Moment Inequalities and the Strong Laws of Large Numbers

F. Móricz
Bolyai Institute, University of Szeged, Aradi vértanuk tere 1
H-6720 Szeged, Hungary

0. Introduction

Let $\left\{\xi_{k}\right\}$ be a sequence of random variables. It is not assumed that the ξ_{k} 's are mutually independent or that they are identically distributed. Set
and

$$
M_{b, n}=\max _{1 \leqq k \leqq n}\left|S_{b, k}\right| \quad(b \geqq 0, n \geqq 1) .
$$

Thus $M_{b, n}$ is the largest magnitude for the n consecutive partial sums formed from the n consecutive ξ_{k} 's commencing with ξ_{b+1}. Furthermore, for each vector $\xi_{b, n}=\left(\xi_{b+1}, \ldots, \xi_{b+n}\right)$ of n consecutive ξ_{k} 's, let $F_{b, n}$ denote the joint distribution function. In statements about $\xi_{0, n}$ only, the abbreviated notation S_{n}, M_{n}, F_{n}, etc. will be used.

The object of this paper is to provide bounds on $E\left(M_{b, n}^{\gamma}\right)$ in terms of given bounds on $E\left|S_{b, n}\right|^{\gamma}$, where $\gamma>0$. We emphasize that it is not assumed that the ξ_{k} 's are independent. The only restrictions on the dependence will be those imposed on the assumed bounds for $E\left|S_{b, n}\right|^{\gamma}$. These assumed bounds are guaranteed under a suitable dependence restriction, e.g., mutual independence, martingale differences, weak multiplicativity of finite order, or the like.

Bounds on $E\left(M_{b, n}^{\gamma}\right)$ are of use in deriving bounds on the tail distribution of the maximum of certain partial sums in order to study convergence properties of S_{n} as $n \rightarrow \infty$. For development of such results under various dependence restrictions, the theorems of this paper reduce the problem of placing appropriate bounds on $E\left(M_{b, n}^{\gamma}\right)$ to the easier problem of placing appropriate bounds on $E\left|S_{b, n}\right|^{\gamma}$.

The problem posed above is treated essentially in a setting close to that of Serfling [12], whose results are contained as special cases in our Theorems 1 and 4. The applications made by us are also in close relation with those presented by Serfling [13].

1. The Main Result : the Case $\alpha>1$

In the following, the function $g\left(F_{b, n}\right)$ denotes a non-negative functional depending on the joint destribution function of $\xi_{b, n}$. Examples are: $g\left(F_{b, n}\right)=n^{\alpha}$ where $\alpha \geqq 1$, or $g\left(F_{b, n}\right)=\sum_{k=b+1}^{b+n} a_{k}^{2}$, where $\left\{a_{k}\right\}$ is a sequence of numbers. (In most cases, a_{k}^{2} is the finite variance of ξ_{k}, but this remark plays no role in the theorems stated below.) Throughout the paper we shall assume that the function $g\left(F_{b, n}\right)$ possesses the following property of rather general nature:

$$
\begin{equation*}
g\left(F_{b, k}\right)+g\left(F_{b+k, l}\right) \leqq g\left(F_{b, k+l}\right) \tag{1.1}
\end{equation*}
$$

for all $b \geqq 0$ and $1 \leqq k<k+l$. In the sequel C, C_{1}, C_{2}, \ldots will denote positive constants.

Theorem 1. Suppose that there exists a function $g\left(F_{b, n}\right)$ satisfying (1.1) such that

$$
\begin{equation*}
E\left|S_{b, n}\right|^{\nu} \leqq g^{\alpha}\left(F_{b, n}\right) \quad(\text { all } b \geqq 0, n \geqq 1) \tag{1.2}
\end{equation*}
$$

where $\gamma>0$ and $\alpha>1$. Then

$$
\begin{equation*}
E\left(M_{b, n}^{\gamma}\right) \leqq C_{\gamma, \alpha} g^{\alpha}\left(F_{b, n}\right) \quad(\text { all } b \geqq 0, n \geqq 1) \tag{1.3}
\end{equation*}
$$

Although its specific value will have no importance for us, the constant $C_{\gamma, \alpha}$ may be taken as

$$
\begin{equation*}
C_{\gamma, \alpha}=\left(1-2^{(1-\alpha) / \gamma}\right)^{-\gamma} \tag{1.4}
\end{equation*}
$$

if $\gamma>1$, and $C_{\gamma, \alpha}=1$ if $0<\gamma \leqq 1$.
The result (1.3) provides a bound for $E\left(M_{b, n}^{\gamma}\right)$ which is asymptotically optimal as $n \rightarrow \infty$, in the sense that it is of the same order of magnitude as the bound assumed for $E\left|S_{b, n}\right|^{\nu}$. In Theorem 1 the bounds may involve parameters of the joint distribution function of $\xi_{b, n}$, a flexibility particularly useful with nonidentically distributed rv's.

Before proving Theorem 1, let us collect some results of its prerequisites. Set

$$
A_{b, n}=\left(\sum_{k=b+1}^{b+n} a_{k}^{2}\right)^{\frac{1}{2}}
$$

where $\left\{a_{k}\right\}$ is a sequence of numbers.
Theorem A (Erdös-Stečkin). Let $\gamma>2$. Suppose that there exists a sequence $\left\{a_{k}\right\}$ of numbers such that

$$
E\left|S_{b, n}\right|^{\gamma} \leqq C_{\gamma} A_{b, n}^{\gamma} \quad(\text { all } b \geqq 0, n \geqq 1) .
$$

Then

$$
E\left(M_{b, n}^{\gamma}\right) \leqq C_{\varepsilon} C_{\gamma} A_{b, n}^{\gamma} \quad(\text { all } b \geqq 0, n \geqq 1),
$$

where C_{ε} does not depend on γ for $\gamma \geqq 2+\varepsilon, \varepsilon>0$.
This result was proved by Erdös [3] for lacunary trigonometric series and $\gamma=4$, while the general form as stated in Theorem A is due to Stečkin. (In fact,
it was an oral communication of Stečkin, which was elaborated by Gapoškin [4], pp. 29-31.) A possible generalization of Theorem A, due to Tjurnpü [14], reads as follows.

