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A theory of spectral representations and spectral density operators of infinite- 
dimensional homogeneous random fields is established. Some results con- 
cerning the form of the spectral representation are given in the general infinite- 
dimensional case, while the results pertaining to the density operator are 
confined to Hilbert space valued fields. The concept of a purely non-deter- 
ministic (p.n.d.) field is defined, and necessary and sufficient conditions for 
the property of p.n.d, are obtained in terms of the spectral density operator. 
The theory is developed using some isomorphisms induced by families of 
self-adjoint operators in the linear second order space associated with the 
field. The method seems to lead to more direct results also in the random 
process case, and it sheds new light on concepts such as multiplicity of the 
field and rank of the spectral density operator. 

1. Introduction 

In this paper we try to establish a theory of spectral representations and density 
operators for infinite-dimensional homogeneous random fields. Finite-dimensional 
fields of this type have been treated in a classical paper by Yaglom [16]. With 
the exception of Sections 2 and 4, where we obtain results on the spectral rep- 
resentation in the general case, our concern will be with fields having their values 
in a separable Hilbert space. From an application oriented point of view random 
fields (not necessarily homogeneous) with values in such a space are of interest 
for example in a functional analytic treatment of random integral equations of 
a slightly more general nature than those considered in Bharucha-Reid [1, 
Chapter 4]. 

Virtually all of our results will follow from the existence of two isomorphisms. 
For a general infinite-dimensional homogeneous field we study an isomorphism 
induced by a commuting set of self-adjoint operators, the so-called momentum 
operators of the field. In the special case of a purely non-deterministic field our 
theory is deduced from an isomorphism, Tjostheim [14], defined by a set of 
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self-adjoint operators forming a direct sum of Schr6dinger n-systems. The approach 
based on these two isomorphisms seems to lead to more direct results als0 in the 
case of a Hilbert space valued random process, which has been studied before 
(using different methods) among others by Payen [8] and Kallianpur and Mandre- 
kar [4]. In addition our method sheds new light on concepts such as multiplicity 
of the field and rank of the spectral density operator. 

2. The Spectral Representation 

In all of the following Lebesgue measure on R" will be denoted by the letter m, 
and for a positive measure v, v-a.e, will be used as an abbreviation for the state- 
ment "v-measure almost everywhere". 

Let H be the Hilbert space of all complex-valued random variables having 
a finite second moment, and where the inner product is defined by (F, G) = E {F 6} 
for F and G ell .  Let ((2, N, P) be a probability space. We say that {Fx(x, c0); 
(~e~2,)`eL, xeR"} is a second order random field over R" if for each 2 and x, 
Fz(x, .)ell .  Here, L is a parameter set associated with the "dimension" of the 
field. If L = R  m and F~(., .) is linear in 2, the field is said to be m-dimensional. 
In this paper we will be concerned with the second order theory of the field, and 
consequently we will suppress the dependence on co in our notation and write 
{F~(x); 2eL, xeR"} or simply F~(x). In the sequel it will always be assumed that 
Fx(x) is continuous in quadratic mean (q.m.) in x for each 2eL, and that Fx(x) 
is homogeneous, such that for 2, # e L  and x, y, z~R" 

{F~(x + z) F. (y + z)} = E {F~(x) V~(y)}. 

The second order theory of Fx(x) is developed in the Hilbert space H(F)cH. 
This space is the closure in H of the linear hull of the set of elements {Fx(x); 
2eL, xeR"}. It will be assumed that H(F) is separable. The following conditions 
imply separability: L is a Hausdorff space satisfying the second countability 
axiom, and Fx(x) is continuous in q.m. relative to the topology of L for each 
xeR". This is easily proved using the technique of the proof of Lemma 2.1 of [-3]. 

Let {U(y); yeR"} be the unitary strongly continuous shift group of Fz(x ) 
defined by U(y)Fx(x)=F~(x-y) and denote by ( , ) the usual inner product in 
R". It is well known that the spectral representation 

V~(x)= f exp {- i (x,  u)} d~(u) (1) 
R n 

where {~bx; ),eL} are random measures over the Borel sets B(R") of R", follows 
from the spectral representation of {U(y); yeR"} in H(F). As it stands, the de- 
composition (1) is not very useful for our purposes. In the following theorem 
more information about the structure of this representation will be obtained. 

