
Z. Wahrscheinlichkeitstheorie verw. Gebiete 
35, 299 - 314 (1976) 

Zeitschrift ffir 

Wahrscheinlichkeitstheorie 
und verwandte Gebiete 

�9 by Springer-Verlag 1976 

Moment Inequalities and the Strong Laws 
of Large Numbers 

F. Mdricz 

Bolyai Institute, University of Szeged, Aradi v&tanuk tere 1 
H-6720 Szeged, Hungary 

O. Introduction 

Let {~k} be a sequence of random variables. It is not assumed that the ~k's are 
mutually independent or that they are identically distributed. Set 

b + n  

Sb , .  = (Sb, o = O) 
k=b+l  

and 

M b . = m a x } S b k [  (b>0, n > l ) .  
, l < _ k < _ n  , 

Thus Mb, n is the largest magnitude for the n consecutive partial sums formed 
from the n consecutive ~k'S commencing with ~b +1" Furthermore, for each vector 
~b,,=(~b+l,- ' . ,  ~b+,) of n consecutive ~k's, let Fb, . denote the joint distribution 
function. In statements about Go,, only, the abbreviated notation S,, M,, F,, etc. 
will be used. 

The object of this paper is to provide bounds on E(M{,,,) in terms of given 
bounds on E ]Sb, ,I ~, where 7 > 0. We emphasize that it is not assumed that the ~k's 
are independent. The only restrictions on the dependence will be those imposed 
on the assumed bounds for E [Sb,,V. These assumed bounds are guaranteed under 
a suitable dependence restriction, e.g., mutual independence, martingale dif- 
ferences, weak multiplicativity of finite order, or the like. 

Bounds on E(M'[,,) are of use in deriving bounds on the tail distribution of 
the maximum of certain partial sums in order to study convergence properties 
of S, as n ~ oo. For development of such results under various dependence restric- 
tions, the theorems of this paper reduce the problem of placing appropriate 
bounds on E(M~,,,) to the easier problem of placing appropriate bounds on 
E ISb, nlL 

The problem posed above is treated essentially in a setting close to that of 
Serfling [12], whose results are contained as special cases in our Theorems 1 
and 4. The applications made by us are also in close relation with those presented 
by Settling [13]. 
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1. The Main Result: the Case ~ > 1 

In the following, the function g (Fb,,) denotes a non-negative functional depending 
on the joint destribution function of {b,,. Examples are: g (Fb,,)= n ~ where c~ > 1, 

b+n 

2 is t he  or g(Fb,,)= ~ a 2, where {ak} is a sequence of numbers. (In most cases, a k 
k=b+l  

finite variance of ~k, but this remark plays no role in the theorems stated below.) 
Throughout the paper we shall assume that the function g,(Fb,,) possesses the 
following property of rather general nature: 

g(Fb, k)+g(Fb+k, ,) <g(Fb, k+t) (1.1) 

for all b > 0  and l < k < k + l .  In the sequel C, C1, C 2 . . . .  will denote positive 
constants. 

Theorem 1. Suppose that there exists a function g(Fb,,) satisfying (1.1) such that 

E S b .r=<g=(F,o,.) (all b>O, n > l ) ,  

where y > 0 and ~ > 1. Then 

E(M~,,,)<C,,~g=(Fb,,) (all b>O, n > l ) .  

(1.2) 

(1.3) 

Although its specific value will have no importance for us, the constant C~, 
may be taken as 

C, , ,=(1  - 2~ -~ (1.4) 

i f y > l ,  and C~,==I i f 0 < 2 < l .  
The result (1.3) provides a bound for E(M[,, ,) which is asymptotically optimal 

as n--+ oo, in the sense that it is of the same order of magnitude as the bound 
assumed for E LS b ,IL In Theorem 1 the bounds may involve parameters of the 
joint distribution' function of ~b,,, a flexibility particularly u~eful with non- 
identically distributed rv's. 

