
Z. Wahrscheinlichkeitstheorie verw. Gebiete 
64, 359-367 (1983) 

Zeitschrift ffir 

Wahrschein l ichkei t s theor ie  
und verwandte Gebiete 

�9 Springer-Verlag 1983 

On Brownian Slow Points 

Burgess Davis 

Purdue University, Department of Statistics, West Lafayette, Indiana 47907, USA 

Summary. It is shown that, for a Wiener process X t, both the quantities 

inf lim [Xt+h--X~l/l~andsu p lim (X~+h-Xt)/lfh are almost surely equal 
t h~O+ t h~O+ 

to 1. 

1. Introduction 

Let Wt, t>0 ,  be standard Brownian motion. In the 1932 paper where they 
showed that almost every Brownian path is nowhere differentiable ([7]), Paley, 
Wiener, and Zygmund proved the stronger result that, for each e > 0, 

\h~O+ h�89 -- oo Vt = 1, 

and in 1963 A. Dvoretzky [-1] improved this by establishing 

p(l=~m !E+h-NI  >c0Vt) =1 , 
\h~O+ ] ~  

(1.1) 

for a positive constant c 0. The natural question, whether (1.1) holds for all con- 
stants, was settled by J.P. Kahane in 1974 [2]. The answer is no. Kahane 
showed 

p (3t: l~m [Wt+h-Wt] <cl)=l, 
h ~ O  

(1.2) 

for a constant C 1 ~ OO. 
Here, note that h may be allowed to approach 0 from either the left or the 

right, giving a better result. (The two sided verison of (1.1) is of course weaker 
than (1.1).) Kahane calls those t which satisfy 

lim [Wt+h-- Wt] 
h~O ] ~  

<o0  

slow points. 
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The law of the iterated logarithm implies that the slow points almost surely 
have Lebesgue measure 0, but Kahane has proved ([2, 3]) that their Hausdorff 
dimension a.s. equals 1 and that the Hausdorff dimension of those slow points 
which are also zeros of W~ is a.s. �89 so that the slow points are a fairly thick set. 
Kahane has very recently given another, simpler, proof of (1.2) and the two 
sided version of (1.1), together with related results for other Gaussian process- 
es, in [4]. 

Following Kahane, we will call a point t slow from the right if 

lim ]Wt+h-- Wtl < oo. 
h~O+ ]//h 

In Sect. 2 we investigate the question: How slow from the right can a point be? 
It is shown that 

inf lim IW~+h--W~I--1 a.s. (1.3) 
t h~O+ ] ~  

The proof that the expression to the left of the equality in (1.3) is no smaller 
than 1 is a refinement of Dvoretzky's proof in [1], while the proof that it is no 
larger than 1 is not related to Kahane's arguments. 

Let z be the smallest positive 0 of M( 1 ~ x2/2), where M is the confluent - 5 ,  5 ,  

hypergeometric function (z~ 1.3069). In Sect. 4 it is shown that 

p (inf l~m IW'+h- w'l < z) =o, 
h~O ] ~  

Iw,+h-w,t =z) =1. , ( i n f ~  

but we cannot prove 

(1.4) 

Nonetheless, this is probably true. Not only does (1.4) hold, but also it is 
shown in Sect. 4 that, if X t and Yt are independent Brownian motions, and if 

DX={ t: l~lmm ]Xt+h-Xt' } Y h~O+ ] ~  < r  and D~ is defined similarly, then D,X.c~Dr,. is al- 

most surely empty if r <z  and not empty if r > z. 
S. Orey and J. Taylor have shown how rapid a point can be by proving (see 

[5 ] )  

This is equivalent to 

sup lim ]W'+h--Wtl 

t h+O+ log~ 
_ _ - 1  a.s. 

sup lim Wt+ h - W , _ 1  

t h ~ ~  ~ 
a.s., (1.5) 
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giving a global upper bound for the lim sup, as h ~ 0 + ,  of W t + h - W  t. In his 
book ([5], p. 148) F. Knight asks for a global lower bound for this lim sup. 
Precisely, Knight asks for a function qS(h)>0 such that, almost surely, for all t 

lim (W~+h--W~)/(D(h)>--I and lim (Wt+h-Wt)/O(h)=-i 
h~O+ h~O+ 

for some t. In Sect. 3 we come pretty close to solving this problem, and do give 
a lower bound in the sense that (1.5) gives an upper bound. We prove 

inf lim Wt+h- Wt - - 1 a.s. (1.6) 
t h~O+ ] ~  

We do not know if the lim equals - 1  for some t. 
The two sided version of (1.6) is essentially known and not hard to prove. It 

is 

inf lim W~+h-- W, = 0  a.s. (1.7) 
t h~O ] ~  

Note that the existence of times for which W t has a local maximum shows that 
0 can not be replaced by a larger number  in (1.7). Only strict maxima need be 
considered, and, these being countable, the proof  of (1.7) can be completed by 
examining the behavior of W t around an absolute maximum. See [5] for a 
treatment of such ideas, which yields sharper results than (1.7). 