Theorem 2.1. Let {Fz(x); ),eL, xeR"} be a homogeneous random field. Then there 
exists a cardinal number M which is uniquely determined by Fz(x) and which may 
be countably infinite, such that for each )  ̀ and x with probability one 

M 

Fx(x)= ~ ~ exp { - i (x ,  u)} g{(u)d~j(u) (2) 
j = l  R" 
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where {q~i; J =  1,. . . ,  M} are random measures over B(R n) such that for A, A s and 
Az~B(Rn ) 

i) E {~j(zl~)q~k(A2)} --(~kjEt~j(A1 (-,i A2)I 2 < GO, 

j 2 / D n ~  ii) For each 2, gxzL~jt,, j where vj is the measure defined by vj(A)=Ef~j(A)] 2. 

Proof. Let the k-th shift group {Uk(t); tz(--00, oO)} be defined by 

Uk(t)F~(xl,..., xk .. . .  , x,)= F~(xl . . . .  , xk - t, ..., x,). 

Under our assumptions {Uk(t); t r  ~)} is unitary strongly continuous and 
from Stone's theorem there exists a self-adjoint operator ~ in H(F) such that 

v~(t) = exp  {itS}. 

It is clear that the system {P1 . . . . .  P,} forms a commuting family of operators 
in H(F), that is, if {Ek(S), s~(-Go, or)} is the resolution of identity associated 
with Pk, then E k (s) Ej (t) = Ej (t) E k (s) for j, k = 1 . . . . .  n and s, t ~ ( -  GO, oo). From a 
well known result by yon Neumann [7], [2, pp. 127-134] (note that the results 
in [7, 2] are given for a single operator P, but it is not difficult to extend the 
technique to a commuting family of self-adjoint operators using the definition 
[10, p. 315) of operator functions of type v (P1 .. . .  , P,). See also Maurin [5, p. 193].) 
it follows that the system {P~ . . . . .  P,} induces a realization of H(F) as a direct 
integral of Hilbert spaces. More precisely, 

H(F) ~ B = [. fI(u) dr(u) (3) 
R n 

where v is a positive finite measure over R" and V is a unitary transformation 
taking Er onto H such that if F~{P(u)}  for Fell(F),  then 

v (P) r = v (P1 . . . . .  P,) F ~ {v (u) F(u)} 

where v is a complex-valued v-measurable function on R" such that 

Iv(u)l 2 IIP(u)tlZ dv(u)< oo 
R~ 

[[ [[,, being the norm in /~(u). Moreover, the isomorphism (3) is unique in the 
following sense: If H(F)~ f l '= f f t ' (u )dv ' (u )  is another realization having the 
same properties, then the measures v and v' are equivalent and/~(u) and H'(u) 
are isomorphic v-a.e. 

Let {q3j(u); j = l ,  . . . ,d(u)=dimfI(u)} be an orthonormal basis in /~(u), and 
consider the realization F~(0)~Px(0)={Px(0; u)}. Decomposing Px(0; u)e/l(u) 
according to the basis q3j(u) in/t(u),  we have 

a(u) 

/~ (0; u) = Z (P;~ (0; u), ~j (u)), 43 i (u) (4) 

where ( , ) u  is the inner product in /4(u). Consider the v-measurable sets 
A~={ueR';  dim/t (u)=i} ;  i = 0  . . . . .  and denote by A the subset of Rn obtained 

oo 

by deleting from U A~ those A~ with v-measure zero. From the uniqueness 
i=0 

properties of the isomorphism (3) it follows that M = sup {dim/4(u)} is uniquely 
u r  
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determined by the field F~o(x). Let A~B(R n) and denote by {q~j; j =  1 . . . . .  } the 
random measures defined by 

�9 s(A) (u) Cs(u)} (5) 

where ZA(U)=I for ueA and zero otherwise, and where we put ~j(u)=O for 
j > d(u). (Note that ~bj(A)e H(F) for all A ~B(R") due to the finiteness of v.) Clearly 
EI45j(A)]2=0 for j > M  and all A~B(R"). Using standard arguments, it is not 
difficult to show that (4) and (5) imply that Fx(0) can be represented in H(F) as 

M 

Fx(0)= ~, ~ g{(u)dq)s(u) (6) 
j = l  R n 

where 

(u) = (o; u), (7) 

