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Summary.  Let v and z be finite measures on the set of integers such that the 
Fourier transform of v is an analytic function of the z transform. The 
central result shows how v may be approximated by linear combinations of 
convolution powers of z. Applications are given to renewal theory, infinitely 
divisible measures and age-dependent branching processes. 

1. Introduction 

Let v and z be finite complex-valued measures on Z, the set of integers. We 
regard z as known and we assume that the Fourier transform of v is a known 
function T of the transform of z. 

This situation arises in several different parts of probabili ty theory, for 
example in renewal theory, in connection with infinite divisibility and random 
sums, and in many applied models. 

We briefly sketch the situation in the first example, the details are given in 
Sect. 4 below: Let (Xi)~ N be an i.i.d, sequence of random variables on some 
probabili ty space (~?,gX, P) with finite first moment  Pl and P ( X l e N ) = I .  
Regard these variables as successive life-times in some self-renewing aggregate, 
and let u, be the probabili ty of a renewal at time n. If we take v as the 
stationary distribution of the renewal process and define v as the (signed) 
measure with mass u , - u , _  1 at n then under an additional aperiodicity as- 
sumption the above relation holds with T(z)=(#1 z)-1. 

Even if T is as simple as in this example it is normally not possible to 
obtain any (useful) explicit expression of the "output"  measure v except for a 
few special " input"  measures z. 

Confining oneself to asymptotic results certain analytic methods apply very 
well, the use of Abelian and Tauberian theorems for example suggests itself. 
Another  method which has proved to be fruitful in this context makes use of 
the theory of commutat ive Banach algebras: z may be thought of as an 
element of some convolution algebra ~1 of summable sequences characterized 
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by a certain asymptotic behaviour. Then v has the same property if v ~.~ 1, that 
is if 7 ~ "operates in ~1" - this leads to the Gelfand theory of commutative 
Banach algebras. 

The literature on this subject is extensive, important articles are, among 
others, those of Borovkov [21, Chover, Ney and Wainger [4], Ess6n [11] and 
Rogozin [17], [18]. The results obtained may roughly be distinguished by the 
type of -~1  involved. The first type imposes one-sided conditions on the 
asymptotic behaviour of the elements of -~1 such as O- and o-conditions or 
summability conditions. The second deals with spaces of sequences which are 
asymptotically equal to a given sequence, normally the sequence o f  atoms or 
tails of the input measure. Here the results only apply to measures which 
behave smoothly in a certain sense, which leads for example to the notion of 
subexponential probability distributions. 

We present a new variant of this Banach algebra method. Its starting point 
is the simple idea that a zero sequence may be called smooth if its differences 
decrease faster than the sequence itself, a concept which may be iterated in a 
natural way. Our main result shows that such smoothness assumptions lead to 
expansions of the output in terms of input convolution powers. 

This result is given in Sect. 2 below, Sect. 3 contains the proof. It is applied 
to renewal theory in Sect. 4 where we show that it yields a simpler and unified 
derivation of old results on the rate of convergence in the discrete renewal 
theorem, but also new ones as for example: If P ( X  1 = n + 1 ) - P ( X  1 = n)= o(n-7) 
for some 7 > 3, then 

1 1 
u, - - -  = - -  (6P(Y 1 > n ) -  4 P ( Y  1 + Yz > n) + P(Y1 + Y2 + Y3 > n)) + o(n-~), 

#i #i 

where 1(1, Y2, Y3 are independent and distributed according to the stationary 
distribution of the renewal process. An estimate of u , -  1/# 1 using the tail of a 
random sum of such Y{s has recently been given by Ney [16]. 

Some other applications and complementary remarks constitute the last 
section. 

All measures in this article are assumed to be concentrated on 7Z., the 
generalization to other lattices hZ, h>0 ,  is obvious. A corresponding treat- 
ment of absolutely continous measures is in preparation. 