Before proving Theorem 1, let us collect some results of its prerequisites. Set 

/ b+n \~ 

where {ak} is a sequence of numbers. 

Theorem A (Erd6s-Ste~kin). Let 7>2. Suppose that there exists a sequence {ak} 
of numbers such that 

EISb,.Ie<CTA~,,,, (all b~O, n > l ) .  
Then 

E(M~,,)<C~ C~A~,, (all b>O, n > l ) ,  

where C~ does not depend on ~ for ~ > 2 + e, ~ > O. 

This result was proved by ErdSs [3] for lacunary trigonometric series and 
7 =4, while the general form as stated in Theorem A is due to Ste~kin. (In fact, 
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it was an oral communication of Ste~kin, which was elaborated by Gapogkin [4], 
pp. 29-31.) A possible generalization of Theorem A, due to TjurnpiJ [14], reads 
as follows. 

Theorem B. Let 7 > 6 > 1 and let {ak} be a sequence of numbers such that 

I b+n \7/6 
la" 

Then 
b+n \7/6 

E(M{,,)<C,*a ,k=~+llak[a) (all b>O,_ n > l ) .  

Another interesting result can be found in Serfling [12]. 

Theorem C. Let 7 > 2 and suppose that 

ElSb, nl'<--_g~'(n) (all b>O, n > l ) ,  

where g (n) is non-decreasing, 2 g (n) < g (2 n), and g (n + 1)/g (n) -~ 1 as n ~ 03. Then 

E(M{, , )<Cg~' (n)  (all b>O, n > l ) ,  

where C may depend on 7, g and the joint distributions of the ~k'S. 

A common generalization of Theorems A and C was found by the author [7]. 

Theorem D. Let 7 > 2 and let {ak} be a sequence of numbers such that 

E ~< ~ 2 IS~,nl = g  (At, n) (all b>=O, n__l), 

where g (x) is non-decreasing and 2 ~ g (x) <- g (2 x) for x >= 0, where 2/7 < fl < 1. Then 

E(M{,n)<CT, pg~r(A~,n) (all b>O, n > l ) .  

It is not hard to check that both Theorem B and Theorem D are contained 
in Theorem 1. 

The proof of Theorem 1 (and later, the proofs of Theorems 4 and 5) are based 
on the "bisection" technique applied by Billingsley [1; p. 102]. 

Proof of Theorem I. We are to find a constant C > 1, depending only on y and c~, 
for which 

E(M{,,,)<CgX(Fb,,) (b=O, n > l ) .  (1.5) 

We shall distinguish two cases: (i) Y > 1 and (ii) 0 < 7 < 1. 
First consider the case 7 > 1. The proof goes by induction on n. The result 

is obvious for n = 1, since C >  1. Assume now as induction hypothesis that the 
result holds for each integer less than n. We shall prove it for n itself. There exists 
an integer h, 1 < h < n, such that 

g(Fb, h-1)<�89 n)<g(Fb h), (1.6) 

where g(Fb, h_ 0 on the left is 0 if h=  1. Then (1.1) and (1.6) implies 

g (Fb + h,,- h) < g (Vs, ,) - g (Fs, h) < �89 g (F5, n)" (1.7) 
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Now, for h < k < n, we have 

[Sb, kl _--< ISb, hi + ISb+h,k_hl <= [Sb, hl +mb+h,,_h. 

