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Summary. This paper studies processes constructed by birthing the trajec- 
tories of a given Markov process along time according to random probabili- 
ties. Getoor  has considered the case where the random probabilities are 
determined by comultiplicative functionals and proved for right processes 
that the post-birth process has the Markov property. Here randomizations 
of comultiplicative functionals are described which give rise to conditionally 
Markov processes. The main argument is developed for general Markov 
processes and the transition probabilities of the new process, including those 
from the pre-birth state, are explicited. 

1. Introduction 

Meyer, Smythe and Walsh [5], Getoor  [1] and Millar [6, 7] studied processes 
obtained by birthing Markov processes according to comultiplicative func- 
tionals and randomized coterminal times. Comultiplicative functionals, in- 
troduced in [1], are processes satisfying properties suggested by those of I(L,~ ) 
where L is a coterminal time. Such properties are dual of those of a multipli- 
cative functional in the sense that, if we consider a space of finite trajectories, 
comultiplicative functionals may be seen as multiplicative functionals on the 
reverse process. Getoor uses this duality to birth Markov processes with 
comultiplicative functionals in a manner dual to that by which multiplicative 
functionals are used to kill processes. This naturally generalizes the results of [5] 
but does not include the processes considered in [6] and [7-I involving times 
that are not cooptional. In this paper we describe a class of processes con- 
structed through a kind of optional decision about cooptional processes, that 
comprises comultiplicative functionals together with processes like those de- 
termined by randomized coterminal times such as the time of the minimum or 
the maximum. 

We work with a space of trajectories. The idea of birthing a process 
randomly through time is clarified by the use of a birth operator and the 
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embedding of the original space into a larger space where its trajectories are 
born at all possible times. After a section on notation, the properties of the birth 
operator are discussed in Section 2. The notions of comultiplicative functional 
and randomized comultiplicative functional are studied in Sections 4 and 5. In 
Section 6 we determine the distribution of the process born according with a 
randomized comultiplicative functional. Finally Section 7 generalizes Sections 4 
of Ell and E6]. 

2. General Notations 

E and E~ will denote separable metric spaces with Borel a-fields g and ga 
respectively. E a is obtained from E by adjoining an isolated point C5. 

~o will be the set of all right continuous paths co from [0, oo) to E and f2 will 
be the set of all right continuous co: [0, oo)-*E a such that cos=c5 for all s<t  if co, 
~---~. 

X t ' f 2 ~ E  a will be the t m coordinate map. ~t~ s<t). ~=a(X~ ,O<s  
< oo). @ ~  o. d ~ g~, i f*  and ~ will be the universal completions of 
E, E a, ~- and ~ o  respectively. ~,+ = ~ y 0 ~ o  and ~t+ = (-] ~ .  

g > t  U > t  

3. The Birth Operator 

In addition to the well known shift operator 0, we will make use of the killing 
operator, denoted by k, defined in [5], and its dual, the birth operator b={bt: 
~2 ~ f2},~Eo, 00) defined through 

[b+(co)] = { ~  t if t>s  
if t<s.  

The measurability of the birth operator will be important in the construction 
of the probability space on which the processes birthed at given rates will be 
defined, In order to prove it we will consider each subset of Q decomposed 
according with the birth time of each element. 

Let [6l=b~(co) be the trajectory in f2 with all coordinates equal to 66. 
Analogously, let Ecsls denote the coEE t~ with cot=c5 for all t~[0,s]. For each 
Ac~2, [6]+xA will denote the subset of ~2 whose projection on E t~ is {[3]s} 
and whose projection on E ~'~) is A, i.e., the set of co~f2 such that cot=c5 for all 
r<s and (cos+t)~eo~A. 

It is easy to see that 

~- -~ouE U (E'~lsX~o)lU{[csl} �9 
s~(O,m) 

This may be extended to general measurable subsets of ~2 in the following 
manner. 