Theorem B. Let $\gamma>\delta>1$ and let $\left\{a_{k}\right\}$ be a sequence of numbers such that

$$
E\left|S_{b, n}\right|^{\gamma} \leqq C_{\gamma, \delta}\left(\sum_{k=b+1}^{b+n}\left|a_{k}\right|^{\gamma}\right)^{\gamma / \delta} \quad(\text { all } b \geqq 0, n \geqq 1)
$$

Then

$$
E\left(M_{b, n}^{\gamma}\right) \leqq C_{\gamma, \delta}^{*}\left(\sum_{k=b+1}^{b+n}\left|a_{k}\right|^{\delta}\right)^{\gamma / \delta} \quad(\text { all } b \geqq 0, n \geqq 1)
$$

Another interesting result can be found in Serfling [12].
Theorem C. Let $\gamma>2$ and suppose that

$$
E\left|S_{b, n}\right|^{\gamma} \leqq g^{\frac{1}{2} \gamma}(n) \quad(\text { all } b \geqq 0, n \geqq 1),
$$

where $g(n)$ is non-decreasing, $2 g(n) \leqq g(2 n)$, and $g(n+1) / g(n) \rightarrow 1$ as $n \rightarrow \infty$. Then

$$
E\left(M_{b, n}^{\gamma}\right) \leqq C g^{\frac{1}{2} \gamma}(n) \quad(\text { all } b \geqq 0, n \geqq 1)
$$

where C may depend on γ, g and the joint distributions of the ξ_{k} 's.
A common generalization of Theorems A and C was found by the author [7].
Theorem D. Let $\gamma>2$ and let $\left\{a_{k}\right\}$ be a sequence of numbers such that

$$
E\left|S_{b, n}\right|^{y} \leqq g^{\frac{1}{2} \gamma}\left(A_{b, n}^{2}\right) \quad(\text { all } b \geqq 0, n \geqq 1),
$$

where $g(x)$ is non-decreasing and $2^{\beta} g(x) \leqq g(2 x)$ for $x \geqq 0$, where $2 / \gamma<\beta \leqq 1$. Then

$$
E\left(M_{b, n}^{\gamma}\right) \leqq C_{\gamma, \beta} g^{\frac{1}{2} \gamma}\left(A_{b, n}^{2}\right) \quad(\text { all } b \geqq 0, n \geqq 1) .
$$

It is not hard to check that both Theorem B and Theorem D are contained in Theorem 1.

The proof of Theorem 1 (and later, the proofs of Theorems 4 and 5) are based on the "bisection" technique applied by Billingsley [1; p. 102].

Proof of Theorem 1. We are to find a constant $C \geqq 1$, depending only on γ and α, for which

$$
\begin{equation*}
E\left(M_{b, n}^{\gamma}\right) \leqq C g^{\alpha}\left(F_{b, n}\right) \quad(b \geqq 0, n \geqq 1) \tag{1.5}
\end{equation*}
$$

We shall distinguish two cases: (i) $\gamma>1$ and (ii) $0<\gamma \leqq 1$.
First consider the case $\gamma>1$. The proof goes by induction on n. The result is obvious for $n=1$, since $C \geqq 1$. Assume now as induction hypothesis that the result holds for each integer less than n. We shall prove it for n itself. There exists an integer $h, 1 \leqq h \leqq n$, such that

$$
\begin{equation*}
g\left(F_{b, h-1}\right) \leqq \frac{1}{2} g\left(F_{b, n}\right)<g\left(F_{b, h}\right) \tag{1.6}
\end{equation*}
$$

where $g\left(F_{b, h-1}\right)$ on the left is 0 if $h=1$. Then (1.1) and (1.6) implies

$$
\begin{equation*}
g\left(F_{b+h, n-h}\right) \leqq g\left(F_{b, n}\right)-g\left(F_{b, h}\right)<\frac{1}{2} g\left(F_{b, n}\right) \tag{1.7}
\end{equation*}
$$

Now, for $h \leqq k \leqq n$, we have

$$
\left|S_{b, k}\right| \leqq\left|S_{b, h}\right|+\left|S_{b+h, k-h}\right| \leqq\left|S_{b, h}\right|+M_{b+h, n-h}
$$

Also, for $1 \leqq k<h$, we have $\left|S_{b, k}\right| \leqq M_{b, h-1}$, and hence

$$
\left|S_{b, k}\right| \leqq\left|S_{b, h}\right|+\left(M_{b, h-1}^{\gamma}+M_{b+h, n-h}^{\gamma}\right)^{1 / \gamma}
$$

for $1 \leqq k \leqq n$. Therefore,

$$
M_{b, n} \leqq\left|S_{b, h}\right|+\left(M_{b, h-1}^{\gamma}+M_{b+h, n-h}^{\gamma}\right)^{1 / \gamma}
$$

and, by Minkowski's inequality,

$$
\begin{equation*}
\left.E\left(M_{b, n}^{\gamma}\right)\right]^{1 / \gamma} \leqq\left[E\left|S_{b, h}\right|^{\gamma}\right]^{1 / \gamma}+\left[E\left(M_{b, h-1}^{\gamma}\right)+E\left(M_{b+h, n-h}^{\gamma}\right)\right]^{1 / \gamma} . \tag{1.8}
\end{equation*}
$$

Since (1.2) holds if n is replaced by $h-1$, and since $h-1<n$, we may apply the induction hypothesis to the rv's $\xi_{b+1}, \ldots, \xi_{b+h-1}$ and conclude by (1.5) that

$$
\begin{equation*}
E\left(M_{b, h-1}^{\gamma}\right) \leqq C g^{\alpha}\left(F_{b, h-1}\right) \leqq \frac{C}{2^{\alpha}} g^{\alpha}\left(F_{b, n}\right) . \tag{1.9}
\end{equation*}
$$

Here the last inequality follows by (1.6). We note that if $h=1$, then (1.9) is obvious.
If the indices in (1.2) are restricted to $b+h$ and $1 \leqq k \leqq n-h$, then only the rv's $\xi_{b+h+1}, \ldots, \xi_{b+n}$ are involved. Since $n-h<n$, the induction hypothesis applies to $\xi_{b+h, n-h}$; hence (1.5) yields

$$
\begin{equation*}
E\left(M_{b+h, n-h}^{\gamma}\right) \leqq C g^{\alpha}\left(F_{b+h, n-h}\right) \leqq \frac{C}{2^{\alpha}} g^{\alpha}\left(F_{b, n}\right), \tag{1.10}
\end{equation*}
$$

the last inequality following now by (1.7). (If $h=n,(1.10)$ is trivial.)
Finally, in view of (1.2),

$$
\begin{equation*}
E\left|S_{b, h}\right|^{\gamma} \leqq g^{\alpha}\left(F_{b, h}\right) \leqq g^{\alpha}\left(F_{b, n}\right), \tag{1.11}
\end{equation*}
$$

since $g\left(F_{b, n}\right)$ is non-decreasing in n by (1.1). Combining inequalities (1.8)-(1.11), we find that

$$
\left[E\left(M_{b, n}^{\gamma}\right)\right]^{1 / \gamma} \leqq\left(1+\frac{C^{1 / \gamma}}{2^{(\alpha-1) / \gamma}}\right) g^{\alpha / \gamma}\left(F_{b, n}\right) .
$$

If C is large enough, then hence it follows that

$$
\left[E\left(M_{b, n}^{\gamma}\right)\right]^{1 / \gamma} \leqq C^{1 / \gamma} g^{\alpha / \gamma}\left(F_{b, n}\right)
$$

which is equivalent to (1.5). The smallest C satisfying

$$
1+\frac{C^{1 / \gamma}}{2^{(\alpha-1) / \gamma}} \leqq C^{1 / \gamma}
$$

is given by (1.4). This completes the induction step and the proof of (1.3) in case $\gamma>1$.