2. The Main Result 

Let .~ denote the set of all absolutely summable sequences of complex num- 
bers, 

. ~={a~r  ~, la.L<oo}, 
n f f ~  

which is identified in the obvious manner with the set of all C-valued finite 

measures on 71, for example we write v, for v({nl) and v([n, oo)) for ~, v,,. 
r n ~ n  
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For  any a e S~ denote  the corresponding Fourier  t ransform by d, 

d(O) = ~ a, e i'~ for all 0 ~ IR. 
n~7/ 

For  any two elements a and b of .~ we define their convolut ion a . b  
= ((a �9 b),), ~z by 

(a �9 b)n = ~, % b,_ m for all n e Z .  
m ~ Z  

Then n-fold convolut ion of a s ~ with itself will be denoted by a* ' ,  n ~ N.  
The opera tor  A: (Ez._. (Ez is defined by 

( A a ) , = a , - a , _  1 for all n~2g, 

as usual the corresponding powers A k for k e n  are defined by induction,  A ~ 
denotes the identity. On .~ define Z by 

~ am, i f  n > - - 0 ,  

(X a), --- m~n+l n 

- ~ a m, i f  n < 0 .  
rn~ --oo 

So (Z v), equals the right tail v([n +1,  ~) )  of the measure v if n is nonnegative.  
In the terminology of [4] our  result has a local and a global part  ((i) and 

(ii) respectively). 

Theorem. Let v and z be finite (E-valued measures on Z with Z z e ~ ;  d = z ( ~ ) .  
Let G~(E be open with ~(~()~G, let T: G~(E be analytic and assume 

~)(0) = T({(0)) for all 0 e IR. 

Then 

where 

and 

(i) Suppose that for some k ~ N,  7 > 1, 

(zl~),=O(n -~-k) as n---,o% 

k 

n = l  

v({n})= ~ c(k,j)z*J({n})+O(n -~-k) as n - * ~ ,  
j=l 

1 -i~ I T (j+l)(d) 
c(k, j)=~. ,=_v l! ( -d) l '  l <=j<=k. 

(ii) Suppose that for some k e No,  ? > 1, 

(Akz),=O(n -~-k) as n~oo ,  

nl'c({n})[<oo, /f k = 0 ,  
n = l  
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Then 
k + l  

v([n, ao))= ~ d(k,j)v*J([n, oo))+O(n - ' - k )  as n~oo,  
j=l 

where ~k~--J~IJ(J+l' 
d(k,j)= (d) ( _  d)~, l ___ j~k+ l .  

�9 ~=o l! 

The same statements hold if 0 is replaced by o throughout. 

Since ~(IR) is a connected subset of ~ we may assume without loss of gene- 
rality that G is connected, but note that G may not be simply connected. 

The proof of the theorem is given in the next section. 
Obviously the transition z. ~ z_.  yields a corresponding result on the asymp- 

totic behaviour of v({n}) and the left tail v ( ( -  o% hi) as n --* - o0. 

3. Proof  of the Main  Result  

For any kENo,  7> 1, we define the spaces D(k, 7) and Do(k, 7) by 

D(k, 7)= {ae.~: (Aka).=O(n-~-k)} 
and 

Do(k , 7) = {a6.~: (Aka).= o(n-~-k)}, 

for all aeD(k ,  7) we set 

[laj/k,~ = ~ [a.I + sup n ~+k I(Aka)nl. 
ne27 h e N  

Our plan is to prove that analytic functions operate in these spaces. Once this 
is done the proof of the theorem will be easy. 

Note that 8,  endowed with the norm II-II, 

Ila[I = ~ la, I for all a ~ ,  
nEZ 

is a Banach algebra with respect to convolution. 

Proposit ion 1. (i) D(k, 7) and D0(k, 7) are linear spaces and closed with respect to 
convolution. 

(ii) qj. ]lk,~ is a norm on D(k, 7) (and therefore also on Do(k , 7)). Endowed with 
this norm D(k, 7) and Do(k , 7) are complete. 

(iii) There exists a constant C(k, 7) such that 

Ila,bl[~,,<C(k, 7)llallk,,llb[Ik,~ for all a ,b~D(k,  7). 

Proof. For  all aeD(k ,  7), n~N,  we define 

Co(a , n) = sup m s+ k I(A k a),,I, 
rn~n  

~n/2, if n is even, 
m, = [(n - 1)/2, otherwise. 
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Now let a, b ~ ~(k, ~). Summing partially k times we obtain 

k 

(A k(a * b)). = A (n) + B (n) + ~ D (n, j) E (n, j) 
j = l  

with 

A(n)= ~ a,.(A~b) . . . .  BOO:= ~ (Aka)m b . . . .  

m ~  - -  OZ3 m =  r a n +  1 

D(n,j) =(Ak-Ja),,,,, E(n,j): =(A ~'- i b) . . . .  - 1. 