Proposition 3.1. For all A e ~ ,  A = A o u [  ~ ([cs]~XAs)lUEAc~{[cs]} ] where 
for all s~lR+, As~J ~~ s+(O,~) 
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Proof  Let A o = A ~ 2  0 and A,=O~[A~([6]sXf2o)] ,  for all se(0, oo). A c f 2  im- 
plies 

A-A~f2---[A~f2o]u[A~( U [6]s XQo)]~[A~{[6]}] 
s ~ (  O, oo ) 

=Aow[ U ( [ a ] s X A s ) ] U [ A r ' { [ a ] } ]  �9 
s~(0, og) 

Clearly AsCf2 o for all selR+. 
It is also clear that A o e ~ .  
[6]~ x Qo = [Xt = 6 for all t~ [0, s] c~ Q; X s ~ E  ] e 2  implies A c~ ([6], x ~2o)e~ 

so that A s = Os[A c~([6]s x f2o) ] ~Y. This concludes the proof. 
We will want to look at f2 as the image of f2 o by b. The following theorem 

deals with the measurability aspects of this approach. 

Theorem 3.1. b: [0, oo] x Qo ~ f2 is ~ x ~~  

(t, co) ~-~ b,(cg) 

Proof  Since f f  is generated by {AcY2: A is a cylinder of E~ +} it is enough to 
show that b - l ( A  ~ 2 ) e ~  • f ro  for all A, cylinder of E~ +. 

Let s~,..., s, be the indices of the nontrivial coordinates of one such A. 
Let m=inf{i :  6r th coordinate of A} with the convention i n f , =  ~ .  
For  the sake of compactness, let us also adopt the symbols s o =0,  s~ = ~ ,  

[ 3 ] o  o • Aoo = { [ 6 ] } .  
Then A n f 2 = A o u  [ U ([6]s• ] with A o = A c ~ f 2 o e ~  and [3]~• 

s~(O, s~] 
=Ac~Y2c~[X~=6 for all re[0,  s): X s e E a ] ~ Y  for all se(0, oo] so that Aseo~0 for 
all se[0, oo) and As=b2~l([6]s,_s • A~,) if se(s i_ ~,sl) for all ie{1, ...,n, oo}. 

�9 1 wit  

for all ie{l  . . . . .  n}, so that b-~(Ac~f2 )eN • 

4. Comultiplicative Functionals 

A process {nt}tk o o~*-measurable is a comultiplicative functional (comt) if and 
only if 

(i) 0 < n  t < l  for all t > 0  

(ii) nsoOt=ns+ ~ for all t>0 ,  s > 0  

(iii) n s = ns o k, x n t for all t > s > 0 

(iv) n tok  s = l  for all t>s .  

If {nt} is right continuous, properties (ii) and (iii) extend to s = 0. 
Left continuous comf are more likely to arise. For  instance, for all coter- 

minal time L, n t = lrz<0 defines a left continuous comf. With < instead of < we 
would still have (i), (ii) and (iv) but instead of (iii) we would have 

(iii)' n~ = lim n~ o k u x n, for all t > s_> 0. 
u ,l, t 
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Proposition 4.1. I f  {nt}t=> o is a c o m f  and nt+ = l i m  G f o r  all t>O,  then {G+}t=>o 
satisfies (iii)'. u~t 

Proof.  For  all u > s > 0, 

G + = lim G = lira G o ku x n, by (iii) 
v.~s v ; s  

= n s + o k u x n u .  

Then for all t _> s > 0, 

G + = lim G + o k u x lim n, 
u ~ t  u { t  

= lim n s+ o k u x n t+ Q.E.D. 
u S t  

F r o m  Proposi t ion  4.1 it follows immediately that  every right cont inuous  
comf  satisfies (iii)'. 

More  general processes are described replacing condi t ion (ii) by 

(ii)' n~ o b t = n t for all t > 0, or  equivalently 

(ii)" n t o b s = n t for all t > s > 0. 