Define the sets 

Ac={3t~[0,11 IW,§ W,I <c 1/h Vhe(0, l l /  

and 

B~= {~tm[O, I ]"  (Wt+ h - Wt)> c ~h Vh~(O, i ] } .  

We will prove that P(Ac)=0 if c <  1 and P(Ac)>0 if c >  1, implying (1.3), and 

that P(Bc)=0 if c > 1  and P(Bc)>0 if c < l ,  implying sup lim (Wt+h--Wt)/l/h 
t h~O+ 

= 1 a.s., which is equivalent to (1.6). 
For the remainder of the paper the qualifier a.s. will usually be omitted. 

2. Proof  of (1.3) 

First the following lemma is established. Let A denote minimum. 

Lemma 2.1. If  the nonnegative random variable X satisfies 

lira n P(X > n)/E X/x n = 0, (2.1) 
n~oo 

then EXP<oo, 0 < p < l .  

Proof. Note that the example P(X>O=t -1, t>= 1, shows that (2.1) can hold and 
EX=oe. 
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Now for any nonnegative random variable Z and any p>0 ,  E Z  p is finite or 

infinite depending on whether ~ 2"PP(Z>2 ") is finite or infinite. Let 7, 
n = l  

=2"P ( X>2" ) .  Then (2.1) implies 

lim 7. 7~ = 0. 
n~x3  i~  

For e > 0  let N@)=N satisfy 7. 71<e, n > N .  Put 71=y. Then 7N+l<~y 
i i = 1  ( k--1 ) 

and 7N+k<e y + . ~  7N+~ - If we put C~X+k=Y(l+e) k, then c~N+l>~y and 
J = l  ( k--1 ) 

C~N+k >e  Y+ ~ eN+j , and so, by induction, VN+k<eN+k=Y(1 +e)k, k > l .  Since 
\ j = l  

e is arbitrary, this implies EXV< o% p <  1, as claimed. 

Let z~(W)=z~=inf{ t> l :  [Xtl>rl / t  }. Precise information concerning the 
moments of -c may be found in Shepp, [8]. For  our purposes the following 
lemma suffices. The notation P~,b and E~, b will signify probability and expec- 
tation associated with W t given W, = b. 

p _  Lemma 2.2. I f  r> 1 there is a p=p(r)< 1 such that E z , . -  oo. Furthermore E1,0z 1 
~OQ). 

Proof. First the well known proof of the second statement will be supplied. For 
a stopping time T we have 

E W  } = E T  if E T < o %  (2.2) 

and applying this to the Wiener process Wt+ 1 under Pl,o yields 

Ei,oW~2=El,o(z l -1)  if E l , o ( z l -  1)< oQ. 

Since PI, o(W~2 = z l ) =  1, this implies El.o(z 1 - 1 ) =  0% so El,o'C 1 = oe. 
To prove the rest of the lemma, fix r > 1 and define 

and in general 

and 

7 1 = i n f { t > l '  W~=0 or IW~l~r~}, 

72k=inf{t>72k_ 1 " [ Wt[ > I/t}, 

72k+l=inf{t>TZk: Wt=0 or IW~l>rl~}. 

Note that on { W~2 ~-1 = 0}, if 2 > 0, 

P(72 k -  72k- 1 > 272k_ 11 ~ . . . .  ) = P1, 0(~1 > 1 "4- d~) 

using the strong Markov property and Brownian scaling. Furthermore, if e 

=PI, I(W~=0 before ]Wt]=rl/t),  then, on {72k_2<z,.}, we have, for k > 2  and 
2 >0 ,  



On Brownian Slow Points 363 

P(Y2k-- Y2k- 1 >272k-21W~ k_ ~) 

=P1, o(Zl > 1 +2)8.  

