in a) for all sequences $\left\{T_{i}\right\}_{i \in \mathbb{N}}$ of $\left\{\mathscr{F}_{t}^{\mu}\right\}$-stopping times, if $T_{i} \downarrow T$, then $Y_{T_{i}} \downarrow Y_{T}$.

Then, by a theorem of Mertens [3], $\left(Y_{t}\right)_{t>0}$ is a right continuous process.
Thus $S=\inf \left\{t>\alpha, Y_{t}=0\right\}$ is a $\left\{\mathscr{F}_{t}^{\mu}\right\}$-stopping time and $Y_{S}=0$.

$$
\begin{aligned}
P_{n}[S<\infty] & =E \int_{[0, \infty]} 1_{[S<\infty]} \circ b_{s} d n_{s} \\
& =E\left([S<\infty], n_{\alpha}\right) \\
& \leqq E\left([S<\infty], n_{S}\right) \\
& =E\left(\left[S<\infty, Y_{S}=0\right] ; n_{S}\right) \\
& =E\left(\left[S<\infty, Y_{S}=0\right] ; Y_{S}\right)=0
\end{aligned}
$$

Then $P_{n}\left[Y_{\alpha+s}=0\right.$ for some $\left.s>0\right]=0$.
This implies $P_{n}\left(\left\{\omega: E^{X_{\alpha+s}(\omega)}\left[Z_{\alpha+s}(\omega)\right]_{0}=0\right\}\right)=0$ for all $s \in(0, \infty)$ because

$$
\begin{aligned}
P_{n}\left(\left\{\omega: Y_{s}(\omega)\right.\right. & \left.\left.\neq E^{X_{\alpha+s}(\omega)}\left[Z_{\alpha+s}(\omega)\right]_{0}\right\}\right) \\
& =E\left[\left\{\omega: Y_{s}(\omega) \neq E^{X_{\alpha+s}(\omega)}\left[Z_{\alpha+s}(\omega)\right]_{0}\right\} ; n_{\alpha}\right] \\
& \leqq P\left(\left\{\omega: Y_{s}(\omega) \neq E^{X_{\alpha+s}(\omega)}\left[Z_{\alpha+s}(\omega)\right]_{0}\right\}\right)=0 .
\end{aligned}
$$

References

1. Getoor, R.K.: Comultiplicative functionals and the birthing of a Markov process. Z. Wahrscheinlichkeitstheorie verw. Gebiete 32, 245-259 (1975)
2. Getoor, R.K.: Markov Processes: Ray Processes and Right Processes. Lecture Notes in Mathematics 440. Berlin-Heidelberg-New York: Springer 1975
3. Mertens, J.F.: Sur la théorie des processus stochastiques. C.R. Acad. Sci. Paris 268, 495-496 (1969)
4. Meyer, P.A.: Probability and Potential. Waltham-Toronto-London: Blaisdell 1966
5. Meyer, P.A.: Smythe, R.T. and Walsh, D.B., Birth and death of Markoy processes. Proc. 6th Berkeley Sympos. Math. Statist. Probab. 3, 295-305. Berkeley: Univ. Calif. Press 1972
6. Millar, P.W.: Zero-one law and the minimum of a Markov process. Trans. Amer. Math. Soc. 226, 365-391 (1977)
7. Millar, P.W.: Random times and decomposition theorems. Proc. of Symposia in Pure Math. 31, 91-103 (1977)
8. Walsh, J.B., Meyer, P.A.: Quelques applications des résolvantes de Ray. Invent. Math. 14, 143-146 (1971)

Received October 7, 1977