5. Randomized Comultiplieative Funetionals 

Consider  a set H of  ~ * [ N - m e a s u r a b l e  functions from f2 into I-0, 1] and a 
process (Zt) with values in H. Assume the existence of  a a-field ~ i n / - / s u c h  that  

a) Z t is ~ +  I~ -measurab le  for all t > 0 and 

b) (h, co)~-, h(co) defines a ~ x ~ * [ N - m e a s u r a b l e  function on H x f2. 

Let nt(co)= 1-Zt(co)o 0t](co ) for all coeQ and all t > 0 .  
For  instance, n t = l[r__<t I if Z,(CO): r ~--* l[T(4,(o~,o),))=<tl where 

, [co s if s < t 
[-~b(co, co)]s= for all co, co'~f2 

co;_ t if s > t  

for any r a n d o m  time T. 
Let n(s, t )=  lira n s o k u. 

u ,~ t 

Assumption 5 J .  ns= n(s, t ) x  nt f o r  all s < t. 

Assumption 5.2. Z t 4= Z t o bs ~ n t = n s f o r  all s <= t. 

Assumption 5.3. n is N x ~ *  IN-measurable .  

A n y  f f* -measurab le  process n satisfying condit ions (i), (ii)' and (iii)' of  the 
last section can be described in the above terms with Zt(co ) the same for all co. In 
fact, in this case, Zt (co)=nto  0 2 for all co, with 0 7 defined by 

[0~(co)]s=fco~_ t if s > t  for all co. 
if s < t  

If, in addition, (ii) is satisfied then Zt(co ) = n o for all t and co. 
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6. The Distribution of the Process Birthed at a Random Rate 

Let P denote a Borel transition function on (E, N*). Let/~ denote a distribution 
on (E,g) and W (or E u) a distribution on (~ , f f* )  that makes (X,)t_> o Markov 
with respect to {~tt}t=>0 with transition function P and initial distribution/~. P~ 
will denote the PU-distribution of the process obtained by birthing (Xt) at 
different times at a rate given by n. For  example, if nt--lfL==_t ~ for a random time 
L, then P2 will be the W-distribution of the right continuous process 

- ( X ,  if t-> L 
Xt  ~ 

6 if t<L .  

p u is obtained from Pu by relocating the mass at each co~20 along {bt(co)}t~Eo,ooj 
according to the measure e~ defined on [0, oo] by %~([0, t ] )= l im n,(co). 

u,Lt 
More formally, p u is defined by P~(A)=EuZa where ZA: co~--~c%({t: 

b,(co)sA}) for all A ~  Equivalently, since Za(co)= ~ 1Aob,(co)dnt(co), E~, is 
[0, coJ 

defined by 

S Yob, (,) 
[O, ce] 

for all Y: f2-* IR, if-measurable, bounded. 
For  all n: [0, oo)• (2 o ~ [0, 1], ~ • d/l-measurable for some a-field d / l ~  -~ 

and with nondecreasing trajectories, (co, [0, t])~-~ nt(co ) defines a transition proba- 
bility from (f20, J{  ) to ([0, oo], ~), so that, i f W  is a distribution on ~(, PU| is 
a distribution on ~ • Jr' and E ~ ~ W t dnt is defined for all W ~ • ~ -measur -  

[O, oo] 
able, bounded. Since, by Theorem3.1, b is MxMflff-measurable ,  Yob is 
x S{IN'-measurable for all Y filM-measurable. Thus (.) defines a probability on 

for all nondecreasing n: [0, oo)•  , 1] M • for every 
~/~ ~ o ~ ~  to which P" may be extended (in particular, for ~ = o~*). 

From now on, Z and n will be as in Section 5. Y and f will be bounded 
random variables ~-*- and g~-measurable respectively. {JOlt} will be a family of 
a-fields with o ~ t ~  for all t, such that (Zt)t~ o is adapted to {J/~}t__>o and 
(Xt)t=> 0 is Markov with respect to {~,}t= o. 