Thus,  s i n c e  {~)2 k -  2 < Tr} = {~2k-- 3 < ~2k-- 2}'  t h i s  gives 

E() '2k--72k- 1)P~eEa,o(Zl- -  1) v 'ET~k-2  I(Y2k-2 <zr)  

>= e e l ,  o(Z 1 -- 1)v E(yzk_ 2 - -  ~)2k_ 3) p 
and i terat ion gives 

E(72 k - 721,- ~)p > (sEl ' o(Z~ _ 1)p)k- ~ E(y 2 _ 7~)p. 

Pick p < 1 such that  eEl,o(Z 1 -1 )v>  1. This is possible since El ,  o z 1 = o9. Then  
P> P > P--* k---~ oo. Ez~_Ey2k=E(Tzk--VZk_l) (30 as 
Next  put  m w = M =  max IWt[, and T~W=T~=inf{ t> l  �9 ]W~I=M+rVt }. 

o<t_<l 

L e m m a  2.3. I f  c < 1o E T~ < oo. 

Proof For  t >  1 the equali ty (2.2) gives 

Thus 

ET~At=EVE 2 Tcr, t 

6 E ( M + c ] / ~  A t) 2 

= E M  2 + 2 c  E M ] f ~ / x  t +c 2 ET~/x t. 

(1 --C 2) ET~/x t ~ E  M 2 + 2 c  E M  I/T~/x t 

E M 2 + 2c(E M2) ~ (E T~ /x t) ~. 

Since E M  2 is finite, ET~At must  stay bounded  as t ~ o o ,  so E T c <  oo. 
As has been ment ioned,  the following theorem implies (1.3). 

Theorem 2.1. I f  c < 1, P(Ac) = O, and If c > 1, P(Ac) > 0. 

Proof Fix c < l ,  and for a subinterval  [a,b]=I of [0,1]  let Ai={3 t~ l :  ]X,+ h 

- X t [ < c l / h L O < h < l  }. Note  that, if Mi=maxlW~-Wa[ ,  then AI~{]Wa+ h 
a<=t~s 

- Wa] < M~ + c I /h,  b - a -< h _< 1}, by a geometr ical  argument .  Thus, condit ioning 
on W~ and changing scale, we have 

P(AI) <= P(Tc > (b - a)- ~), 

and especially, if I has length n -1, P(AI)<P(T~>=n ). Divide [0, 1] into intervals 
I k of length n -1. Then P(Ac)<~P(AIk)<nP(Tc>n). L e m m a  2.3 gives E T , <  o% 
so nP(T~ > n)-+0, proving P(Ac) = O. 

N o w  fix c > 1  and put  F , = { ~ t e [ 0 , 1 ] :  ] W t + h - W t l < c ] / h , n - l < h _ < l } .  Note  

that  F,_cF m if n>m. We will show that  lira P(F~)>0, implying P F, 
n ~  n 1 

- -P(Ac)>O.  Put  Vo,,=vo=O, and, if i > 1 ,  

vi, .=vi=(vi_l + 1) A i n f { t ~ v / _  l + n - ~ :  IW~ - W., 1 [ ~ C ] / ~ 1 } .  
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Then 
P ( v i +  1 - -  vl : 11 wv) = P(z  ~ > n), (2.3) 

and 
E(vi+ 1 -v~l wv)=n- 1Ez~ An.  (2.4) 

Of course v k >- 1 if v i - v i_ 1 = 1 for some i < k. Thus  

(P,, m = P(vl + 1 - vl = 1 for some i < m such that v i < 1 } 

= ~, P(z~> n) P(v i < 1) 
i=1 

> mP(z~ > n) P(v m < 1). 

gl oo Let  { k}k=l be a sequence of integers approaching infinity such that  
nkP(%>nk)/E'c ~/X n k > a > 0  for all k, such a choice being possible by Lemmas  
2.1 and 2.2. We also assume 

Let  the integer m k satisfy 

Ez~/x nk/n k < 1/6. 

1/3 __< (mk/nk) E z c /x n k < 1/2. 
By (2.4), 

E v  . . . .  k =(mk/nk) E'c c /x nk, 
so 

P(v . . . . .  > 1) < 1/2, 

and, using the left inequali ty in (2.5), we have 

P(F.~) > go . . . . .  > mkP(z  c > nk) P(vmk,  .k ~ 1) 

>= mk P( 'c  ~ >= nk) /2  >= mk a E 'c  ~ A n k / 2  n k >= a/6. 