But Fz(x)= exp XkP k F~(0)= exp { -  i(x, P)} Fz(0), and it follows that as 

elements of H(F), that is, with probability one 

M 

F~(x)= ~ ~ exp {- i (x ,  u)} g{(u) d~s(u ) 
j = t  R n 

and the representation (2) is established. 
From the defining relation (5) we have 

E {~]Sj(Z~l) ~k(A2)} --- 5 (•A1 (U) {~j (U), Zz]2(U) ~k (U))u d~(u) 
R n 

(8) 
= S 

AInA2 

from which property i) follows. Property ii) is a direct consequence of the fact 
that Fz(O)~H(F), that is, {Pz(0; u)}E_O. LI 

Theorem 2.1 is the key representation of this paper and most of our subsequent 
results will be deduced from it. The cardinal number M of Equation (2) will be 
called the momentum multiplicity of the field. As will become clear in the following, 
it corresponds to the concept of rank of a wide sense stationary process as defined 
in [12]. If v is equivalent to Lebesgue measure and if d(u)=Mv-a.e, on R ", the 
field is said to have uniform momentum multiplicity. 

It should be noted that the functions {g~; j =  1 . . . . .  M} appearing in (2) are 
highly non-unique. This is because they are strongly dependent on the choice 
of measure v in the isomorphism (3). 

The measure v is unique up to equivalence. The following definition then 
makes sense: The field {Fz(x); 2eL, xeR ~} will be said to have an absolutely 
continuous spectral distribution if the measure v is absolutely continuous with 
respect to Lebesgue measure on R". In the absolute continuous case it is possible 
to obtain a representation analogous to (2), but where the non-uniqueness of the 
functions {g{; j =  1 . . . .  , M} is to a large degree eliminated. To show this, let m 
be Lebesgue measure on R" and define k by k=(dv/dm) ~. Furthermore, let 
F~ v , {F(u)} be the representation of FEH(F) using the isomorphism (3). Then 



Spectral Representations and Density Operators for Random Fields 327 

it is easy to construct a realization 

H(F)< w, ~ ffl(u)din(u) (9) 
R n 

where F< w> {k(u)F(u)}. Using the isomorphism W we obtain a representation 

M 

e,(x) = ~ j" exp { - i(x, u)} gJ' ~176 (10) 
j = l  R n 

. j , O ~ L 2  - t o n ~  where M is as in (2), s~ ~ ,jt~, ) and vj(A)=Elq~~ for a Borel set A 
of finite m-measure. Denote by L2(R ") the space of complex-valued Borel func- 
tions which are square integrable with respect to m. Let h~ be the function defined 
by hi. = g~' 0 (dvjdm)~. Then from (10) we obtain a representation 

M 

Fz(x) = ~ ~ exp { - i ( x ,  u)} hJz(u)dq~j(u) (11) 
j = l  R n 

where EIq~j(A)I2=m(A) for j = l  . . . .  , M  and where the functions {h~L2(R"); 
2~L, j =  1 . . . .  , M} are uniquely determined up to unitary equivalence. 

3. The Spectral Density Operator 

In this section we put some additional assumptions on the parameter set L and 
the mapping 2 ~F~.(x) from L to H(F). To be exact, we will assume that L is a 
separable Hilbert space and that the field {F;~(x); 2~L, x~R"} can be represented 
with probability one (as random variables in H(F)) as 

F~ (x) -- (2, F (x)) (12) 

where for each x e R  n, F(x) is an L-valued random variable, and ( , ) is the inner 
product in L. Moreover, it will be supposed that E{IIF(0)J[z}< ~ .  We start by 
proving the following lemma. 

Lemma 3.1. Let F~(x)=(2, F(x)) be as defined above with 2 and F(x)~L, a separable 
HiIbert space. In the representation (2) induced by the isomorphism 

H (F) ~ ~ fI (u) dv (u), 

J _ the functions {gr 2eL, j= 1 .... , M} can be represented v-a.e, on R" as g;,(u)- 
(4, g"'J) where gu'J~L. 

Proof. From (7) and (12) it follows that the mappings 2--~g~.(u); j = l  . . . .  , M  
define linear functionals v-a.e, on R". If it can be proved that these mappings 
are continuous, the conclusion of the lemma follows from Riesz's representation 
theorem. 