U'x(Y • h) 
Let Kt'X,h(Y) U,X(h) for all h~H, xsE ,  te l0 ,  oo), with the convention o 

= O. E t'x is defined as usual through Et'~f(X~)= Pt,~ f(x). 
U'x~(Y) will denote the mapping co ~ U'xa~~ Also K~'X~'Z'(Y) will denote 

the mapping m~--~Kt'X~(~)'z'(~~ The superscript /~ will be omitted in the 
expressions involving E", pu, E~ and Pd. 

L e t  Kt'O'Z*(Y) -En([Xt=6];  yo Ot ) for all re[0, c~). 
P,[Xt=~5] 

Let K~, t (x , f )=K .... z~[f(Xt) ] for all s, te[0,  ~ )  and all xeE~. 

Lemma 6.1. E[Yo 0 t • ntIJ#t](co)= Et'Xa~ • Zt(co)] for P-a.a. co. 

Proof E[Yo O, • n,l~t-l(co)=E{[Y • Zt(co)] o 0tl jolt} (co) 
=Et'X~(~ • Z,(o)] for P-a.a. co. 
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In fact for all ~b: H x s ~ IR, ~ x ~ * - m e a s u r a b l e ,  

E[4)(Zt, Ot)[Jgt](co)=U'xt(~ for P-a.a. co. 

I t  is enough to show this for qb = 1A• A ~ J f ,  B 6 J  ~ * .  In this case, for all W d//t- 
measurable ,  

E [ w O ( g t ,  Ot) ] = F_, [ W  1A(Zt) pt, Xt (B)] 

and 

U 'xt(~) [~ (Z,(co), 0o) ] = Et'Xt('~){ 1A [Zt(co)] x 1B} 

= 1AEZt(co)] X Pt'X~(~)(B) for P-a.a. co. 

L e m m a  6.2. For all J~t-measurable  r a n d o m  variable  l#~) 

E , [ W  t x (Ylao) o Or3 = E, EEXt~E3; W~ x Kt'X~'Zt(Y)] = E V  t 

where V t is defined in f20 by 

V~(co) = [ ~ W~ o b, dr/(r)](co) x E"X'('~ x g], 
[o,t] 

t/ denot ing the dis tr ibut ion on [0, t] de te rmined  by t/([O, r])=n(r,  t). 

Proof. We want  to show that  

E j" [ W  t x (Yleo)o 0,7~ b~dn~=E j" {Wt x l[x,~e] x Kt'X"Z'(Yl} ob~dn~ 
[O,t] [O,t] 

=EV~ 

E y [Wtx(Yl%)oOt]obrdn,=E{YoO t ~ Wtob~dn~} 
[O,t] [O,t] 

= E { Y ~  x ~ Wt~ 
[0,tl 

by Assumpt ion  5.1 

= E V  t by L e m m a  6.1. 

On the other  side, 

E ~ {Wtx l[xt~e~xKt'X~'Zt(Y)}ob~dn,. 
[o,t] 

= E  ~ Wtobr xKt'X~'Z~(Y)dn~ by Assumpt ion  5.2 
[o,t] 

v~ 
= E  Et,XT((Zt) x n t by Assumpt ion  5.1 

= E V  t by L e m m a  6.1. 

n~)] + (1 - Ent)f(g) ) Proposition 6.1. K~,t_ ~ (,5, f )  = E [ f (X t )  (n t -1 - E n~ for all s < t ~ [0, oQ). 
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Proof We must show that 

E, { [X, = 6]; f(X,)} = E [ f (Xt)(n  t - ns) j + (1 - E nt)f(3) 

E,  { [Xs = '5l ; f (Xt )}  = e ,  [-f(Xt) ] - e ,  { [X~ e E]; f (X t )  } 

= E, { [ X t e E J ; f ( X , )  } + P, IX  t = 6] xf(a) 

- E. {[X~eE] ;f(X,)} 

E . { [ X t e E ] ; f ( X t )  } = E [ f ( X , )  x nt] by Lemma 6.2. 