It is easy to see that for any m=>n with suitable constants C~(k, y), 1 < i < 4 ,  

m r+g IA(m)l <-C 1 (k, ~J) Co(b , n - m , )  ~ la, I, 
l e ~  

m 7+k IB(m)l < C2(k, V) Co(a, m,,+ 1) ~ Ib~l 

and 
m~+k-JlD(m,j)l<Ca(k, 7)Co(a,m,,+l), l < j < k ,  
rn~+j- 1 IE(m,j)[ < C4.(k, ~) Co(b, n -m, ) ,  1 <=j<k. 

Using these estimates and the assumption y>  1 it is easy to prove that ~(k, 7) 
and ~o(k, 7) are closed with respect to convolution and that a constant exists 
which satisfies (iii). 

In order to prove completeness of (~(k, ~), II.II~,~) let (a(J))j.~ be a Cauchy 
sequence in this space. It is also a Cauchy sequence in (~, I[. 1t) then, so there 
exists an a e ~  with lim [la-a(J)ll =0.  Now we choose a subsequence (a(J'))~N 
such that J~ ~ 

][a(JO--atJ~--~)llk,7<=2 -i for all i~N.  

Because of Ilzlall__<211all A and with it A k are continous on (~, 11.13 which 
implies 

lim [[Ak(a~J~)--a)l[ =0,  
i ~ o O  

especially 

This gives 

I(Ak(a (j') -- a)),l ~ ~ I(Ak(a (j') - a (j'+ 1)),1. 
l = i  

supne+k[(Ak(a~J,)--a)).l< ~ a~J,)--a~J,+l) <2-/+1 
n ~ N  l = i  

which yields ae~3(k, 7) and lim [ra(i')-a[fk,~=O. Since (a~J~))j~ is a Cauchy 
sequence this implies i~ 

lira Ipa(J)--alrk, ~=O. 
j ~  Go 

Finally the mapping g~: ~3(k. 7)--*R defined by 

r for all a ~ ( k ,  ~) 
n ~ o o  
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is continous with respect to II.llk, v and we have ~o(k, 7)=~b-l({0}), so 
(Do( k, 7), II.Ilk,~) is also complete. All other assertions of the proposition are 
immediate. [] 

Let ~o denote the space of sequences with only a finite number of non- 
vanishing terms, 

SSo={aeCZ: #{n~TZ: a .+0}<oo} .  

Evidently we have ~o ~ ~(k, 7) for all k ~ No, ~ > 1. The following lemma shows 
that in a certain sense ~o is weakly dense in (~(k, 7), H. Ilk, s). 

Lemma 1. If  k s N  o, ~;>1 and a~Y~(k, 7), then there exists a sequence (bl)t~ ~ 
C~o such that 

lim [l(a--bt)*2llk,.e=O, lim [la-bl][ =0.  (1) 

Proof. For all 1> k we define b 1 = (bt.).~ Z by 

k - 1  

bin=jan, = 
(0, 

if O<_n<_l-1, 
if - ( / -  1)_<_n<0, (~ =0). 
if Inl>=l o 

Then we have for every ie{0, ..., k - l }  

and 

--l)  j ) (AJ+i a)t-1, 

(Ai(a-bz))n= 
/ 

( . 

t o ,  

Firstly we show 

if i<n<_l-1, 

if n > l - 1 ,  
if n = - l ,  

(Ak(a_b~))={O, if k<n<_l-1, 
(A k a)., if n > I. 

We have 

lim II a - b 1 II = 0. 
l~oo 

~_1 ,_1 ( t - l - n )  
Z I(a-bt),,I < ,,~ la,,l+ Z Z I(AJa)~-I l 
n~z =1 >-1 j=o.=o J 

(2) 

(3) 

(4) 

Since ~(k, 7 ) c~  it follows that lim ~ la.l=0. Because of 
l ~ o o  Inl>_l 

l - -1  ( / -  l - n )  
I(AJa)t- 11 < p+ l l(AJa)l-1 [ 

n = 0  J 

(4) will follow if we can show 

(AJa),=o(n - j - l )  for all je{O . . . . .  k - l } ,  (5) 
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but  this is an immediate  consequence of (Aka). = O(n-v-k) (? > 1) and 

[(AJa),,]~ i I(AJ+la)ml 
m = t l  

Since A k is cont inuous on (.~, I]-II) (4) implies 

hence 

for all n e N .  