Let {2k; k=  1 . . . .  } be an orthonormal basis of L. Then, as is not difficult to 
prove 

E Irx~ (0)l 2 = E  IlV(O)ll 2 < oo. 
k=l  
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Consider the isomorphism H(F),-~I=~I(u)dv(u) defined in (3). It follows from 
(4) and (7) and from the definition of the inner product i n / 4  that 

M 

EIF  (0)l 2 
k = l  k = l  j = l  R n 

Thus, ~ IgOr(u)[ 2 dr(u) is bounded independent o f j  and k, and hence there exists 
a positive function C on R" such that v-a.e, on R ~, C(u) is finite and [g~k(u)]2 < C(u). 
Let L ~ be the linear manifold in L consisting of all finite linear combinations 

q 

ai,~k~ , where q is an integer and {ai; i= 1, ..., q} are complex numbers. For  an 
i = 1  q 

arbitrary element 2 =  ~ ai2k~L ~ we have v-a.e. 
i = 1  

q 2 q 

U) j Ig~(u)l 2= ~aig~k~( <C(u)Y~lail ~ C(u)[l'~N 2. 
i =1  i=1  

The v-a.e, continuity of the mappings ;~-*g~(u) now follows from the denseness 
of L~ in L. ]1 

The next lemma will be needed in our discussion of the concept of rank. 

Lemma3.2. The vectors {g" ' J ; j= l ,  . . . ,M} defined in Lemma 3.1 are linearly 
independent v-a.e, on R". 

Proof. Let A~B(R") be such that v(A)>0 and g"'J~; k =  1 . . . .  , q are well defined 
q 

fo~ ueA. Assume that g"'J~=t=0 and ~ akgU'Jk=o for u~A and some complex 
k = l  

numbers {ak; k = 1, ..., q}. Then for all 2 s L  and u~A 
q q 

y a~(~, g"' ~) = Z a~g~(u) = O. 
k = l  k = l  

Hence, using the defining Equation (7) it follows that 

Here ~j~(u)~0 since g"'J~+0. But Px(0; u) spans/4(u) as 2 runs through L. Thus 
q 

~ ak~j~(u)=O and we have a 1 . . . . .  aq=O using the orthonormality of 
k = l  

{~;j~(u); k =  1, . . . ,  q}. II 

Consider a homogeneous field having an absolutely continuous spectral 
distribution as defined in the preceding section. (Note that in the special case of 
a Hilbert space valued process it is easy to show that our concept of absolute 
continuity is equivalent to the corresponding concept as defined in [4, p. 6].) 
Then the field can be represented as in (11). Let the field be Hilbert space valued. 
Then, using exactly the same proofs as for Lemmas 3.1 and 3.2, it is shown that 
the functions {h~eL2(R~); 2eL,  j = l  . . . . .  M} can be represented for Lebesgue 
measure m-a.e, by linearly independent elements h "' J~L such that h{ (u)= (2, h"' J). 
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Denote by B u the Hermitian bilinear functional on L defined by 

M 

Bu(,~l, ~9 = F~ (21, h~'J)(22, h u'j) 
j = l  

where 21 and 22eL, and where the sum is finite m-a.e, since for 2~L 

M 
EJF~.( O)j2= S ~ J(X, hu'~)12dm(u)<~176 

R n j= l  

The functional B, is continuous in both arguments 21 and 22, and thus it defines 
m-a.e, a linear bounded operator f(u) in L by 

B~ (21 , Z2)= (21, f(u)22). (14) 

Clearly f(u) can be represented m-a.e, as 
M 

f ( u ) 2 =  ~ (2, h"'~)h ~'j (15) 
j = l  

where the sum may be interpreted as a limit in the weak topology of L if M is 
infinite. The operator f(u) (parametrized by uER ~) will be called the spectral 
density operator of the field. From the uniqueness properties of the representation 
(11) it follows that f (u) is uniquely determined up to unitary equivalence. (Compare 
[4, p. 6] for random process case.) Using (15) and an expression analogous to 
(13) but with h~ instead of g~,  it is not difficult to prove that f(u) is a self-adjoint, 
positive and nuclear operator in Lm-a.e. on R ". Lemmas 3.1 and 3.2 can now be 
used to give the following relation between the isomorphism H(F)~--~S rI(u)dm (u) 
given in (9) and the spectral density operator f(u). 