In the remaining case $0<\gamma \leqq 1$, instead of Minkowski's inequality we have to apply the following inequality:

$$
E|\xi+\eta|^{\gamma} \leqq E|\xi|^{\gamma}+E|\eta|^{\gamma} .
$$

Also, for $0<\gamma \leqq 1$ and $\alpha \geqq 1$, we have

$$
E\left(M_{b, n}^{\gamma}\right) \leqq \sum_{k=b+1}^{b+n} E\left|\xi_{k}\right|^{\gamma} \leqq \sum_{k=b+1}^{b+n} g^{\alpha}\left(F_{k-1,1}\right) \leqq g^{\alpha}\left(F_{b, n}\right) .
$$

Here we use that

$$
u^{\alpha}+v^{\alpha} \leqq(u+v)^{\alpha} \quad \text { for } u \geqq 0, v \geqq 0, \text { and } \alpha \geqq 1
$$

Thus the proof of Theorem 1 is complete.
As a by-product, we obtained the following
Theorem 2. Suppose that there exists a function $g\left(F_{b, n}\right)$ satisfying (1.1) such that

$$
E\left|S_{b, n}\right|^{\gamma} \leqq g^{\alpha}\left(F_{b, n}\right) \quad(\text { all } b \geqq 0, n \geqq 1),
$$

where $0<\gamma \leqq 1$ and $\alpha \geqq 1$. Then

$$
E\left(M_{b, n}^{\gamma}\right) \leqq g^{\alpha}\left(F_{b, n}\right) \quad(\text { all } b \geqq 0, n \geqq 1) .
$$

2. The Case $\alpha=1$

Let us proceed to the study of the case, when $\gamma>1$ and $\alpha=1$. Then, roughly speaking, a factor $(\log 2 n)^{\gamma}$ will occur in the bound (1.3) provided by Theorem 1. Here and in the sequel all logarithms are with base 2.
Theorem 3. Suppose that there exists a function $g\left(F_{b, n}\right)$ satisfying (1.1) such that

$$
\begin{equation*}
E\left|S_{b, n}\right|^{\gamma} \leqq g\left(F_{b, n}\right) \quad(\text { all } b \geqq 0, n \geqq 1), \tag{2.1}
\end{equation*}
$$

where $\gamma>1$. Then

$$
\begin{equation*}
\left.E\left(M_{b, n}^{\gamma}\right) \leqq(\log 2 n)^{\gamma} g\left(F_{b, n}\right) \quad \text { all } b \geqq 0, n \geqq 1\right) \tag{2.2}
\end{equation*}
$$

This is a special case of the following more general result. Before its formulation, let us give a recurrence definition. Let $\lambda(n)$ be a positive and non-decreasing function of the natural number n. Set $\Lambda(1)=\lambda(1)$ and, for $n \geqq 2$,

$$
\begin{equation*}
\Lambda(n)=\lambda(m)+\Lambda(m-1) \tag{2.3}
\end{equation*}
$$

where m denotes the integer part of $\frac{1}{2}(n+2)$. It is clear that $A(n)$ is also positive and non-decreasing.

Theorem 4. Suppose that there exist a function $g\left(F_{b, n}\right)$ satisfying (1.1), and a positive and non-decreasing function $\lambda(n)$ such that

$$
\begin{equation*}
E\left|S_{b, n}\right|^{\gamma} \leqq \lambda^{\nu}(n) g\left(F_{b, n}\right) \quad(\text { all } b \geqq 0, n \geqq 1) \tag{2.4}
\end{equation*}
$$

where $\gamma>1$. Let $\Lambda(n)$ be defined by (2.3). Then

$$
\begin{equation*}
E\left(M_{b, n}^{\gamma}\right) \leqq \Lambda^{\gamma}(n) g\left(F_{b, n}\right) \quad(\text { all } b \geqq 0, n \geqq 1) \tag{2.5}
\end{equation*}
$$

We note that if $\lambda(n)$ equals 1 for all n then $A(n) \leqq \log 2 n$, which follows by $1+\log 2(m-1) \leqq \log 2 n$. (This is true, since $n \geqq 2 m-2$.) Consequently, Theorem 4
contains Theorem 3 as a particular case (i.e., when $\lambda(n) \equiv 1$). Further, we mention that if $\lambda(n)=n^{\beta}$ with some $\beta>0$ then $\Lambda(n) \leqq(2 n)^{\beta} /\left(2^{\beta}-1\right)^{1 / \beta}$, if $\lambda(n)=(\log 2 n)^{\beta}$ then $\Lambda(n) \leqq(\log 2 n)^{\beta+1}$, etc.

The history of Theorems 3 and 4 goes back to Rademacher and Mensov. In the theory of sequences of orthogonal rv's (i.e., $E\left(\xi_{i} \xi_{k}\right)=0$ if $i \neq k$), a basic lemma is

Theorem E (Rademacher-Mensov). If ξ_{1}, \ldots, ξ_{n} are mutually orthogonal rv's with finite variances $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$, then

$$
E\left(M_{n}^{2}\right) \leqq(\log 4 n)^{2} \sum_{k=1}^{n} \sigma_{k}^{2}
$$

The result is given and used, e.g., in Doob ([2], p. 156) and, more recently, in Révész ([10], p. 83). Concerning more general result, Billingsley ([1], p. 102) indicates how to prove

Theorem F. Suppose that there exist non-negative numbers u_{k} such that

$$
\begin{equation*}
E\left|S_{b, n}\right|^{\gamma} \leqq\left(\sum_{k=b+1}^{b+n} u_{k}\right)^{\alpha} \quad(\text { all } b \geqq 0, n \leqq 1), \tag{2.6}
\end{equation*}
$$

where $\gamma \geqq 1$ and $\alpha \geqq 1$. Then

$$
E\left(M_{b, n}^{\gamma}\right) \leqq(\log 4 n)^{\gamma}\left(\sum_{k=b+1}^{b+n} u_{k}\right)^{\alpha} \quad(\text { all } b \geqq 0, n \geqq 1) .
$$

When we restrict our attention to situations in which (2.6) is assumed to hold for some $\gamma \geqq 2$ and $\alpha \geqq \frac{1}{2} \gamma$, the above theorem is a special case of the following theorem of Serfling [12], which permits the quantity $\sum_{k=b+1}^{b+n} u_{k}$ to be replaced by quantities of other types.
Theorem G. Suppose that there exists a function $h\left(F_{b, n}\right)$ satisfying

$$
\begin{equation*}
h\left(F_{b, k}\right)+h\left(F_{b+k, l}\right) \leqq h\left(F_{b, k+l}\right) \quad(\text { all } b \geqq 0,1 \leqq k<k+l) \tag{2.7}
\end{equation*}
$$

such that

$$
E\left|S_{b, n}\right\rangle^{\gamma} \leqq h^{\frac{1}{2} \gamma}\left(F_{b, n}\right) \quad(\text { all } b \geqq 0, n \geqq 1),
$$

where $\gamma \geqq 2$. Then

$$
E\left(M_{b, n}^{\gamma}\right) \leqq(\log 2 n)^{\gamma} h^{\frac{1}{2} \gamma}\left(F_{b, n}\right) \quad(\text { all } b \geqq 0, n \geqq 1) .
$$

Consider now Theorem 4 with $\gamma \geqq 2, \lambda(n) \equiv 1$, and $g\left(F_{b, n}\right)=h^{\frac{1}{2} \gamma}\left(F_{b, n}\right)$. Since $\frac{1}{2} \gamma \geqq 1$, condition (2.7) implies condition (1.1), and hence Theorem 3 contains Theorem G as a special case. On the other hand, condition (1.1) does not imply, in general, condition (2.7) with $h\left(F_{b, n}\right)=g^{2 / \gamma}\left(F_{b, n}\right)$ if $\gamma>2$. Thus Theorem 4 is more general than Theorem G, even in the particular case $\gamma>2$ and $\lambda(n) \equiv 1$.