lira ~ [(Ak((a-b,)*2)).]=O , 
l ~ c o  n ~ /  

lim I(Ak((a--bz)*2)).l=O for all n 6 Z ,  
l ~ o 0  

so it remains to prove 

lim sup n ~+k [(Ak((a -- bz)* 2 ) ) n [  = 0 
l ~ o o  n > n o  

for some n o e N independent  of l. 
We have 

i (Ak((a-b,)*2)). = + + (Ak(a-b,))m(a-b,)._m . 
m oo m = O  m = n + l  

Consider  the last term. Using (3) it follows that  

supn~+k.>k .~=.~+ 1 (Ak(a--bl))"(a--bl)"-m 

<(sup  n '+k ](Ak a).])( ~ ](a-- b,).]), 
n e N  n ~  

so a e ~ (k, ?) and (4) yield 
oo 

lim supn ~+k ~ (Ak(a-bz))m(a-bz),_m =0 .  
l ~ o a  n>=k m = n + l  

The corresponding statement holds for the first term too since 

- - 1  

(Ak(a-b'))m(a-b')n-m = i (Ak(a-b'))m(a-b,)n-m 
m =  -oo m = n + l  

by (2) and partial summation.  
The corresponding asymptot ic  behaviour  of the middle term in 

follow from 
n 

lira sup ( n + l )  ~+k ~ (Ak(a-bz))m(a-bl),_m = 0  
l ~ o o  2 k +  l <= n < 2 1  m ~- 0 

and 
n 

lim sup ( n + l F  +k ,,_~ (Ak(a-b~))m(a - = 0 ,  
t ~ o o  n >  21 0 

(6) 

(6) will 

(7) 

(8) 

which we prove now. 
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Using (3) we obtain  

(S 2) .~=o (A k (a - b~))m (a - bz) ._, .  = o + z (A k (a -- bz))m (a - b~). _ m- 

The first sum m a y  be t ransformed to 

k - - 1  k 

(a-b~),.(Ak(a-bz))._m + ~ (AJ- l(a-bt))k_ l(Ak-J(a--b~)._k . 
m = O  j = l  

Considering separately the cases n >  l and n < l  the first term is easy to handle. 
Using (2) and the a rgument  which led to (5) we get 

(A ~- ~(a--bz))k_ ~ = O(1 - ~+ ~- ') 

and similarly 

sup I(Ak-J(a--bz))._kl = O ( p - k - e ) .  
2 k +  l <=n<l+k 

If  n > l + k  we have (dk-J(a--bl))._k=(Ak-Ja)._k and it follows that  

sup ](Ak-J(a--bz))._k] =O(12-k-'). 
l+k<=n<21 

Insert ing these estimates we get 

k - - 1  

lim sup ( n + l )  ~+k ~ (Ak(a-bl))m(a-bz)._,. = 0 .  
l~oo  2 k +  l <= n < 2 l  m =  0 

The second sum is easily disposed of  since we may  replace Ak(a--bl) by Aka 
and then use (4). 

Thus  (7) is proved. 
Turning  to Equat ion  (8) we define m.=n/2 if n is even and m.=(n-1 ) /2  if n 

is odd. We then have 

~, (Ak(a-bl))~(a--bt),,_m 
m = O  

mn 

= ~, (a-bl)m(Ak(a-b,))._,.+ ~, (Ak(a-b,))m(a-b~)._m 
m = O  m - - m n +  l 

k 

+ ~ ( A J- 1( a - bz)) . . . .  -1 ( Ak-2( a - bl)lm~ 
j - - 1  

= ~ (a--bl)m(Aka)._m+ ~ (Aka)m(a-bz)~_m 
m - O  m = m ~ +  l 

k 

+ Z (#- la)  . . . .  -~(Ak-Ja)m." j=l 

On using a t  ~(k,  7) and (4) for the first two terms and the argument  which led 
to (5) for the last it is easy to see that  (8) holds. [ ]  
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The next lemma is a simple application of the dominated convergence 
theorem, its proof is therefore omitted. 

Lemma 2. Suppose {an: 0=<q<2rc} is a subset of ~(k, ),)(~o(k, 7)) with 

sup Ilanllk,,,< oo 
0 <r/_<2r~ 

and such that tl~d,(O ) is absolutely integrable over [0,2~z] for every O~IR; 
define f:  IR ~IF. by 

2g 

f ( 0 ) =  ~ dn(O)dtl for all 0 ~ .  
0 

Then f =d for some aE ~(k, 7)(33o(k, y)). 