Theorem3.1. Let {Fx(x)=-(2, F(x)); 2~L, x e R  ~} be a Hilbert space valued field 
with an absolutely continuous spectral distribution and let H(F)~--~/~(u)din(u) be 
the direct integral decomposition given in (9). I f  f (u) is the spectral density operator 
of the field, then for m-measure a.e. on R ~ 

rank {f(u)} -- dim/~(u). (16) 

Proof. From the analogy of Equation (7) valid in the absolutely continuous case 
it follows that 

(2, h ~' J) = (Pa (0; u), ~3 (u))~ 

m-a.e. Since {Px(0; u); 2~L} span/4(u), it follows that m-a.e., h~'~=0 iff q3j(u)=0 
for j =  1 . . . . .  M and the conclusion follows from Lemma 3.2 and (15). If 

As is well known, the rank of a linear operator is invariant under unitary 
transformations and rank {f(u)} is therefore uniquely determined by the field 
m-a.e. In the finite-dimensional stochastic process case the rank of the process 
is sometimes, Rozanov [11, p. 39], defined as the rank of the spectral density 
matrix (when the latter has constant rank). From (16) it is clear that momentum 
multiplicity is a natural generalization of rank defined in this way. Note, however, 
that the concept of momentum multiplicity does not even require absolute 
continuity for its definition. See also discussion in Section 4 of [12]. 
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4. The Purely Non-Deterministic Case 

In this section we will treat general homogeneous fields {Fx(x); 2eL, xeR"} as 
defined in Section 2. Some of the results that will be obtained here were reported 
in [-14]. Furthermore, for the purely non-deterministic random process case we 
refer to [12] and [13]. In the next section we will apply the results obtained to 
Hilbert space valued fields. 

Let {F;.(x); 2eL,  xeR  ~} he a second order homogeneous random field. Let 
{Sk(t); k= 1 .... , n, r e ( -  oo, oo)} be the half-spaces in R ~ given by 

S k(t) = {x = (xl,.. . ,  x,)~R": x k <= t} 

and let S(y)= 0 Sk(yk) for Y=(Yl .... ,yn)eR". Denote by H~ and H(F;y) the 
k=l 

subspaces of H(F) generated by the set of elements {Fa(x); 2eL, XeSk(t)} and 
{Fz(x); 2eL, xeS(y)} respectively. Let s__<t and let Hk(S, t] =H~c~H~ • where the 
symbol = denotes the operation of taking orthogonal complements. Similarly we 
define Hk(-  ~,  t] =H~c~Hk~, Hk(s, oo)=H~ • and Hk(-- o% oo)=Hk~, where 
Hk_oo = ~ H~. Let A=(Sl,ta] x ..- x (s,, t,] where Sk may be - o o  and tk+oO. 

s e ( -  co, co) 

The space Hi,(A)= ~ Hk(Sk, tk] may be interpreted as the space spanned by the 
k = l  

innovations received by the field in the set A c_ R". The field Fa (x) will be said to 
be purely non-deterministic (p.n.d.) if It(F) is spanned by the totality of innova- 
tions received by the field. More precisely, let I be an index set and 

A =(s 1 , t~ ]x . . . x ( s . , t~ ] ,  ~eI .  

Then F~(x) is said to be p.n.d, if for every collection of sets W, c~eI, for which 
U A~=R", we have that the Hilbert space generated by U Hi,(A~) equals H(F). 

eeI  e~l  

If Fz(x) is p.n.d., then Hi,(R")= ~ Hk(--oo, oo)=H(F). Thus for each k, Hk_~ = 
k = l  

H(F), or Hkoo = ~ H~= {0}, and if Ek(t ) is the projection operator on H~, 
s~( -  oo, oo) 

then the chain of spaces {Htk; t~(--o% oo)} defines a self-adjoint operator Qk 
having {Ek(t); re(--0% oo)} as its resolution of identity. The operator Qk will be 
called the k-th coordinate operator of the field. 

In order to formulate our next result we have to introduce the concept of 
Schr/Sdinger n-system (see Putnam [9, p. 81]). 