(2.5) 

3. Proof of (1.6) 

The arguments  involving B c are very similar to those of the last section and 

proofs will just be sketched. Let  ~ /a=inf{ t>0:  Wt-<_al~ }. Precise informat ion 
on the moments  of t/a has been supplied by Novikov  in [6]. Here  we need only 
the following analog of L e m m a  2.2. 

L e m m a  3.1. I f  r < l  there is a q = q ( r ) < l  such that Eqq,.=oo. Fur thermore  

El,2 t/i = oo. 

Proof. That  Eo, i~ / i=oo  follows from Eo, I ~ I = E o ,  I (W, I -1 )a  if Eo, l~ / l<o% be- 
cause Po, l ( W , 2 = r l l ) = l .  Since P 1 , 2 ( t l l - - I > 2 ) > P o ,  I ( t ] I>J0 ,  2 > 0 ,  we get 
E1,2 rll > Eo, l tlx =OO. 

The p roof  of the first assertion of  L e m m a  3.1 can be pat terned on the proof  
of the first assertion of L e m m a  2.2. The analogs of the times 7~ here are 
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y l = i n f { t > l :  W,=21/7 or Wt<rl / t} ,  
and in general 

Y2k=inf{t=>72k- 1' Wt =<I/t}, 
and 

~2k+l=inf{t=>~2k: W t = 2 ] ~  or Wt-<r]//t}. 

Now let M - =  min Wt, and let Ur= in f{ t> l :  W t = r l / ~ - l - + M - } .  
0<~<1 

L e m m a  3.2. I f  c > 1, E U~ < oo. 

Proof For each t > 1, (2.2) gives 

E Uc A t=  E(w~o ^,)~ 

>=_E(c/'UcAt--1 + M - )  2, 

and the rest of the proof resembles the proof of Lemma 2.3. 

Theorem 3.1. I f  c > 1, P(B~) = 0 and, if c < 1, P(B~) .  O. 

Proof Note that if [a, b ] - I  is a subinterval of [0, 1], and if M F = rain W t 
a<=tNb 

- W~, then 

{3t~[a,b-l: I/V,+ h -  Wt>c 1/hVh~(0, 1]} 

___ {Wt+ h -  Wt>c ] / h - ( b - a )  + Mi-, b - a  <-h<_ 1}, 

and the rest of the proof that P(B~)=0, c >  1, follows from Lemma 3.2 just like 
the proof that P(A~)=0, c < l ,  followed from Lemma 3.3. Furthermore, the 
proof that P(Br > 0, c < 1, is almost the same as the proof that P(A~) > O, c > 1. 

4. Independent Wiener Processes  

The arguments in this section are similar to those of Sect. 2, but we use more 
of Shepp's results in [8]. Fix r>0 ,  and for 0 < t < 2  and ] s l< r l / t  let f,,~ be the 
continuous version of the density of 14721(%>2) under Pt, s. Of course f vanishes 
off ( - ] /~ r , ] / 2 r ) .  Then if c~(r)=~=2/P1,0(zr<2), we have 

f l, ,(s)/f  l, o(s) < ~, - ]/2r < s < l /2r.  (4.1) 

To see this let I be a closed subinterval of ( - r l / ~ , r l ~ )  and define the set 
f c { ( t , s ) :  1 _<t_<2, Isl<rl /~ } by (t ,s)~F if g(t,s)>g(1,y), where 

g(a,b)=P~,b(W2eI and %>2). 

Then F is a closed set containing a curve joining (1, y) and the midpoint of I. 
Let v be the first time (t, Wt)~F. Using the Strong Markov Property, we get 
g(1, 0) > g(1, y) P1, o( v < zr/x 2). For y > 0 we have 
P1,0(v<%A2)>Pl.o(z~<2, W,r>0 ) with a similar formula for y<0 ,  so 
g(1, 0) > c~ g(1, y), implying (4.1). 
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Similarly, we can prove that for each y ~ ( - r , r )  there is a K ( r , y ) = K > O  
such that 

4s )  >--_ K ,  - < s < r  (4.2) 

Shepp shows in [8] that if z is as in Sect. 1 and r>z ,  there exists 7(r) 
=TE(0,�89 such that E,, o z2= 0% and so, using (4.2) and conditioning on W ~  2, 
we have El,y L~-- oe for each y e ( - r , r ) ,  implying 

lira P(z,.>2)2 p= oo for each P>7.  (4.3) 

Now let X, and Yt be independent Wiener processes. Put O~=L(X)Az~(Y ). 