Another important result in the theory of sequences of orthogonal rv's is due to Mensov and Paley (see, e.g., [15], p. 189).

Theorem H (Mensov-Paley). Let ξ_{1}, \ldots, ξ_{n} be mutually orthogonal rv's with finite variances $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$ and such that with probability 1

$$
\left|\xi_{k}\right| \leqq K(<\infty) \quad(k=1,2, \ldots, n) .
$$

If $\gamma>2$ then

$$
E\left(M_{n}^{\gamma}\right) \leqq C_{\gamma} K^{\gamma-2} n^{\gamma-2} \sum_{k=1}^{n} \sigma_{k}^{\gamma} .
$$

This result is a simple consequence of Theorem 4 with $\lambda(n)=n^{(y-2) / \gamma}$ (see the note made after Theorem 4) if we take into account that by another theorem of Paley (see [15], p. 121) under conditions of Theorem H we have

$$
E\left|S_{b, i}\right|^{\gamma} \leqq \bar{C}_{\gamma} K^{\gamma-2} l^{\gamma-2} \sum_{k=b+1}^{b+l} \sigma_{k}^{\gamma} \quad(a l l \quad b \geqq 0,1 \leqq l \leqq n-b) .
$$

Thus Theorem 4 contains all theorems from E to H . Theorem 4 was proved by the author [7], apart from a slight modification in the definition of $\Lambda(n)$. (Namely, there $\Lambda(n)$ was defined by $\Lambda(n)=\Lambda(\bar{m})+\lambda(\bar{m})$, where \bar{m} denotes the integer part of $\frac{1}{2}(n+1)$.) For the sake of completeness, we shall present its proof here.

Proof of Theorem 4. Let $n>1$ be given and let m be the integer part of $\frac{1}{2}(n+2)$. Then $n=2 m-1$ or $2 m-2$. Let $b \geqq 0$. Now, for $m \leqq k \leqq n$, we have

$$
\left|S_{b, k}\right| \leqq\left|S_{b, m}\right|+\left|S_{b+m, k-m}\right|,
$$

whence, for such k 's,

$$
\left|S_{b, k}\right| \leqq\left|S_{b, m}\right|+M_{b+m, n-m} .
$$

Since, for $1 \leqq k<m$, we have $\left|S_{b, k}\right| \leqq M_{b, m-1}$, thus, for any k between 1 and n, we have

$$
\left|S_{b, k}\right| \leqq\left|S_{b, m}\right|+\left(M_{b, m-1}^{\gamma}+M_{b+m, n-m}^{\gamma}\right)^{1 / \gamma} .
$$

Therefore,

$$
M_{b, n} \leqq\left|S_{b, m}\right|+\left(M_{b, m-1}^{\gamma}+M_{b+m, n-m}^{\gamma}\right)^{1 / \gamma}
$$

and, by Minkowski's inequality,

$$
\begin{equation*}
\left[E\left(M_{b, n}^{\gamma}\right)\right]^{1 / \gamma} \leqq\left[E\left|S_{b, m}\right|^{\mid}\right]^{1 / \gamma}+\left[E\left(M_{b, m-1}^{\gamma}\right)+E\left(M_{b+m, n-m}^{\gamma}\right)\right]^{1 / \gamma} . \tag{2.8}
\end{equation*}
$$

Suppose now that the conclusion (2.5) of the theorem is true for $k<n$. Then, by the choice of m, we have

$$
E\left(M_{b, m-1}^{\gamma}\right) \leqq A^{y}(m-1) g\left(F_{b, m-1}\right)
$$

and

$$
E\left(M_{b+m, n-m}^{\gamma}\right) \leqq \Lambda^{y}(n-m) g\left(F_{b+m, n-m}\right) \leqq \Lambda^{\gamma}(m-1) g\left(F_{b+m, n-m}\right) .
$$

Putting these two inequalities together, by (1.1) we find that

$$
\begin{equation*}
E\left(M_{b, m-1}^{\gamma}\right)+E\left(M_{b+m, n-m}^{\gamma}\right) \leqq \Lambda^{\gamma}(m-1) g\left(F_{b, n}\right) . \tag{2.9}
\end{equation*}
$$

Finally, (2.4) implies

$$
\begin{equation*}
E\left|S_{b, m}\right|^{y} \leqq \lambda^{\nu}(m) g\left(F_{b, m}\right) \leqq \lambda^{\nu}(m) g\left(F_{b, n}\right) \tag{2.10}
\end{equation*}
$$

Collecting inequalities (2.8)-(2.10), we arrive at

$$
\left[E\left(M_{b, n}^{\gamma}\right)\right]^{1 / \gamma} \leqq[\lambda(m)+\Lambda(m-1)] g^{1 / \gamma}\left(F_{b, n}\right)
$$

By (2.3) this gives the wanted (2.5). Therefore, since the conclusion of the theorem is true for $n=1$ by the condition (2.4), it follows by induction for all $n=1,2, \ldots$. This completes the proof.

3. The Case $0<\alpha<1$

Now let us deal shortly with the case $0<\alpha<1$ and $\gamma \geqq 1$. Using the same ideas as in the proof of Theorem 4 we can show

Theorem 5. Suppose that there exist a function $g\left(F_{b, n}\right)$ satisfying (1.1), and a positive and non-decreasing function $\lambda(n)$ such that

$$
\begin{equation*}
E\left|S_{b, n}\right|^{\gamma} \leqq \lambda^{\gamma}(n) g^{\alpha}\left(F_{b, n}\right) \quad(\text { all } b \geqq 0, n \geqq 1), \tag{3.1}
\end{equation*}
$$

where $0<\alpha<1$ and $\gamma \geqq 1$. Then

$$
\begin{equation*}
E\left(M_{b, n}^{y}\right) \leqq \Lambda^{y}(n) g^{\alpha}\left(F_{b, n}\right) \quad(\text { all } b \geqq 0, n \geqq 1), \tag{3.2}
\end{equation*}
$$

where $\Lambda(n)$ is defined by $\Lambda(1)=\lambda(1)$ and, for $n \geqq 2$,

$$
\begin{equation*}
\Lambda^{\gamma / \alpha}(n)=2^{(\gamma-\alpha) / \alpha}\left[\lambda^{\gamma / \alpha}(m)+2^{(1-\alpha) / \alpha} \Lambda^{\gamma / \alpha}(m-1)\right] ; \tag{3.3}
\end{equation*}
$$

here m is the integer part of $\frac{1}{2}(n+2)$.
We note that the case $\lambda(n) \equiv 1$ is of special interest. Then, as it follows by (3.3), $\Lambda(n)=O\left(n^{(\gamma+1-2 \alpha) / \gamma}\right)$. It remains open, whether these estimates are exact or not, as far as the asymptotic order of magnitude as $n \rightarrow \infty$ is concerned.