Let {Pl . . . .  ,P,; ql, ..., q,} be the system of self-adjoint operators in La(R ") 
defined by 

pkf(X)=--iff~fxk(X ) and qkf(X)=xkf(x) (17) 

where i is the imaginary unit. A system of operators {P~ . . . . .  P,; Q~, ..., Q,} in a 
separable Hilbert space H will be said to form a direct sum of Schr6dinger n- 
systems if there exists an M, which may be countably infinite, and an orthogonal 
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direct sum decomposition 

M M 

H - -  ~ |  a n d  {P~ . . . . .  P . ;  ~1 . . . .  ,Qn} -'-~ 2 @ { e ~  . . . . .  PnJ; {2~ . . . . .  QJ} 
j = l  j = l  

such that 

P~ = Vj Pk lift and Q~=VjqkVj* (18) 

where Vj is a unitary transformation taking L2(R ") onto Hi. Here L2(R n) is the 
j-th "copy" of L2(Rn). 

Theorem 4.1. Let {Fx(x); 2eL,  x~R  n} be a random field which is homogeneous and 
p.n.d. Then the system of operators {~, ..., P,; Q1, ..., Q,} formed by the momentum- 
coordinate operators of the field is a direct sum of Schr6dinger n-systems in H(F). 

Proof. Let {Uk(t)=exp(itPk); t~(--oO, oO)} be the k-th shift group of the field and 
let {Ek(t); t~(-- o% oo)} be the resolution of identity associated with Qk. Then, as 
in the random process case [12] the following commutation relation holds for t, 
s E ( -  o0, o0) 

Ek(t) Uk(s) = U~(s) E~(t + s). 

Using this relation and the definition of operators Pk and Qk; k= 1 . . . .  , n it is 
deduced that the system {Pt, ..-, P~; Q~ .. . .  , Q,} satisfies the so-called Weyl com- 
mutation relations [9, p. 81] in H(F) and the theorem follows by a result of 
yon Neumann [6]. 1[ 

It is not difficult to verify that if {P1, -.., P~; Q1 .. . .  , Q,} forms a direct sum of 
Schrbdinger n-systems, this is true also for the system { -Q1  . . . . .  - Q , ;  P1,-.., P~}. 

M M 
Thus there exists a unitary transformation W= y'  �9 Wj taking ~ OL}(R'*) onto 

M j=l j=l 
H ( F ) =  ~ OHj(F) and such that 

j = l  

Pk j = Wj qk VVi* and - Q~ = Wj Pk Wj*. (19) 

This isomorphism represents a diagonalization of the momentum operators 
{P~, ..., P,}. We recall that the representation (2) was obtained essentially by 
diagonalizing these operators. Using the isomorphism (19) we have: 

Theorem4.2. Let {F;.(x); 2~L, x~R  n} be a homogeneous and p.n.d, field and let 
A 1 and A 2 be Borel sets of finite Lebesgue measure m. Then there exists a cardinal 
number M which is uniquely determined by F).(x) and which may be countably 
infinite, such that for each 2 and x with probability one 

M 
Fz(x)= ~ y e x p { -  i(x, u)} hJz(u)dq)~(u) (20) 

j = l  R n 

where {~Oj; j =  l, ..., M} are random measures over Borel sets of finite m-measure 
such that 

i) E {q~j(A~) ~k(A ~_)} = (~k# m(A~ m Aa), 
ii) The functions {he,; ) ~ L , j =  1, ..., M} belong to L2(R"). 
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Proof. Let M be the uniquely determined cardinal number defined by the iso- 
5/I 

morphism W= ~ | Wj in (19). Let A ~B(R") have finite m-measure and define 4~j; 
j = l  

j = l  . . . . .  M b y  

where z~L2(R ") is one for ueA, zero otherwise. The decomposition H(F)= 
M M 

GHj(F) determined by W induces a decomposition F~(0)= ~ (~F~(0). Let 
j = l  j = l  
hJ~eL~(R ~) be the element corresponding to F](O) using the isomorphism Wj. 
Then, using straightforward arguments 

F/(O) = S hi(u) d j(u) 
Rn 

and the rest of the proof follows as in the last part of the proof of Theorem 2.1. II 
M 

From the isomorphism H(F)( w, ~ G L}(R") it is trivial to obtain a realization 
j = l  

H ~  S [I(u) din(u) analogous to (9) where now dim/~(u) = M for ueR". The following 
corollary immediately results. 

Corollary 4.1. A homogeneous and p.n.d, field {Fx(x); 2eL, xeR  ~} has an absolutely 
continuous spectral distribution. Furthermore, the momentum multiplicity of the 
field is uniform and equal to the number M appearing in the Schr6dinger sum 
decomposition of the field. 