Also E, { [X  s ee l] ;  f (X t )  } = E [f(Xt) x n~] by Lemmas 6.1 and 6.2. Finally 

t:', [X  t = 6] = 1 - P, [ X t e E  ] 

= l - E n  3 by Lemma 6.2. 

Theorem 6.1. Under P2, (Xt)t> = o is conditionally Markov with respect to {•t}t>_ o 
given (Zt)t>=o with transition function K and entrance law given by P , [ X t e A  ] 
= E ( [ X t e A ] ;  nt) for all A e g .  

Proof The/' ,-distribution of X t is given in Lemma 6.2 considering W t = la(Xt), 
A e g  and Y= leo. Notice that then 

v~ (co) = 1A (xt )  x E t, xt ~ l-z, (co)] 

so that P , [ X t e A  ] =E([X teA] ;n t )  by Lemma 6.1. 
The conditional Markov property is 

E.EW~ x (Yo 0,)] = E .  [W~ x K ' , x ' ,~ (Y) ]  

for all bounded random variables W~ and Y, ~ -  and ~-*-measurable re- 
spectively, 

It was proved before that 

e ~ [W~x(YoOt)]ob~dn,=E ~ [WtxK"X"Zt(co)]b~dn~ 
[o.t] [o,t] 

Wto br(co)= 14/,,([63) for all co if r> t ,  because [X3=6 ] is an atom of 4 +  by 
right continuity of the elements of 12. 

Then 

E [. [W~x(YoO,) lob,  dn~=W~([a])E" [. YoOtob~dn ~. 
(3, oo1 (t, ool 

Also 

E S [W, xK"X"Z~(g)3~ d n , = W , ( [ ' 5 ] ) x K " a ' z ' ( Y ) x E ( 1 - n , )  
(t, oo] 

= W t ( [ ' 5 ] )  x K t ' a ' z ' ( Y ) x  P,, [ X  t = ,5] 

= w,(['5]) • E. {IX,  = a]; yo o,}. 
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Thus  the p roo f  is concluded if 

E , { [ X , = 6 ] ;  YoO,}=E ~ YoOtob~dn~ 
(7, co] 

which follows f rom Xt(b~(o.)))~E for all r~[O, t ]  and all c ~ ( 2  o. 

7. The Post-Birth Process 

The next results will refer to the process  (X~+t) t > 0 where c~ = inf{t:  XteE }. In the 
case of  a comult ipl icat ive  functional  n const ructed f rom a coterminal  t ime L, 
X~+to b L = X c +  t and  the P f -mass  on bL(co ) is the PU-mass on co so that  (X,+t)t> 0 
under  p u has the same dis tr ibut ion of (XL+t)t> o under  pu. 

Proposition 7.1. c~ and ~1 for all i are stopping times with respect to {~,~~ oo ). 

Proof [~ __< t]  = [ X t e E  ] e.~t ~ 

[a,<t]=kU<t [ a i = k  ] and [ c ~ , = k ] = [ a < k ] ~ [ a > ~ @ ~ ] e @ ~ .  

2 i 

Proposition 7.2. Under Pff, (X~,+t)t>=o is, given (Zt)te o, Markov with respect to 
{ J/[~i +t}t >= o with K as transition function. 

Proof It  is enough to show tha t  for all s and all bounded  r a n d o m  variables  W 
J//~, + s-measurable,  

E,,(W x Yo O=,+s ) = E,,(W • K~ +s'z=,+s( Y)). 