On the other hand, we have to remark that the case $0<\alpha<1$ and $\gamma \geqq 2$ is somewhat restricted in its application since, if condition (3.1) with $\lambda(n) \equiv 1$ and $g\left(F_{b, n}\right)=A_{b, n}^{2}$ were met in this case, we would have $E\left(S_{b, n}^{2}\right) \leqq A_{b, n}^{2 \delta}$ for a $\delta<1$, an unrealistic condition in many applications.
Proof of Theorem 5. The proof runs along the same lines as that of Theorem 4. Besides, we will apply the following elementary inequality:

$$
\begin{equation*}
(u+v)^{s} \leqq 2^{s-1}\left(u^{s}+v^{s}\right) \quad \text { if } u \geqq 0, v \geqq 0, s \geqq 1 . \tag{3.4}
\end{equation*}
$$

We start with the inequality (2.8) obtained in the proof of Theorem 4. Applying (3.4) with $s=\gamma / \alpha \geqq 1$, we get that

$$
\left[E\left(M_{b, n}^{\gamma}\right)\right]^{1 / \alpha} \leqq 2^{(\gamma-\alpha) / \alpha \alpha}\left\{\left[E\left|S_{b, m}\right|^{\gamma}\right]^{1 / \alpha}+\left[E\left(M_{b, m-1}^{\gamma}\right)+E\left(M_{b+m, n-m}^{\gamma}\right)\right]^{1 / \alpha}\right\}
$$

where $n>1$ is a given integer. Applying (3.4) once more but now with $s=1 / \alpha$, it follows that

$$
\begin{align*}
& {\left[E\left(M_{b, n}^{\gamma}\right)\right]^{1 / \alpha} \leqq 2^{(\gamma-\alpha) / \alpha}\left\{\left[E\left|S_{b, m}\right|^{\gamma}\right]^{1 / \alpha}\right.} \\
& \left.+2^{(1-\alpha) / \alpha}\left(\left[E\left(M_{b, m-1}^{\gamma}\right)\right]^{1 / \alpha}+\left[E\left(M_{b+m, n-m}^{\gamma}\right)\right]^{1 / \alpha}\right)\right\} \tag{3.5}
\end{align*}
$$

Suppose that the conclusion (3.2) of the theorem holds for $k<n$. Then we have

$$
\left[E\left(M_{b, m-1}^{\gamma}\right)\right]^{1 / \alpha} \leqq \Lambda^{\gamma / \alpha}(m-1) g\left(F_{b, m-1}\right)
$$

and

$$
\left[E\left(M_{b+m, n-m}^{y}\right)\right]^{1 / \alpha} \leqq \Lambda^{\gamma / \alpha}(n-m) g\left(F_{b+m, n-m}\right) \leqq \Lambda^{\gamma / \alpha}(m-1) g\left(F_{b+m, n-m}\right)
$$

since $n=2 m-2$ or $2 m-1$. By (1.1), hence it follows that

$$
\left[E\left(M_{b, m-1}^{\gamma}\right)\right]^{1 / \alpha}+\left[E\left(M_{b+m, n-m}^{\gamma}\right)\right]^{1 / \alpha} \leqq \Lambda^{y / \alpha}(m-1) g\left(F_{b, n}\right)
$$

In view of (3.1) we have

$$
\left[E\left|S_{b, m}\right|^{\gamma}\right]^{1 / \alpha} \leqq \lambda^{\gamma / \alpha}(m) g\left(F_{b, m}\right) \leqq \lambda^{\gamma / \alpha}(m) g\left(F_{b, n}\right) .
$$

These last two estimates when put into (3.5) show that

$$
\left[E\left(M_{b, n}^{\gamma}\right)\right]^{1 / \alpha} \leqq 2^{(\gamma-\alpha) / \alpha}\left\{\lambda^{\gamma / \alpha}(m)+2^{(1-\alpha) / \alpha} A^{\gamma / \alpha}(m-1)\right\} g\left(F_{b, n}\right),
$$

which is the estimate (3.2), as desired. Since the conclusion (3.2) is obviously true for $n=1$, it is true by induction for all $n=1,2, \ldots$. This proves Theorem 5 .

Before turning to the applications, we make a remark on the validity of our results. Viewing the proofs, it is striking that we use no full power of a probability space. In fact, Minkowski's inequality was applied only, which is available in any (not necessarily finite, even not σ-finite) measure space. Thus, e.g., Theorems 1 and 4 can be stated in a more general form as follows.

Theorem 1'. Let (X, \mathscr{A}, μ) be a measure space. Suppose that there exists a function $g\left(F_{b, n}\right)$ satisfying (1.1) such that

$$
\int_{X}\left|S_{b, n}\right|^{y} d \mu \leqq g^{\alpha}\left(F_{b, n}\right) \quad(\text { all } b \geqq 0, n \geqq 1),
$$

where $\gamma>0$ and $\alpha>1$. Then

$$
\int_{X} M_{b, n}^{\gamma} d \mu \leqq C_{\gamma, \alpha} g^{\alpha}\left(F_{b, n}\right) \quad(\text { all } b \geqq 0, n \geqq 1) .
$$

Theorem 4^{\prime}. Let (X, \mathscr{A}, μ) be a measure space. Suppose that there exist a function $g\left(F_{b, n}\right)$ satisfying (1.1), and a positive and non-decreasing function $\lambda(n)$ such that

$$
\int_{X}\left|S_{b, n}\right|^{\gamma} d \mu \leqq \lambda^{\gamma}(n) g\left(F_{b, n}\right) \quad(\text { all } b \geqq 0, n \geqq 1)
$$

where $\gamma>1$. Let $A(n)$ be defined by (2.3). Then

$$
\int_{X} M_{b, n}^{\gamma} d \mu \leqq A^{y}(n) g\left(F_{b, n}\right) \quad(\text { all } b \geqq 0, n \geqq 1) .
$$