Then P(O~>2)=P(%>2) z, so, by (4.3), lim P(0~>2))~ 2p= oo if p>y .  In particu- 
~+oO 

lar, there is an a =  e(r)< 1 such that E O~= m. Now, methods similar to those 
X Y employed in Sect. 2 show that, for r >z,  P(D~ c~D r #:~)= 1. Note the set corre- 

sponding to Ar is 

and that 

{~te[0 ,1] -  I X , + h - x ,  lv lYe+h-- Y~[ < r  ] /h ghe(0, 13)}, 

0 ,= in f{ t  > 1" IX~+h-x~l v I Y~+,~- Y~I > r l ~ } .  

The sets A r and D r are defined in Sect. 1. 
Shepp also proves that, if s<z ,  there exists a 6=~(s)>�89 such that 

El, o z s < oo. Conditioning on X~^2 and using (4.1), this gives 

lira sup Pl ,y(L>2)2~<oe.  (4.4) 
A ~  y e ( - s , s )  

Now fix r~(O,z) and let s=(r+z) /2 .  Put 

C--Fk, = {3teE(k/n, (k + 1)/n] �9 IXt+h-X,I v IV,+h- ~1 < r l / h  Vhe(0, 1]}. 

Let M be the smallest integer such ( s - r ) M  > r. Define the events Cj, k, . = C i, 
- M < = j < M ,  and Gi,k,,=Gi, - M < - i < - M ,  by 

Cj = {(t, Xt) a {(t, x): Ix - c~jl < s ~ } ,  (k + 1)/n <= t < (k/n) + 1 }, 

where c~; = X(k + 1)/, + (S -- r)j/]fn, and 

Gi = {(t, ~)~ {(t, x): I x -  ~1 < s l / t -  (k/n)}, (k + 1)/n =< t =< (k/n) + 1 }, 

where fii = Y(k+ 1)/, + (S -- r)j/l/nT. 
Conditioning on X(k + 1)/,, and using Brownian scaling, we see both P(C;) 

and P(GI) are maximized by sup ~,y(%>n) so that P ( C j n G i ) = O ( n  -2~) 
y E ( - r , r )  

=o(n  -1) by (4.4). A geometrical argument gives F c U  CjmG i, so that P(F) 
LJ 

= o(n- 1), yielding 
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n - I  

which  impl ies  
p(DX c~DY)=O. 

These  a r g u m e n t s  easily genera l ize  to n i n d e p e n d e n t  W i e n e r  processes,  wi th  
the  a id  of the resul ts  in  [8].  Le t  z, be the  smal les t  pos i t ive  zero  of  M(-1 /n ,  
1/2, x2/2), where  M is the  con f luen t  h y p e r g e o m e t r i c  func t ion .  T h e n  we have  

Theorem 4.1. ~ D x~ is a.s. empty if r<z ,  and not empty if r>z, .  
i = 1  

A p r o o f  of  (1.4) can  be  m a d e  wh ich  is very  s imi la r  to tha t  of  T h e o r e m  4.1. 
He re  it is c o n v e n i e n t  to work  wi th  a B r o w n i a n  m o t i o n  Zt, rE(-oo,  oo). W e  
no te  tha t  S t = Z(~ + 1)/,+t - Z(k+ 1)/,, t > 0, a n d  R e = Zk/,_ t - Zk/,, t > O, are  i n d e p e n -  
d e n t  W i e n e r  processes.  F u r t h e r m o r e  

{ 3 t s [ ! , k ~ l l ] : l Z t + h - Z , l < r l ~ V h e ( O ,  l J u [ - 1 , O ) }  

can  be  s h o w n  to be  c o n t a i n e d  in  a set def ined  in  t e rms  of  S t a n d  Rt in  a m a n -  
ne r  s imi la r  to the  way  UCic~G~ was def ined  in  t e rms  of X t a n d  Yt earlier,  a n d  
the reby  s h o w n  to have  p r o b a b i l i t y  equa l  to o(1/n) if r<z, f rom which  we get 

P(3 t e E 0 , 1 ] :  I/,+h-Ztl < r ] / ~  VhE(0, 1] u [ - -  1,0)) = 0 ,  

wh ich  is e q u i v a l e n t  to (1.4). 
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Added in Proof. Priscilla Greenwood and Edwin Perkins have independently and differently 
proved (1.3) in a paper in the May 1983 Ann. Prob. See Perkin's paper in this issue in regard to 
the question after (1.4). Perkins and the author have settled (yes) the question after (1.6) recently. 


