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1. Introduction 

Let (X,,neN) be a homogeneous  M a r k o v  chain with discrete t ime set 
N = { 0 ,  1, 2 . . . .  } and countable  state space S. Let  U be the initial distribution, 
p the transi t ion matrix,  and say that  (X,) is M a r k o v  (U, P). Let  U, denote  the 
dis tr ibut ion UP" of  X, ,  

U.(y)=up"(y)= ~ U(x)p"(x, y), yeS, n~N, 
x6S 

and consider the behavior  of U, as n --* ao. It may  be that  there is a probabi l i ty  
on S such that  U, (Y)~ re(y) as n-- .oo for all yeS. In this case ~z is necessarily p- 
invar iant  and U, converges  uniformly to rc over  all subsets of S: 

lim IIu.-rcll =0 ,  (1) 

where  for two probabi l i t ies  2 and 2' on S 

[I 2 -  2' II = sup 12(1) - 2'(A)I = �89 ~ 12(y) - 2'(y)l 
AeS  yES 

denotes  half  the usual total  var ia t ion distance between 2 and 2'. More  generally, 
there may  be no p- invar iant  probabi l i ty  ~ so that  (1) is impossible,  but  still for 
two given initial distr ibutions U and U' the distr ibutions U,=Up" and U'n=~{pn 
m a y  become  arbi t rar i ly  close as n --> ~ in the sense that  

l im I IU,,- u'.ll = 0. (2) 
n~oo 

Here  (1) is the special case of (2) with U '=  re, and (2) holds for all U and U' if (1) 
holds for all U with the same re. No te  that  in any case the sequences of  no rms  
appear ing  in (1) and (2) are m o n o t o n e  decreasing since p acts as a cont rac t ion  on 
bounded  signed measures  with total  var ia t ion norm.  For  an irreducible, aperiodic,  
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and recurrent Markov chain it is known that (2) always holds, with (1) holding iff 
the chain is positive recurrent (see Freedman [2]). Similar behavior is encountered 
when this kind of convergence in total variation norm is considered for ~0-recurrent 
chains with general measurable state space (see Orey [10]). 

There is an elegant general method for establishing convergence and rates of 
convergence in (2) which is due to Doeblin El]. This coupling method relies on 
the simple observation that if two probabilities 2 and 2' on S are the distributions 
of S valued random variables X and X' defined on the same probability space 
(O, Y, P), then 

N~-211 ~ P(X=~ SS. (3) 

Thus if on some probability space (s ~ ,  P) we can define a Markov (#, p) chain 
(X,) and a Markov (#', p) chain (X',) so that X,(co)=X',(o)) for all n>  r(co), where 
e) ~ ~ and r(co) is a random time, then (X, + X' , )c(T > n), whence 

II#.-#'~ll <P(T>n). (4) 

Following Griffeath [4] we shall say that such a set up provides a coupling of a 
Markov (#, p) chain and a Markov (#', p) chain, though note that we do not require 
as Griffeath does that T should be the first time that the two chains meet. If 
P(T < or) = 1 the coupling is said to be successful, and we deduce at once that (2) 
holds. Again, if T has finite expectation the convergence is o(1/n) and the sequence 
of norms has finite sum, and correspondingly faster rates of convergence are 
obtained if T possesses higher moments. For some effective applications of this 
method see Griffeath [4-7] and Pitman [11]. References may be found in [4] to 
the use of coupling arguments in the theory of Markovian lattice interactions, and 
for a different application of the basic bound (3) to Poisson convergence see 
Hodges and LeCam [8], Freedman [3], and Serfling [133. 

The main result of Griffeath's paper [4] is that existence of a successful coupling 
is not only sufficient but necessary for the convergence (2). Indeed, Griffeath 
establishes the existence of a maximal coupling which attains equality in the 
inequality (4). The main object of the present paper is to provide a new and much 
simplified construction of Griffeath's maximal coupling. 

The prototype for this construction is the following simple scheme for attaining 
equality in (3): given two probabilities 2 and 2' on S, let the joint distribution of 
X and X' be specified as follows: 

P(X=X'=x)=2(x)A2'(x), x~S, 
p(x--- x , g '=  x')-=[(;~- ,~')+ (x)] [(;t-~')- (x')3/il2.-2:il, x,x' ~S, x , x'. 