4. Applications: Strong Convergence and Complete Convergence

Now let us examine some of the consequences of Theorem 1. The consequences of Theorem 3 (which coincides with Theorem G if $\gamma=2$ and $\alpha=1$) are discussed by Serfling [13]. We shall concern the following convergence properties of S_{n} under moment restrictions of type (1.2): $S_{n} / A_{n}^{2} \rightarrow 0$ (the strong law of large numbers), or more generally $S_{n} / b_{n} \rightarrow 0$ with probability 1 , where $A_{n}=\left(\sum_{k=1}^{n} a_{k}^{2}\right)^{\frac{1}{2}} \rightarrow \infty$ $(n \rightarrow \infty),\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are given sequences of numbers; furthermore,

$$
\begin{equation*}
\sum_{n=1}^{\infty} d_{n} P\left[\sup _{k \geqq n} \frac{\left|S_{k}\right|}{A_{k}^{2}} \geqq \varepsilon\right] \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left[\frac{\left|S_{n}\right|}{c_{n}} \geqq \varepsilon\right] \tag{4.2}
\end{equation*}
$$

converge for every $\varepsilon>0$, where $\left\{c_{n}\right\}$ and $\left\{d_{n}\right\}$ are sequences of constants.
Condition (4.1) represents information regarding the rate of the convergence in the strong law of large numbers. The larger the d_{n} 's may be chosen, the sharper is the result stated by (4.1). Condition (4.2) asserts that the sequence $\left\{S_{n} / c_{n}\right\}$ converges completely to zero in the sense of Hsu and Robbins [5]. The smaller the c_{n} 's may be chosen, the sharper is the statement. By the Borel-Cantelli lemma, complete convergence implies strong convergence.

Properties (4.1), (4.2), or the like will be obtained as consequences of restrictions imposed upon the absolute γ-th moments, for some $\gamma>2$, of sums $S_{b, n}=$ $\sum_{k=b+1}^{b+n} \xi_{k}$. More precisely, throughout this Section we shall assume that (1.2) is
 sequence of numbers. That is, we shall assume that $\left\{\xi_{k}\right\}$ satisfies the moment inequality

$$
\begin{equation*}
E\left|S_{b, n}\right|^{\gamma} \leqq C_{\gamma} A_{b, n}^{\gamma} \quad(\text { all } b \geqq 0, n \geqq 1), \tag{4.3}
\end{equation*}
$$

where $\gamma>2$. By virtue of Theorem 1, then we have

$$
\begin{equation*}
E\left(M_{n}^{\gamma}\right) \leqq C_{\gamma}^{*} A_{n}^{\gamma} \quad\left(A_{n}=A_{0, n}\right), \tag{4.4}
\end{equation*}
$$

where $C_{\gamma}^{*}=C_{\gamma} C_{\gamma, \gamma / 2}$. This enables us to derive bounds on the tail distribution of M_{n}, which play a crucial role in the proofs given below. Applying Markov's inequality, (4.4) gives that

$$
\begin{equation*}
P\left[M_{n} \geqq y\right] \leqq C_{\gamma}^{*}\left(\frac{A_{n}}{y}\right)^{\gamma} \tag{4.5}
\end{equation*}
$$

for any $y>0$.
Beside (4.5), in proving the convergence of series (4.1), we make use of the convergence part of the following assertion, applied widely in the theory of numerical series: Let $d_{k} \geqq 0$ be the terms of a divergent series with partial sums D_{n}. Then
the series

$$
\sum_{n} \frac{d_{n}}{D_{n}\left(\log D_{n}\right)^{1+\delta}}
$$

converges or diverges according as $\delta>0$ or $\delta \leqq 0$.
We note that the results below are proved, on the base of the probability inequality (4.5), by adaptation of more or less standard arguments [2,6, and 10]. More exactly, Theorems $6-9$ generalize Theorems 3.1, 5.1, 5.3 and the relation (6.5) of Serfling [13].

Theorem 6. Let $\gamma>2$. Suppose that (4.3) is satisfied and

$$
\begin{equation*}
A_{n} \rightarrow \infty \quad(n \rightarrow \infty) \tag{4.6}
\end{equation*}
$$

Then, for each $\delta>0$, we have

$$
\begin{equation*}
P\left[S_{n}=o\left\{A_{n}\left(\log A_{n}\right)^{1 / v}\left(\log \log A_{n}\right)^{(1+\delta) / \gamma}\right\}\right]=1 . \tag{4.7}
\end{equation*}
$$

Proof. Imitating well-known techniques of argument (e.g., Lamperti [6]), put

$$
\lambda(n)=A_{n}\left(\log A_{n}^{2}\right)^{1 / \gamma}\left(\log \log A_{n}^{2}\right)^{(1+\delta) / \gamma}
$$

Inequality (4.5) gives that

$$
\begin{equation*}
P\left[M_{n} \geqq \lambda(n)\right] \leqq \frac{C_{\gamma}^{*}}{\log A_{n}^{2}\left(\log \log A_{n}^{2}\right)^{1+\delta}} \tag{4.8}
\end{equation*}
$$

Now we define a sequence of positive integers $n_{1} \leqq n_{2} \leqq \cdots$ in the following way:

$$
\begin{equation*}
A_{n_{j}-1}^{2} \leqq 2^{j}<A_{n_{j}}^{2} \quad(j=1,2, \ldots) \tag{4.9}
\end{equation*}
$$

This is possible in virtue of (4.6), and obviously $n_{j} \rightarrow \infty$ as $j \rightarrow \infty$.
On account of (4.8) and (4.9) we find that

$$
\sum_{j}^{\prime} P\left[M_{n_{j}} \geqq \lambda\left(n_{j}\right)\right] \leqq \sum_{j}^{\prime} \frac{C_{\gamma}^{*}}{\log A_{n_{j}}^{2}\left(\log \log A_{n_{j}}^{2}\right)^{1+\delta}} \leqq \sum_{j=2}^{\infty} \frac{C_{\gamma}^{*}}{j(\log j)^{1+\delta}}<\infty
$$

where \sum_{j}^{\prime} means that the summation is taken only once for equal n_{j} 's. Hence, by the Borel-Cantelli lemma, with probability 1 the inequality

$$
M_{n_{j}}<\lambda\left(n_{j}\right)
$$

holds for all j large enough. It is evident, by repeating the above argument with ($n_{j}-1$)'s instead of n_{j} 's, that with probability 1

$$
M_{n_{j}-1}<\lambda\left(n_{j}-1\right)
$$

for all k large enough, too.
Now, for $n_{j} \leqq n<n_{j+1}$, we have

$$
\lambda(n) \geqq \lambda\left(n_{j}\right) \quad \text { and } \quad\left|S_{n}\right| \leqq M_{n_{j}+1-1},
$$

and thus, with probability 1

$$
\begin{equation*}
\frac{\left|S_{n}\right|}{\lambda(n)} \leqq \frac{M_{n_{j+1}-1}}{\lambda\left(n_{j}\right)} \leqq \frac{\lambda\left(n_{j+1}-1\right)}{\lambda\left(n_{j}\right)} \tag{4.10}
\end{equation*}
$$

for all n large enough. Since by (4.9) the right-hand side of (4.10) is bounded as $j \rightarrow \infty$, it follows that

$$
P\left[S_{n}=O\left\{A_{n}\left(\log A_{n}^{2}\right)^{1 / \gamma}\left(\log \log A_{n}^{2}\right)^{(1+\delta) / \gamma}\right\}\right]=1
$$

Taking into account that δ is an arbitrarily small positive number, this immediately yields (4.7), which was to be proved.