Let for each 

E.[Wx YoO~,+~]= ~, E.EWJkYoO~,+~ ] 
k=O 

= ~ En[WJkYoO k ] by T h e o r e m  6.1 
+ 

k = O  2 z 

k . k k 
~ + s , X - - + . s , Z -  +S 

= E n [ W J k K 2 '  2~ 2 i ( Y ) ]  

k = 0  

= ~ E.[WJkK~'+~'x~'+"z~'+~(Y)] 
k = O  

= E , , [ W  x K~,+',x~,, +s,z~, +~(r ) ] .  

Let us now suppose P a h o m o g e n e o u s  t ransi t ion function and (Xt) a right 
process  under  P"  (as defined in [8] or  [2]). 
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Theorem 7.1. I f  (n, ) t> = o is right continuous, then (X~+t)t> 0 is, given (Z t ) t>  = o, Markov 
with respect to {~'~+t+}t>0 with transition function K. 

Proof 

E, [f(X= +t)[~  +, + ] = lim E, [f(X~, +t) lo~, +~ + ] = lim K x=, + s, z=, +s [ f ( X  t- ~)] 
i ~ o o  i ~ c o  

by Proposition 7.2 for all continuous f 
Then the theorem is proved if we show that 

a) for all sequences of {Wt+}-stopping times {T~}~N, if T~+ T>~,  then, for all 
r, all continuous f and P,-a.a. co, 

EXm,{o~) [f(X,) [ZT,(co)] O] ~ Ex~ (~) [f(X~) [Zr(co)] o] 

and 
b) for all s~(O, oo), P,{co: EX~+*(~)[Z~+~(co)]o=O } =0.  

a) The PU-a.s. right continuity of (nt) gives 

f(X~+r~)nr,--,f(X~+r)nrPU-a.s, as TiST. 

Then 

i.e., 

E xT, (~) If(X,)  [Zr, (co)] o] ~ Ex' "~ If(X,)  [ZT (co)] o] 

for P~-a.a. co. 
Finally, since 

1 o h s 
{co: EXT&~176 T(co)> c~} 

=1 
{co: Exm,(~)[f ( X ,) [ Zrr --+ EXT(~ ( Xr) [ Zr(co)]o], T(co)>a} 

for all s~lR+, 

P, {co: EXr, (~) I f (X , )  [Zr,(co)] o] ~ ExT(~')[f(X,) [ZT(co)]o] } 

= P{co: E xT,(o) [ f (X , )  [ZT, (co)] o] ~ ExT(o)[f(X,) [Zr(co)] o]} 

if T___c~. 

b) Let Yr ~ denote the completion of ~ r  with respect to pu for all time T. Let 
(Yt)t>0 be a {,~tU}-optional process such that for all finite {~U}-optional time T, 
Y r = E ( n r I ~ ) .  The existence of such a process is proved in [4], for instance. 

By the same argument used in a) for all sequences {T/}IE ~ of {~U}-stopping 
times, if T/~T, then YT, J, YT. 

Then, by a theorem of Mertens [3], (Yt)t> o is a right continuous process. 
Thus S = inf{t > ~, Yt = 0} is a {~U}-stopping time and Ys = O. 
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P . [ S < o o ] = E  ~ l[s<oo~obsdn~ 
[0,005 

= E ( [ S  < oo3, n~) 

_-<E([S < oo],ns) 

= E ( [ S <  0% Ys = 0 ]  ; ns) 

=~([s<oo,  rs=o]; Ys)=o 

Then P,[Y~+s=O for some s > O ]  =0 .  
This implies P, ( { co: E z~ +s (,~) [Z~ + ~ (co)] o = O} ) = 0 for all s e (0, oo) because 

P.({co: Ys(co) 4= U ~+~(~) [z~+Aco)]o}) 
=E[{co :  Y~(co)4:EX~+'(~')EZ~+~(co)]o}; n,] 

-<-P({co: Ys(co) ~=EX'+~(~)[Z~+~(co)]o}) = O. 
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