Thus X and X' are made to agree with as great a probability as possible, and then 
given that they differ they are made conditionally independent with the mutually 
singular conditional distributions (;~-;~3+/112-211 and (,~-~')-/112-211 which 
are required to make X have law 2 and X' law )J. For some instances of this maxi- 
mal coupling of two random variables see Vasershtein [143 and Serfling [13]. 
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For the maximal coupling of two Markov chains it is necessary to provide 
simultaneously for all n a maximal coupling of random variables 32, and X', 
which keeps the sequences (X,) and (X~) evolving as Markov chains. This is 
achieved by a path decomposition in the spirit of Williams [16] (see also [-9]). The 
required joint law of two Markov chains (X,) and (X'), which agree after the ran- 
dom time T when they first meet, is specified by first giving the distribution in 
space-time of the junction (T, Xr) , then the conditional law given T and X r of 
the two pre-T processes and the single post-T process, with the requirement that 
these three fragments be conditionally independent given T and X r. 

To formulate this result let (2 be the space of all sequences 

= ((coo, COo), (COl, COl),-..) 

of pairs of points in S, and equip (2 with the product ~r-field ~ generated be the 
coordinate maps X o , X  1 . . . .  , X o , X ' I ,  ..., where, for instance, Xn(cS)=co .. Let 
r(&) be the first n such that X,(&) = X',(&), with r((5) = oe if there is no such n. 

Theorem. Let i~ and #' be two mutually singular probabilitie's on S, let c~, = # p" - i~' p ~, 
and suppose that lim II ~11 = 0. There exists a unique probability P on ((2, ~ )  such that 

(i) P ( T  = n, X~ = z) = (c~ + 1 P - ~ (z), n > 1, z e S, and 
(ii) under P conditional on ( T =n, X , = z ) ,  for each n >= 1, z e  S, 

(a) the two pre- T processes (Xo, ... , X,)  and (Xo, ... , X',) are inhomogeneous 
Markov chains with reverse transition probabilities from y at time m to x at time 
m - 1 given by ~+_ 1 (x) p(x, y)/c~ +_ 1 P(Y) and ~ _  l(x) p (x, Y)/a2,- 1 P(Y), respectively, 

(b) the post -T processes (X , ,  X , + I , . . . )  and (X',, X',+ t . . . .  ) are a.s. identical, 
forming a Single homogeneous Markov chain with transition probabilities p starting 
at z, and 

(c) the two pre-T processes and the single post -T process are mutually 
independent. Under this probability P the two marginal processes (X  ) and (X',) are 
Markov (#, p) and Markov (#',p) respectively; these chains agree P a.s. after the 
random time T when they first meet, 

P ( T > n ) =  I[e, ll, 

and the maximal coupling thus provided is the maximal coupling of  Griffeath [4]. 

The existence and uniqueness of the P described in the theorem is quite obvious, 
and it is also clear that t5 makes the two marginal processes (X,) and (X~) agree 
as soon as they have met at time T. Less obvious, however, is the fact that P makes 
these marginal processes Markov (#, p) and Markov (g', p), though this is implied 
by the identification with Griffeath's maximal coupling, which is easily made. In 
view of the difficulty of Griffeath's construction a new proof is provided below of 
the fact that 15 induces the right marginal processes, and it is hoped that this 
argument provides some insight into the way the coupling works. The argument 
depends on the fact that/5 makes the random time T a randomized stopping time 
of each of the two marginal chains. This seems to be a feature of all manageable 
couplings of Markov chains, and the construction of P is presented as an instance 
of a general method for constructing couplings of this type. 
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To keep the notation simple it is assumed throughout that we are dealing with 
homogeneous Markov chains with countable state space, but only the Markov 
property is really essential. Everything can easily be translated to apply to Markov 
chains with general measurable state space, and the results even extend to apply 
to inhomogeneous chains. The results in this case can be read off from those in 
the homogeneous case by using the device of the space-time chain. 