We note that the conclusion (4.7) improves as γ increases. By letting $\gamma \rightarrow \infty$, we find that

$$
P\left[S_{n}=o\left\{A_{n}\left(\log A_{n}\right)^{\delta}\right\}\right]=1
$$

for each $\delta>0$.
It is obvious that (4.7) implies the strong law of large numbers, i.e., $S_{n} / A_{n}^{2} \rightarrow 0$ as $n \rightarrow \infty$ with probability 1 . The following result characterizes the rate of convergence.

Theorem 7. Let $\gamma>2$. Suppose that (4.3) is satisfied and

$$
\begin{equation*}
A_{n} \rightarrow \infty \quad(n \rightarrow \infty) \quad \text { and } \quad a_{n}^{2} \leqq q A_{n}^{2} \quad\left(n \geqq n_{0}\right) \tag{4.11}
\end{equation*}
$$

where $0<q<1$. Then, for each $\delta>0$ and $\varepsilon>0$, we have

$$
\begin{equation*}
\sum_{n} \frac{a_{n}^{2} A_{n}^{\gamma-2}}{\left(\log A_{n}\right)^{1+\delta}} P\left[\sup _{k \geqq n} \frac{\left|S_{k}\right|}{A_{k}^{2}} \geqq \varepsilon\right]<\infty \tag{4.12}
\end{equation*}
$$

Proof. Let $p=(1-q)^{-1}$. It is clear that $p>1$. We begin with proving that (4.11) implies the existence of a strictly increasing sequence $\left\{n_{j}\right\}$ of positive integers such that

$$
\begin{equation*}
p^{j} \leqq A_{n_{j}}^{2}<p^{j+1} \tag{4.13}
\end{equation*}
$$

for all j large enough. Otherwise, for infinitely many n 's, we have

$$
A_{n}^{2}<p^{j} \quad \text { and } \quad A_{n+1}^{2} \geqq p^{j+1}
$$

with suitable j 's. Hence

$$
\frac{a_{n+1}^{2}}{A_{n+1}^{2}}=1-\frac{A_{n}^{2}}{A_{n+1}^{2}}>1-\frac{1}{p}=q
$$

for infinitely many n 's, which contradicts (4.11).
By a remark made above, to prove (4.12) it is enough to show that

$$
\begin{equation*}
P_{n}=P\left[\sup _{k \geqq n} \frac{\left|S_{k}\right|}{A_{k}^{2}} \geqq \varepsilon\right] \leqq \frac{C}{A_{n}^{\gamma}} \tag{4.14}
\end{equation*}
$$

for all n large enough. To this effect, let $j_{0}=j_{0}(n)$ be defined by $n_{j_{0}}<n \leqq n_{j_{0}+1}$. It is obvious that

$$
P_{n} \leqq \sum_{j=j_{0}}^{\infty} P\left[\max _{n_{j}<k \leqq n_{j+1}} \frac{\left|S_{k}\right|}{A_{k}^{2}} \geqq \varepsilon\right] \leqq \sum_{j=j_{0}}^{\infty} P\left[M_{n_{j+1}} \geqq \varepsilon A_{n_{j}}^{2}\right]
$$

The use of (4.5) on the right-hand side yields

$$
\begin{equation*}
P_{n} \leqq C_{\gamma}^{*} \varepsilon^{-\gamma} \sum_{j=j_{0}}^{\infty} \frac{A_{n_{j}}^{\gamma}}{A_{n_{j}}^{2 \gamma}} \leqq C_{\gamma}^{*} p^{\gamma} \varepsilon^{-\gamma} \sum_{j=j_{0}}^{\infty} A_{n_{j}}^{-\gamma}, \tag{4.15}
\end{equation*}
$$

since by (4.13)

$$
A_{n_{j+1}}^{2} \leqq p^{2} A_{n_{j}}^{2}
$$

The series on the right of (4.15) is convergent due to $p>1$. Putting

$$
C_{1}=C_{\gamma}^{*} p^{\gamma} \varepsilon^{-\gamma}\left(1-p^{-\gamma / 2}\right)^{-1}
$$

we find that

$$
P_{n} \leqq C_{1} p^{-\gamma j_{0} / 2} \leqq C_{1} p^{\gamma} A_{n}^{-\gamma}
$$

in accordance with (4.14). Thus Theorem 7 is proved.
We note that if (4.3) holds for γ 's arbitrarily large, then we have a conclusion substantially better than (4.12). Namely, in this case we have

$$
\sum_{n} a_{n}^{2} A_{n}^{\alpha} P\left[\sup _{k \geqq n} \frac{\left|S_{k}\right|}{A_{k}^{2}} \geqq \varepsilon\right]<\infty
$$

for any choice of α and $\varepsilon>0$.
Turning now to convergence rates corresponding to the law given by Theorem 6, we can assert

Theorem 8. Let $\gamma>2$. Suppose that (4.3) and (4.1.1) are satisfied. Then, for any choice of α and β satisfying

$$
\begin{equation*}
0 \leqq \beta<\alpha \gamma-1 \tag{4.16}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sum_{n} \frac{a_{n}^{2}}{A_{n}^{2}\left(\log A_{n}\right)^{1-\beta}} P\left[\sup _{k \geqq n} \frac{\left|S_{k}\right|}{A_{k}\left(\log A_{k}\right)^{\alpha}} \geqq 1\right]<\infty \tag{4.17}
\end{equation*}
$$

Proof. Consider a strictly increasing sequence $\left\{n_{j}\right\}$ of positive integers defined by (4.13). The existence of such a sequence is ensured by (4.11), a condition appearing among the assumptions of the theorem.

For a given n large enough, define the integer $j_{0}=j_{0}(n)$ such that $n_{j_{0}}<n \leqq n_{j_{0}+1}$. We obviously have

$$
\begin{equation*}
P\left[\sup _{k \geqq n} \frac{\left|S_{k}\right|}{A_{k}\left(\log A_{k}^{2}\right)^{\alpha}} \geqq 1\right] \leqq \sum_{j=j_{0}}^{\infty} P\left[\max _{n_{j}<k \leqq n_{j+1}} \frac{\left|S_{k}\right|}{A_{k}\left(\log A_{k}^{2}\right)^{\alpha}} \geqq 1\right] \tag{4.18}
\end{equation*}
$$

Applying (4.5), the series on the right-hand side of (4.18) is bounded from above by the series

$$
\sum_{j=j 0}^{\infty} \frac{C_{\gamma}^{*} A_{n_{j}, 1}^{v}}{A_{n_{j}}^{\gamma}\left(\log A_{n_{j}}^{2} x^{2 x}\right.} .
$$

The same use of (4.5) and (4.13) as in the proof of Theorem 7 now yields the convergence of (4.17). The proof of Theorem 8 is ready.

We note that the least restriction on α, namely $\alpha>0$, occurs if γ may be chosen arbitrarily large. In this case, the relation (4.17) holds for any choice of $\alpha>0$ and $0<\beta<1$.