M 

The isomorphism V--- ~ | Vj in (18) brings about a diagonalization of the 
j = l  

coordinate operators {Q1, ..-, Q,}, and we obtain a coordinate representation of 

the field dual to (20). More precisely, let S ( y ) =  (:] Sk(Yk). Then F~(y) can be 
k = l  

represented with probability one for each 2 and y as (compare Theorem 7 of [15]) 

M 

S (21) 
1=1 s_(y)  

where {Z j, j = 1 . . . .  , M} are random measures over Borel sets of finite m-measure 
such that 

i) E {Z~(A ~) Zk(A 2)} = 6kj m(A ~ ~ A 2), 
ii) U(y) Zj(A)=Sj(A-y),  

iii) H ( F ,  y)= ~ G H ( Z j ,  y) where H ( Z j ,  y) is the Hilbert space generated 
j = l  

by the linear hull of the set of random variables Zj(A), when A runs through all 
Borel sets of finite m-measure such that A c S(y),  and where H ( F ,  y) is the space 
generated by the set of elements {Fx(x), 2EL, xeS_(y)}. 

For the random process case a proof of this result is given in Sections 3 and 4 
of 1-12]. The proof in the random field case is similar [14] and is therefore omitted. 
Going from the isomorphism V to W corresponds to a Fourier transformation of 
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M 

the elements in ~ OL~(R"). If we utilize the fact that h ~ ( y - x ) = 0  for x(~S_(y), it 
j = l  

follows that the functions h~ and h~ of (20) and (21) respectively are related as 
follows 

( 1 i"/2 
h~(x) = \ ~ ]  ~ exp{- i (x ,  u)} h{(u) din(u) (22) 

and 
�9 l 1 ~n12 

h' Xu)= exp{i(u,x)} [~{(x) dm(x) (23) 

where (22) and (23) are interpreted as identities in L2-sense, and where R+(0) is the 
subset of R" defined by 

R+(0)= (~ Rn;k(O) with R";k(0)= {x=(x l , . . . , x , ) eR" :  xk>O}. 
k=l  

5. Some Necessary and Sufficient Conditions for p.n.d. 

It will be our purpose here to obtain necessary and sufficient conditions for a 
homogeneous Hilbert space valued field to be p.n.d. It will be demonstrated that 
such conditions can in fact be derived virtually directly from the theory established 
in the preceding sections. Thus, our first theorem essentially consists of collecting 
and restating the results of Section 4. 

Theorem5.1. Let {F;,(x)=(2, F(x)); 2EL, x~R"} be a homogeneous Hilbert space 
valued random field. Then F~(x) is p.n.d, of uniform momentum multiplicity M iff 

i) Fz(x) has an absolutely continuous spectral distribution 
ii) The spectral density operator f (u) is such that r ank{ f  (u)} = M  m-a.e, on R n. 

iii) The functions h~ in (11) can be represented in L2(R ") as in (23). 

Proof Assume that conditions i), ii) and iii) are fulfilled. From ii) and Theorem 3.1 
it follows that Fz(x) has uniform momentum multiplicity M. Using i) and iii) it is 
deduced that F~(x) can be represented as in (21), and the sufficiency part of the 
theorem follows using standard arguments. 

The necessity of condition i) was demonstrated in Corollary 4.1. Condition ii) 
follows from the same corollary and Theorem 3.1, while condition iii) results from 
the fact that (21) and (23) are valid for a p.n.d, field. II 

Condition iii) may be reformulated into a statement concerning the factori- 
zation of the spectral density operator of the field. Let Fa(x)=(2, F(x)) be a field 
of momentum multiplicity M and having an absolutely continuous spectral 
distribution. Denote by e a . . . . .  eM an orthonormal system of elements in L and 
let h"'J; j =  1 . . . . .  M be as in (15). Then m-a.e, in R" we can define an operator 
p(u) in L by 

M 

p(u) )~ = ~, (2, h "'j) e;. (24) 
j = l  
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/ M \ 

{Here E [(2, h"'S)] 2 < oe m-a.e, and p(u) is well-defined. / Let f(u) be the spectral 
\ j= l  ! 

density operator of the field. It follows from (15) and (24) that for arbitrary elements 
)-1 and 22 in L 

(21,f(u) 22)= (p(u) 2 t, p(u) 22). (25) 

Hence f(u)=p*(u)p(u) m-a.e. Since f(u) is nuclear, it follows at once that p(u) 
is a Hilbert Schmidt operator m-a.e. 