Proposition 2. Let a ~ ( k ,  7) and Gel1? be open with d(IR)cG. I f  ~: G--*IU is 
analytic, then there exists ab ~ ~(k, 7) such that 

/~(0)= ~(d(O)) for all OelR. 

This b is unique in gO. The same holds for ~o(k, 7) in place of ~(k, 7). 

One of the possible proofs of this proposition follows a standard procedure 
from Banach algebra theory: It firstly characterizes the maximal ideals in 

(k, 7) as being of the form 

I(0o) = {a ~ ~(k, ?): 8(00)=0} 

for some 0oeN.  This implies the existence of a convolution inverse in ~(k, 7) 
to a - z d  o for every zr Integrating the ~(k, 7)-valued function 

1 
z--*2~ ~ ~P(z)(a-zdo) *(-1) over some suitable contour F one then obtains the 

required b. 
The choice of F seems to be a crucial point in this proof and it has not 

always been handled correctly in the literature. It is simple if we assume 
additionally that G is simply connected (see e.g. [3], p. 254), but in many 
probabilistic applications this is not satisfied. Nevertheless the proposition may 
be proved in full generality with the method outlined above, but one has to 
spend some care with the construction of F (see e.g. [13], p. 166 and [-19], 
p.241). 

No such difficulties arise in the proof we will give now. It completely 
dispenses with results from the general theory of Banach algebras, only elemen- 
tary calculations are used in it. 

Proof. Since d(N) is compact and contained in G there exists a p > 0 such that 
U4p(~t(O))~G for all 0elR ~. Using Lemma 1 we get some s~.~ o such that we 
have with r : = a - s  and a suitable constant C 

1 Op(z)=(z's~: Iz-z'l<p}, G(z)={z'Er Iz-z'l~p} (z~r 
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I/rll < p ,  (9) 

IIr*Jllk.~<CpJ for all j e N  o. (10) 

Because of (9) we can use the Cauchy formula to obtain 

with 

~(d(O))= ! hn(O)~.(O)dr l for all O~N 

�9 2pe i~ 
~.(O)=~I'(~(O)+2pe'"), ~,(O)-2pe~,_?(O), 0<tl<2zc,  0EIR. 

From this we get the assertion with the help of Lemma 2 if we can show 

sup ]]cnHk,~< oo, (11) 
0_-<~/_-< 2 n 

sup [lh, l[k,~< oo, (12) 
O < q < 2 ~  

where c, and h, denote the sequences of coefficients corresponding to ~, and/~, 
respectively. 

The first inequality (11) is immediate from 

cn= ~ (2p)-Je-iJ"r *j 
j = o  

and (10). 
Because of s ~.~o there exists an e > 0 and for every t/e [0, 2zc] a function ~b, 

analytic on S~.. = U 1 +,(0) - U  1 . (0) such that 

~b~(ei~ for all q~[0, 2rc], 0~IR, 

and 
sup  I~.(z)l  < oo. 

O<=rl<=2~,z~S~ 

From this we easily obtain (12) with the help of Cauchy's inequality for 
Laurent coefficients. 

The same arguments yield the corresponding result for ~)o(k, 7). [] 

The proof of the following lemma does not require any new arguments and 
is therefore omitted. 

Lemma 3. For all i , j ,k~No,  7>-0, with j<=k,j<=i<2j, the sets 

~ ( j , k ; i , ~ ) =  a ~ 5 :  nkl(AJa).l<oo,(A a).--O(n 
n = l  

and 
~o(J, k; i, 7)= {ae ~(j, k; i, 7): (Aia).=~ 

are closed with respect to convolution. 
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Proof of the Theorem. (i) There  exists a function ~b analyt ic  on G such that  

~ ( z ) = _ ~  o.= j !  ( z - d ) J  + ~ ( z ) ( z - d )  2k+1 

for all z e G. This implies 

~(0) = ~ ~(J)(d) ('~(0) - d) j q- ~('~(0))('~(0) - d) 2k+1 
j~o J!  

for all 0 e IR. Since 

(eiO_ 1)k+ 1) ~b(i(0)) (~(0) -- d) 2k+1 = (~b (s i~ - 1) k) \ 

we can app ly  Propos i t ion  2 and L e m m a  3 to obta in  O(n -~-k)  - behaviour  for 
the coefficients of  the last term. Similarly L e m m a  3 yields this behav iour  for 
the coefficients of  (s  j if j e { k +  1 . . . .  ,2k} .  The remaining terms m a y  be 
rearranged,  

j=o J!  j=o J!  t=o 
k 1 1 ~u(J~ (d) ( - d) j -  l 

=,~o ~(~ F. 020! = j = l  
k 

= ~ c(k, l)'~(O)l+ constant,  
/=1 

so the assert ion follows by compar i son  of coefficients. 