Finally, we consider the question of norming S_{n} suitably for S_{n} / c_{n} to converge completely to zero. The inequality (4.5) immediately provides the following, slightly stronger conclusion.

Theorem 9. Let $\gamma>2$. Under conditions (4.3) and (4.6) the sequence

$$
\left\{a_{n}^{2 / \gamma} M_{n} / A_{n}^{(\gamma+2) / \gamma}\left(\log A_{n}\right)^{(1+\delta) / \gamma}\right\}
$$

converges completely to zero for each $\delta>0$.
As a particular case, consider a sequence $\left\{\varphi_{k}\right\}$ of weakly multiplicative rv's of order r, i.e., we assume that

$$
\begin{equation*}
\sum_{1 \leqq k_{1}<k_{2}<\ldots<k_{r}} E^{2}\left\{\varphi_{k_{1}} \varphi_{k_{2}} \ldots \varphi_{k_{r}}\right\}<\infty \tag{4.19}
\end{equation*}
$$

where the summation is extended over all integers satisfying only the condition $1 \leqq k_{1}<k_{2}<\cdots<k_{r}$ and $r \geqq 4$ is an even integer. This is a generalization of the concept of multiplicativity of order r defined by

$$
\begin{equation*}
E\left\{\varphi_{k_{1}} \varphi_{k_{2}} \ldots \varphi_{k_{r}}\right\}=0 \quad\left(1 \leqq k_{1}<k_{2}<\cdots<k_{r}\right) . \tag{4.20}
\end{equation*}
$$

The condition (4.20) is stronger than (4.19). Even the former includes the case of a sequence of martingale differences and the case of mutually independent rv's (when the expectations in (4.20) exist), etc.

In [8] we proved that (4.3) with $\gamma=r$ is valid for any sequence of weakly multiplicative rv's of order r, whose r-th moments are uniformly bounded. More precisely, the following result holds. (See Theorem 1 there.)

Theorem I. Let r be an even integer, $r \geqq 4$. Let $\left\{\varphi_{k}\right\}$ be a sequence of rv's such that (4.19) and

$$
\begin{equation*}
E\left(\varphi_{k}^{r}\right) \leqq K(<\infty) \quad(k=1,2, \ldots) \tag{4.21}
\end{equation*}
$$

are satisfied, Then, for every sequence $\left\{a_{k}\right\}$ and for every integer n, we have

$$
E\left(\sum_{k=b+1}^{b+n} a_{k} \varphi_{k}\right)^{r} \leqq C_{r} A_{b, n}^{r} \quad(\text { all } b \geqq 0, n \geqq 1) .
$$

Hence, via Theorems 6-9, we obtain the following corollaries.

Corollary 1. Let $r \geqq 4$ be an even integer and let $\left\{\varphi_{k}\right\}$ be a sequence of rv's satisfying (4.19) and (4.21). Let $\left\{a_{k}\right\}$ be a sequence of numbers with (4.6). Then, for each $\delta>0$,

$$
P\left[\sum_{k=1}^{n} a_{k} \varphi_{k}=o\left\{\left(A_{n}\left(\log A_{n}\right)^{1 / r}\left(\log \log A_{n}\right)^{(1+\delta) / r}\right\}\right]=1\right.
$$

Corollary 2. Let $\left\{\varphi_{k}\right\}$ be a sequence of rv's satisfying (4.19) and (4.21) for an even integer $r \geqq 4$. Let $\left\{a_{k}\right\}$ be a sequence of numbers satisfying (4.11). Then, for each $\delta>0$ and $\varepsilon>0$, we have

$$
\sum_{n} \frac{a_{n}^{2} A_{n}^{r-2}}{\left(\log A_{n}\right)^{1+\delta}} P\left[\sup _{i \geqq n} \frac{1}{A_{i}^{2}}\left|\sum_{k=1}^{l} a_{k} \varphi_{k}\right| \geqq \varepsilon\right]<\infty
$$

Corollary 3. Under the same conditions as in Corollary 2, we have

$$
\sum_{n} \frac{a_{n}^{2}}{A_{n}^{2}\left(\log A_{n}\right)^{1-\beta}} P\left[\sup _{l \geqq n} \frac{1}{A_{l}^{2}\left(\log A_{l}\right)^{\alpha}}\left|\sum_{k=1}^{!} a_{k} \varphi_{k}\right| \geqq 1\right]<\infty
$$

provided α and β satisfy (4.16).
Corollary 4. Under the same conditions as in Corollary 1, we have

$$
\sum_{n} P\left[\frac{a_{n}^{2 / r}}{A_{n}^{(r+2) / r}\left(\log A_{n}\right)^{(1+\delta) / r}} \max _{1 \leqq I \leqq n}\left|\sum_{k=1}^{l} a_{k} \varphi_{k}\right| \geqq \varepsilon\right]<\infty
$$

for each $\varepsilon>0$.
We note that Corollaries 1-4 for a sequence of multiplicative rv's of finite order in the special case $a_{1}=a_{2}=\cdots=1$ were proved by Serfling [11]. Corollaries 1 and 3 , under somewhat more restricted conditions stipulated on $\left\{a_{k}\right\}$, were proved by the author [9].

References

1. Billingsley, P.: Convergence of Probabilty Measures. New York: Wiley 1968
2. Doob, J. L.: Stochastic Processes. New York: Wiley 1953
3. Erdös, P.: On the convergence of trigonometric series. J. Math. and Phys. Massachusetts Institute of Technology 22, 37-39 (1943)
4. Gapoškin, V.F.: Lacunary series and independent functions. (Russian) Uspehi Mat. Nauk 21, 3-82 (1966)
5. Hsu, P.L., Robbins, H.: Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. USA 33, 25-31 (1947)
6. Lamperti, J.: Probability. New York: Benjamin 1966
7. Móricz, F.: The generalization of some classical inequalities in the theory of orthogonal series. (Russian) Mat. Zametki 17, 219-230 (1975)
8. Móricz, F.: On the convergence properties of weakly multiplicative systems. Acta Sci. Math. (Szeged) (to appear)
9. Móricz, F.: The law of the iterated logarithm and related results for weakly multiplicative systems. Analysis Math. (to appear)
10. Révész, P.: The Laws of Large Numbers. New York: Academic Press 1968
11. Serfling, R.J.: Probability inequalities and convergence properties for sums of multiplicative random variables. Technical Report, Florida State University (1969)
12. Serfling, R.J.: Moment inequalities for the maximum comulative sum. Ann. Math. Statist. 41, 1227-1234 (1970)
13. Serfling, R. J.: Convergence properties of S_{n} under moment restrictions. Ann. Math. Statist. 41, 1235-1248 (1970)
14. Tjurnpü, H.: On the generalization of a theorem of S.B. Stečkin. (Russian) Acta Sci. Math. (Szeged) 36, 369-374 (1974)
15. Zygmund, A.: Trigonometric Series, Vol. II. Cambridge: University Press 1959

Received October 27, 1975; in revised form March 3, 1976