2. Randomized Stopping Times and Couplings 

Let (X,) be a Markov (#, p) chain defined on (f2, ~ ,  P). A random variable T 
defined on (f2, ~-) with values in the extended time set N u {o o} is said to be a 
randomized stopping time (r.s.t.) of (X,) if for each hEN the event (T> n) is condi- 
tionally independent of the future (X,,X,+ a . . . .  ) given the past (Xo, ... ,X,). 
For motivation of this definition and proofs of the facts about r.s.t.'s which are 
now stated, see Pitman and Speed [12]. 

The most general possible joint distribution for (X,) and a r.s.t. T of (X,) is 
obtained by specifying a decreasing sequence of functions (f,), with f , :S"--,  [0, 1] 
such that for each sequence x0, xl, ... of points in S, 1 >fo (x0) >fl  (Xo, xl) > "  > 0, 
and requiring that 

P(T> nlXo, X1, ...)=f,(Xo, . . . ,  X,), nEN. (5) 

One way to achieve this is to let (f2, ~,~, P) support both (X,) and a random variable 
U independent of (X~) with uniform distribution on [0, 1], and set 

T=in f  {n: f , ( X  o . . . .  X , )<  U}. 

This construction, due to Wald and Wolfowitz [15], represents the r.s.t. T of 
(X,) as a uniform mixture of stopping times of (X,). 

Given a r.s.t. T ofa Markov (#, p) chain (X,), let ~ r  denote the o--field generated 
by Xo, . . . ,  X, and the events (T= 0), . . . ,  (T= n). Then (X+) is Markov with respect 
to (~nT), i.e., for n, meN ,  y, zeS ,  A~ .~  T, 

P(X,+,,= zIA, X , =  y)= pm(y, z), (6) 

a formula which is particularly useful for A = (T= n) and A = (T> n). As a conse- 
quence of (6) a version of the strong Markov property for r.s.t.'s is easily formulated. 

We shall make use of the following simple generalization of the inequality (3): 

Lemma. Let X and X' be S valued random variables defined on probability spaces 
(f2, ~ ,  P) and (f2', ~ ' ,  P'), with distributions 2 and 2' on S, and suppose there are 
events F ~ ~ and F' ~ ~ '  such that P(F) = P' (F') and the P distribution of X conditional 
on f2"-.F is identical to the P' distribution of X' conditional on f2 ' \  F'. Then 

[I 2 - 2' II < P ( F )  = P ( F ' ) .  (7) 

Proof. For A c S 

2(A)= P(F, X eA) + P(Y2\ F, X ~A), 

2'(A)=P'(F' ,  X'  ~A)+ P'(Y2'\F' ,  X'  ~A). 
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But the assumptions on F and F' make P ( f 2 \ F , X ~ A ) = P ' ( g 2 ' \ F ' , X ' ~ A ) ,  
whence [2 (A) -  2' (A)] = [P(F, X ~A) - P' (F', X'  eA)t < P(F) = P' (F'). 

Proposition. Let # and IX' be two initial distributions on S, and set #, = Ix p", Ix', = Ix' p". 
Let T be a r.s.t, of  a Markov (Ix, p) chain (X,) defined on (f2, Y ,  P), and let T' be a 
r.s.t, of  a Markov (Ix', p) chain (X',) defined on (fY, ~ ' ,  P'). I f  the P distribution of 
(T, XT) is identical to the P' distribution of (T',X'r,), i.e., if 

P ( r - - n , X , = y ) = P ' ( r ' = n , X ' , = y ) ,  n~N,  yeS ,  (8) 

then 

1]#,-#',[1 <=P(r>n)=P' ( r '>n) ,  heN .  (9) 

Proof It is easy to see that (8) and (6) imply 

P ( r < n , X , = y ) = P ' ( r ' < n , X ' , = y ) ,  neN,  yeS ,  

and (9) now follows by the lemma. 
The present inequality (9) can clearly be used in the same way as the coupling 

inequality (4) to derive ergodicity properties such as (1) and (2). Indeed, the 
connection between these two bounds is extremely close. If the random time T 
in (4) is a r.s.t, of each of the chains (X,) and (X',) being considered there, then (4) 
is a special case of (9) with (~', W', P')= (~2, ~ ,  P), r ' =  T and X~, = X~ = X r (so 
that (8) is automatic). This is the situation for all the examples of couplings con- 
sidered by Griffeath in [4], and in particular, for his maximal coupling described 
below. In general, (4) is not a sequence of (9), since it is possible to construct some 
rather bizarre couplings where T is the first time the two chains meet but where T 
is not a r.s.t, of either chain. However, these couplings seem to be of little interest 
since the maximal coupling shows that their use is never necessary. 