Assume that the field is p.n.d. Using the same technique as in the proof of 
Lemma 3.1, we have that h~ of (21) can be represented as h{(x)=(2, h~'J) for some 
elements h~'SeL, this being valid m-a.e. If we define m-a.e, the operator p(x) by 

M 

~(x) 2 = ~ (2, ~,s) es (26) 
j= l  

it follows from (23) and (24) that p(u) can be represented as 

1 n/2 
p(u) = (2~-) R,+!o)eXp{i(u,x)}~)(x)dx (27) 

where the interpretation of operator integrals of this type is discussed for example 
in [4, p. 8]. 

Conversely assume that for a field having an absolutely continuous spectral 
distribution, the operator p(u) of (24) and (25) can be represented as in (27). Then iii) 
of Theorem 5.1 holds, and we have proved the following theorem (which extends 
the main continuous-time result (Theorem 6.7) of [4] from random processes to 
random fields). 

Theorem 5.2. Let {F~(x)=(2, F(x)); 2~L, x~R"} be a Hilbert space valued homo- 
geneous random field. Then Fz(x) is p.n.d, of uniform momentum multiplicity M iff 

i) F~(x) has an absolutely continuous spectral distribution 
ii) The spectral density operator f (u) has r ank{f  (u)} = M m-a.e. 

iii) f (u)= p*(u) p(u) where p(u) can be represented as in (27). 

In the discrete-time random process case an alternative characterization of 
the p.n.d, property is given by Payen [8, Proposition 9]. In our last theorem we 
present a similar result valid for random fields. 

Theorem 5.3. Let {Fa(x); 2~L, x~R"} be as in Theorems 5.1 and 5.2. Then F~(x) is 
p.n.d, of uniform momentum multiplicity M iff 

i) F~(x) has an absolu, tely continuous spectral distribution 
M 

ii) The spectral density operator can be represented m-a.e, as f (u)= ~ ps(u) Q~(u) 
j= l  

where Qs(u) is a projector on a subspace of dimension one spanned by an element 
hs(u)~L such that hs(u) can be represented as 

[1~ "/2 
hs(u)= \ ~ - ]  S exp{i(u, x)} hi(x) dx 

g~(0) 

and ps(u)= Hhs(u) l] 2. 
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Proof The p r o o f  of  the theorem follows direct ly  f rom L e m m a  3.1 and T he o re m 5.1 
if hi(u) is identif ied with h u'j of (15). II 

6. An Extension 

We have cons idered  the poss ibi l i ty  of  ex tending  our  theory  to fields tak ing  values 
in the dual  space of a coun tab ly  Hi lbe r t  space as defined in Ge l ' l and  and Vilenkin 
[2, p. 57]. Such a field is given with p robab i l i t y  one as F~(x)=(F(x)l;t) where  
(F(x)l)~) is the value of the funct ional  F(x)sE at the po in t  2~L.  The topo logy  of  
the coun tab ly  Hi lbe r t  space L is given by a coun tab le  compa t ib l e  col lect ion of 
inner  p roduc t s  ( , ) j ,  where it can always be a r r anged  so tha t  (2, 2 ) ,< (2 ,  2)2 for k<j  
and  2 e L .  If we denote  by Lj  the comple t ion  of L in the n o r m  I[ Ilj and  by Ej the 

co r re spond ing  dual  space, then E =  0 L'j a n d  L =  L~ when cons idered  as 
j = l  j = l  

abs t rac t  sets. Assume  that  there exists a k such tha t  with p robab i l i t y  one F(x) can 
be extended to a con t inuous  l inear  funct ional  F(k)(x)eEk and such tha t  
E IIF(x)II 2_k < oo, where for FeEk, 

] lf l lz_k = sup [ (F [2 ) [  2 . 
;-~Lk, II).[Ik= :t 

U n d e r  these somewha t  restr ict ive a s sumpt ions  we have been able  to carry  over  
(the changes being mos t ly  of no t a t i ona l  character)  the theory  of  Hi lbe r t  space 
valued fields as out l ined in Sect ions 3 and  5 to fields of  type Fx(x ) = (F(x)12). 
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