(ii) We have 

~ ( z ) =  ~g~o 1 T ~  +qb(z)(z--d) 2k+2 .= j ~  for all z ~ G 

with some function �9 analytic on G, so 

~(0)- ~(0) __ 2~ 1 ~(J)(d)('c(O)- d) j ( ' ~ ( 0 ) -  d) 2k+ 2 

e i ~  1 r 1 j ! (e ~~ 1) ~- ~(~(0)) e ~~ 1 

As in the local case p roved  above we m a y  use L e m m a  3 and  Propos i t ion  2 to 
obta in  O(n-~-k) -behaviour  for the coefficients of 

2 ~ 1 ~ j ~ ( d )  (~(0)  - d)J (~(0)  - d) ~ k + 2 

j= k+ 2 j ! (e i~ - 1) ~- ~ ('~(0)) e i~ -- 1 ' 

rear ranging the remaining terms gives 

k+12 ttl(J)(d)(~(O)--d)J(eio _ k l~, ~J(J)(d) ~ (~) (.~(O)l--d l ) 
j= l  J!  --1) j=* J!  z=* \ e i~  (--d)a-I 

k + 1 .g(0)l _ d I 
= y" d(k,I) e lO_l  ' 

/ = l  

and the second assert ion follows. 
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Using ~o(k, 7) and 3 o ( k , k ; k + l , k + y )  (3o(1 ,1 ;1 ,  7) if k=0)  instead of 
~(k, 7) and 3 ( k , k ;  k + l ,  k+7)  (3(1, 1; 1, 7) if k=0)  we obtain the correspond- 
ing o-results. [] 

4. An Application to Renewal Theory 

In this section we apply our theorem to obtain results on the rate of con- 
vergence in the discrete renewal theorem. 

Let ( X j ) j ~  be an i.i.d, sequence of random variables on some probability 
space (f2, 9.1, P) with P(X 1 c Z) = 1 ; p,: = P (X 1 = n) for all n c 7Z. 

Assume that the distribution p is aperiodic, i.e. 

g.c.d. {ncZ:  p , > 0 } = l ,  

and that X 1 has a finite first moment #1 >0.  
The corresponding renewal sequence (u,),~ z is defined by 

the discrete renewal theorem states 

1 
lim u n = - - ,  lim u ,=0 .  

The corresponding rate of convergence has been investigated by many authors, 
among those who used the Banach algebra method we mention Borovkov [2], 
Ess6n [11], Rogozin [17] and Davies and Griibel [6]. Other approaches, 
ranging from Fourier techniques to coupling methods, have been applied by 
Stone and Wainger 1-20], Kalashnikov [14], Lindvall [15] and Ney [16]; see 
also the references given in these articles. 

If we define the measures v and z by 

1 
v : = A u ,  -c : = - -  z~p, 

#1 

then the aperiodicity assumption yields 

~ (0 ) ,  0 

and the renewal equation gives 

#1 ~(0) ~(0) = 1 

for all 0 c IR, 

for all 0 s IR 

(see [10] for the details in the one-sided case P ( X l c N ) = I ) .  Thus our theorem 
is applicable with G: = C -  {0}, T ( z ) :  =(g l  z)-1 for all z c G, and we have d = 1 
and v([n + 1, o~)) = - u,  + 1/# 1 . 
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If k=O the global part of the theorem yields that EX2<oo,  P(X~>n)  
=o(n-~)(O(n-~)) for some 7>2,  implies 

1 1 
u,, = #~ + #~ (Zp)([-n + 1, oo)) + o (n- 7)(O (n- 7)). (13) 

This result has also been obtained by Rogozin [17]. 
If we take k = l  we obtain that EX2<oo ,  p,=o(n-~)(O(n-~)) for some 7>2,  
implies 

1 3 1 
Un = # ~ - + ~  (Zp)(En + 1, ov) ) - -~  (Zp)* 2([n + 1, or ) )+o(n- ' ) (O(n- ' ) ) .  (14) 

This has also been obtained by Ess6n (Eli], Theorem 3.1). Both authors admit 
a bigger class of reference sequences than (n-~)n~N, 7>2,  but see Sect. 5.3 
below. 