On the other hand, given the set-up for (9) with the matching distributions (8), 
one can always splice things together to obtain a coupling which does just as well. 
Indeed, let (~, ~ ,P )  be a probability space on which there are defined a Markov 
(Ix, p) chain (2,), a Markov (#', p) chain (X'), a random time 5? and an S valued 
random variable f meeting the following mutually consistent requirements: 

(i) the P distribution of [(2,), T, Y] equals the P distribution of 
[(X.), T, XT]; 

(ii) the P distribution of [(X',, T, f ' l  equals the P' distribution of (10) 
t ! , [(x., r', Xr,], 
(iii) under P the Markov chains ( 2 )  and (X') are conditionally inde- 

pendent given T and Y. 

Notice that (i) and (ii) above make 

?=2f=2r P a.s. (11) 

Now cross over from (2',) to (2,) at time T to form (2','): 

2"=2'. on (~>n) 
=2.  on (T__<n). (12) 



320 J.W. Pitman 

Then the conditional independence in (10(iii)) and the strong Markov property 
of the chains (2,) and ^' (X,) at the time T (which is a r.s.t, of each of these chains) 
imply that (2',') is Markov (#', P) just like (2',). Thus ~ provides a coupling of the 
Markov (it, p) chain (Xn) and the Markov (#', p) chain ^" (X,) which yields the same 
inequality in (4) as in (9). 

We now make a construction which shows that the inequality (7) is sharp. 
When this construction is transformed into a coupling in the manner just described, 
it is Griffeath's maximal coupling which results. 

Fix the initial distributions # and #', set s 0 - - # - # ' ,  

~. = # . -  #'  = % p", 

and note that for n >  1, 

c~+ =(e,_l  p)+ <c~+1 p, e ;  =(%_1 p)- <e2_1 p. (13) 

We first observe that to obtain equality in (9) it suffices to make the r.s.t. T of (X.) 
and the r.s.t. T' of (X'n) such that 

P(T>n,X,=y)=ct+(y), P'(T'>n,X',=y)=c~2(y), yeS. (14) 

Not only does (14) imply equality in (9), but (14) also makes (8) automatic, since 
using (6) and (14) are finds that for n>  1, yes  

P(T =n,  Xn = y ) =  (~n+_ 1 p -  c~+) (y) = (c~2_ i p-cty)(y)=P'(T'=n , X',=y), (15) 

the same being true for n = 0 if one replaces c~ +_ 1 P by #, e , -  t P by ~'. It now only 
remains to engineer (14). The simplest thing to try is to make the conditional 
probability of (T> n) given Xo, . . . ,  X, and (T> n) equal to r,(X,) for some function 
r,: S ~ [0, 1], i.e., to require (5) with 

f ,(x 0 . . . . .  x,) = r o (x0) q (xt) ... r,(x,), (16) 

doing a sirn'ilar thing with the primed quantities. But a simple induction now 
shows to achieve (14) with this prescription one just has to take 

r 0 = ~ / ~ ,  r ; = ~ o / ~ ' ;  - + + r~ r,-ct , /%-lP,  =c~2/c~2-1P, n>l, (17) 

where for two measures ~ and 7 on S with 3 < 7, 3/7 denotes the density of/3 with 
respect to 7, defined as a function on S by 

(3/7) (x) = fi(x)/7 (x) if 7 (x) > 0, 0 otherwise. 