We get new results if we take k>  1. For example the case k = 2  yields that 
E X  2 < oo, Pn -- Pn- 1 = O (n- 7) (O (n - 7)) for some 7 > 3 implies 

__1 6 
u n = ~ + # z  (Sp)([n+ l , co))- (Np)*2([n+ l, oo)) 

1 
+ ~ (~p) ,  3 ([~ + 1, oo)) + o (n- ') (0 (~- ~)). (15) 

In the one-sided case P ( X t ~ N o ) = I  z is a probability measure, namely the 
stationary distribution of the renewal process. If I11, Y2, I13 are independent 
random variables with this distribution we can rewrite (15) as given in the 
introduction. 

Under the assumption E X  3 < oo Stone and Wainger [20] obtained that p, 
= o(n-~) (O(n- ~)) for some ), > 3 implies 

# 2 - # l  1 1 (Zp)([n+l,  o o ) )  (Sp),+o(n-')(OOz-'))  (16) 

w h e r e  ]22 =IX2. 
This may easily be deduced from (14) as we show now (we only consider the o- 
case). 

We have 

~(0) 2 - .g(O) 2 
='~2(O)2(e~~ ~~ (17) e i ~  1 

with some polynomial p and 

~1 (0) = ~(0@~(0) ,  ", "~1 (07 --  "~1 (07 
�9 2(0)= j 0 ~ i  . 

1 ] .2  
The n-th coefficient on the left side of (177 is \ ~ N p /  ( [ n + l ,  oo)) if n>0 .  
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Since "c2E~o(2,2; 3,7) we obtain o(n-~)-behaviour for the coefficients of the 
first term on the right side of (17) with Lemma3.  Inserting i ( 0 ) = l ,  ~(0)  

1 
= 2 # - - ( # 2 - # 1  ) _  we get (16) from (14). 

If EX~ < oo we may proceed in much the same way to obtain from (15) that 
P, - P , -  1 = o (n- ~) (0 (n- ~)) for some 7 > 4 implies 

1 1 
u'=--+Ys(ZP)([n+l'#l #1 oo)) #2--#1#31 (Xp), 

1 
+ l~p4(g2+9#z2--6#i#2--4#i#3)p,+o(n-')(O(n-7)), (18) 

where #3 =EX~. 
These results may also be employed to obtain results on asymptotic equa- 

lity. In a recent paper Embrechts and Omey [-9] proved that in the one-sided 
case ((Sp)* 2), ~ 2 # 1 (Sp), implies 

1 1 
u, (Zp)([n + 1, oo)). (19) 

#i #~ 

We obtain from (13) that the condition 

(Zp),=O(n-~), (Zp([n+l, oo)))-~=o(n ~) for some 7 > 2  (20) 

implies (19). Consider for example the distribution p with 

{ ! ~ - ~  _ ~ - ~  if n=c~ k for some k e N ,  2 t  k - - 1  k 1' 

p , =  1 - � 8 9  if n = l ,  

0, otherwise, 

where ek+l=[21/~ek] for all k e n  o and ~o is chosen large enough to ensure 
ekT oo. We then have 

in-~<=(Zp),_l<n-~ for all n>c%, 

which implies (20), and 

lim (Y'P)~- 1 =2.  

So this is not contained in the result of Embrechts et al. since it follows from 
their assumptions that (Sp),~(Sp),+ ~. Interestingly our condition (20) implies 

1 
that z = - - S p  is a subexponential distribution, i.e. 

#i 
~*~([n, oo)) 

lim - 2, (21) 
. ~  ~([-~, oo)) 

which may be seen as follows: We have 

z*2([-n, oe))= ~ ziz([-n-i,n-1])+ z i z([n,o�9169 
. =  i = l  t 0 
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hence (21) will follow from 

[n/2] 

"ci'c([n -- i, n --1])= O(n- ~), 
i = 1  

n - 1  

y, r~z([n-i, rz-1])=O(n-'). 
i =  In/21 + 1 

Because of 7> 2 we have ~ iz i< oo and ~ ~([i, 0o))< 0% using this and 
i = 1  i = 1  

[n/21 [n/21 

z i z ( [ n - i , n - 1 ] ) <  E "cii sup zj 
i= 1 i= 1 j>-n/2 

for the first, 
n -  1 [n/2] 

zir([n-i ,n-1])<= sup z~ ~ z([i, oo)) 
i=[n/21+ l j > n / 2  i = 1  

for the second part we get (22). 
Similarly (16) and (18) yield conditions which imply 

o r  

1 1 ]~2 --]gl 

/2 n 
1 1 

us u ~ ( s P ) ( [ n + l ' ~  . 