A feature of the construction just completed is that the r.s.t. T of (X,) is such 
that conditional on either (T=n) or (T>n), for each n > l ,  the pre-n process 
(X 0 . . . .  , X,) is an inhomogeneous Markov chain. This is an easy consequence 
of the multiplicative structure (16) in the conditional distribution of T given 
(X,), and, indeed, one finds that for either conditioning event, regardless of the 
value of n > 1, the reverse transition probabilities of the inhomogeneous Markov 
chain are simply given as follows: the transition probability from y at time m to 
x at time m - 1  is 

+ + %- 1 (x) p(x, y)/ct,, 1 P(Y). (17) 
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Replacing + by - in (17) gives the corresponding conditional transition prob- 
ability for the primed process. 

Putting things together now we have: 

Proof of the Theorem. Consider the process ^ ^" ((Xn, X~), n~N) defined on (f2, ~-, P) 
which is obtained in (10) and (12) from the set-up just described for equality in (9). 
It follows from (14) that the two pre@ processes cannot meet before 7" except on 
a set of P-measure zero, so in view of (11) we must have 

~ =  inf {n: ^ ^" X,=X~,},P a.s. 

Thus if we now let P* denote the law on the double sequence space (~), 2 )  of the 
process ((2, ,  2','), heN), the preceding results transfer by change of variables to 
identify P* with the P described in the theorem, and all the asserted properties 
of P follow immediately. 

Notes. (i) Minor modifications extend the theorem to apply also in the case when 
either # and/g are not mutually singular or I[%1] does not converge to zero as 
t~ ---~ o 0 .  

(ii) Further distributional properties of P can be read off by change of variables 
in (15), (16), and (17). 

Acknowledgements. I would like to thank Terry Speed for his supervision of my research at the Uni- 
versity of Sheffield in 1973, when the method of matching distributions at r.s.t.'s was developed. I also 
want to thank David Griffeath for some stimulating correspondence which led to the link-up with 
the coupling method, and thanks are due as well to David Freedman, Martin Jacobsen, and Michael 
Klass for their helpful suggestions. 

References 

1. Doeblin, W.: Expos6 de la theorie des chaines simples constantes de Markov/L un nombre fini 
d'etats. Rev. Math. de l'Union Interbalkanique 2, 77-105 (1933) 

2. Freedman, D.: Markov chains. San Francisco: Holden-Day 1971 
3. Freedman, D.: The Poisson approximation for dependent events. Ann. Probability 2, 256-269 

(1974) 
4. Griffeath, D.: A maximal coupling for Markov chains. Z. Wahrscheinlichkeitstheorie verw. Gebiete 

31, 95-106 (1975) 
5. Griffeath, D.: Coupling methods for Markov processes. Thesis, Cornell University (1975) 
6. Griffeath, D.: Uniform coupling of nonhomogeneous Markov chains. [To appear in J. Appl. 

Probability (1975)] 
7. Griffeath, D.: Partial coupling and loss of memory for Markov chains. [To appear in Ann. Prob- 

ability (1976)] 
8. Hodges, J.L., LeCam, L.: The Poisson approximation to the Poisson binomial distribution. Ann. 

Math. Statist. 31, 737-740 (1960) 
9. Jacobsen, M., Pitman, J. W.: Birth, death, and conditioning of Markov chains. [Submitted to Ann. 

Probability] 
10. Orey, S.: Limit theorems for Markov chains. London: Van Nostrand, 1971 
11. Pitman, J.W.: Uniform rates of convergence for Markov chain transition probabilities. Z. Wahr- 

scheinlichkeitstheorie verw. Gebiete 29, 193-227 (1974) 
12. Pitman, J.W., Speed, T. P.: A note on random times. Stochastic Processes and Their Applications 

1, 369-374 (1973) 



322 J.W. Pitman 

13. Serfling, R.J.: A general Poisson approximation theorem. Ann. Probability 3, 726-731 (1975) 
14. Vasershtein, L.N.: Markov processes on countable product spaces describing large systems of 

automata. Problemy Peredavci Informacii 3, 64-72 (1969) 
15. Wald, A. and Wolfowitz, J.: Two methods of randomization in statistics and the theory of games. 

Ann. of Math. 53, 581-586 (1951) 
16. Williams, D.: Path decomposition and continuity of local time for one-dimensional diffusions. 

Proc. London Math. Soc. 3rd Ser. 28, 738 768 (1975) 

Received February 2, 1976 