1 2 9 2 
~12#~ (#1 + # 2 - 6 # 1 / ~ 2 - 4 p l # 3 ) P ,  �9 

(22) 

5. Further Applications, Concluding Remarks 

5.1 Suppose that v is an infinitely divisible distribution on 2g with L6vy 
measure z. Then r has support Z - { 0 }  and we have 

~)(0) = exp (~(0) - ~(0)) for all 0 E IR. 

Results concerning the asymptotic behaviour of v and z have been obtained by 
several authors; for example Embrechts, Goldie and Veraverbeke [7] give a 
necessary and sufficient condition for asymptotic equality of the tails of v and 
z, Embrechts and Hawkes [SJ deal with asymptotic equality of v, and %. In 
both articles v is assumed to be concentrated on the non-negative numbers, in 
[7J non-discrete measures are considered too. 

Our theorem gives in the case k = 1 that ~ In l z, < oo, z , - G - 1  = o(n-7) for 
n ~ Z  

some 7 > 2 implies 

and 
v=%+o(n-~)  

v([n, oo)) = (1 - z(Z)) z (I-n, oo)) + �89 e ([n, oo)) + o(n- 7), 
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if we additionally assume ~ n2"~'n< 00, then 
n~7/ 

v(En, m)) = ~(D, oo)) +/~(r) ~. + o(n-') 

with E(z)= ~ nz,. The same holds with o replaced by O throughout. 
n~Z 

Note that we do not need Proposition 2 here in its full generality since 
depends on { via an entire function in which case Proposition 1 suffices. 

5.2 Let (Z,) ,~o be an age-dependent branching process (see [1], Chap. IV) 
with lifetime distribution z, z (N)=  1, and such that the mean m of the offspring 
distribution satisfies m < 1. Then we have ([1], IV 5.(4)) 

EZ.= ~ mJ(~*~([0, n])-r*(J+l~([0, hi)). 
j = 0  

If we define v, G and 7 ~ by 

vo=EZo, v :=E(Z, -Z ,_  0 for all h e N ,  

l - - z  
G =  U1/m(0), ~P(z):-l_mz for all zeG, 

then our result applies. If we take k = 0 for example the global part yields that 
if z has a finite mean and %=o(n-~)(O(n-~)) for some 7>  1 then 

1 
= ~(En, o o ) ) + o ( n - ' ) ( O ( n - ' ) ) .  EZ, 1 - m  

A corresponding result on asymptotic equality is [1], IV Theorem 3B(ii). 

5.3 In the proof of the theorem we essentially made use of the following 
properties of the sequence c~=(%),~ N, % = n  -~ for all n s N  (7> 1), 

<o(3, Z.., O~n<O0 , O:n=o(n-1), l i r a - l o g % = 0 .  s u p  
n~N ~2n  n= 1 n~oo g/ 

These conditions are of course satisfied by many other sequences, and it is easy 
to obtain a corresponding generalization of our main result. 

5.4 The application of our result to infinitely divisible sequences occupies a 
special position even in another respect than that already mentioned in 5.1: If 
we try to approximate the input measure by convolutions of the output the 
difficulty appears that the values of the Fourier transform are perhaps not 
contained in one sheet of the Riemann surface of the logarithm. In this case 
other results from the theory of commutative Banach algebras still permit 
approximations as given in our theorem, we refer the reader to [12], w 13 and 
[5], VIII w 1.3.12. 
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5.5 A t  the  e n d  let us i nd i ca t e  a l i m i t a t i o n  o f  the  B a n a c h  a l g e b r a  m e t h o d :  I t  

s tar ts  wi th  a s u b a l g e b r a  of  the  space  o f  s u m m a b l e  sequences ,  which ,  in r e n e w a l  

theory ,  t r ans la tes  to  the  a s s u m p t i o n  of  f in i teness  o f  the  first m o m e n t .  T o  q u o t e  

f r o m  a referee 's  r epor t ,  " i t  w o u l d  be  h igh ly  in t e re s t ing  to f ind s imi la r  m e t h o d s  
for  the  inf in i te  m e a n  case" .  
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