Also, for 1 < k < h, we have ISb, k l < Mb, h- 1, and hence 

iSb,kl<lSb, hl+(M{,,h_l~ ~ ~11~ i~'~b+h,n_h) 

for 1 < k < n. Therefore, 

Mb, n<= ISb, hl-I-(M~,h-l-~- M{+h,n_h) 11~ 

and, by Minkowski's inequality, 

E(M~,n)]I/' <= [E ISb, hV]l/' + [E(M~, h 1)+ E(M[+h,n_h)] t/'. (1.8) 

Since (1.2) holds if n is replaced by h -  1, and since h -  1 < n, we may apply 
the induction hypothesis to the rv's ~b+l, " ' ,  r and conclude by (1.5) that 

E (M~,,h- O < C g~(Fb, h-1) < @ g~(Fb,,). (1.9) 

Here the last inequality follows by (1.6). We note that if h = 1, then (1.9) is obvious. 
If the indices in (1.2) are restricted to b+  h and 1 < k < n - h ,  then only the rv's 

~b+h+l, "", ~b+, are involved. Since n - h < n ,  the induction hypothesis applies 
to ~b+h,,-h; hence (1.5) yields 

e(M{+h,,_h)< C g (Fb+h,,_h)= 2~ g (Fb,,), (1.10) 

the last inequality following now by (1.7). (If h=n, (1.10) is trivial.) 
Finally, in view of (1.2), 

~E  E ISb, hl~<=g~(Fb, h)<--_g (b,,),  (1.11) 

since g(Eo,,) is non-decreasing in n by (1.1). Combining inequalities (1.8)-(1.11), 
we find that 

< (1 Cli~ \ [E(M~,,,)'] 1/' = + ~ )  g~l'(Vb,,). 

If C is large enough, then hence it follows that 

[E(M{,, n)] 1/'1 ~ G Uy g'/'(Fb, n), 

which is equivalent to (1.5). The smallest C satisfying 

1 + 2(~_1)1~ < C ~/~ 

is given by (1.4). This completes the induction step and the proof of (1.3) in case 
7>1.  

In the remaining case 0 < 7 <  1, instead of Minkowski's inequality we have 
to apply the following inequality: 

E I~+nl'_-<E I c r + E  Inr. 
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Also, for 0 < 7 < 1 and c~ > 1, we have 

b + n  b + n  

E(M~,,)__< ~ E l~k['~< ~ g~(Fk_l,~)<g~(Fb,,). 
k = b + l  k = b + l  

Here we use that 

u~+v~<(u+v)~ for u>0 ,  v>0,  and e > l .  

Thus the proof of Theorem 1 is complete. 
As a by-product, we obtained the following 

Theorem 2. Suppose that there exists a function g(Fb,,) satisfying (1.1) such that 

ElSb,.l~'<=g~(Fb,.) (all b>O, n > l ) ,  

where 0 < 7 < 1 and ~ > 1. Then 

7 a E(Mb,.)<g (Fb,.) (all b>O, n > l ) .  

2. The  C a s e  g = 1 

Let us proceed to the study of the case, when ~>1 and g =  1. Then, roughly 
speaking, a factor (log 2n) ~ will occur in the bound (1.3) provided by Theorem 1. 
Here and in the sequel all logarithms are with base 2. 

T h e o r e m  3. Suppose that there exists a function g(Fb,,) satisfying (1.1) such that 

glsb,,l'<g(Fb,,) (all b>O, n > l ) ,  (2.1) 

where 7 > 1. Then 

E (M~, ,) __< (log 2n)' g(Fb,,) (all b>__O, n> 1), (2.2) 

This is a special case of the following more general result. Before its formula- 
tion, let us give a recurrence definition. Let 2(n) be a positive and non-decreasing 
function of the natural number n. Set A(1)=2(1) and, for n>___2, 

A(n) = 2(m) + A ( m -  1), (2.3) 

where m denotes the integer part of l (n+2) .  It is clear that A(n) is also positive 
and non-decreasing. 

Theorem 4. Suppose that there exist a function g (Fb, ~) satisfying (1.1), and a positive 
and non-decreasing function 2(n) such that 

E lSb,,l~'<=)J(n)g(Fb,~) (all b>O, n->l), (2.4) 

where ~ > 1. Let A(n) be defined by (2.3). Then 

E(M~,,~)<=A~(n)g(Fb,,) (all b>O, n ~ l ) .  (2.5) 

We note that if 2(n) equals 1 for all n then A(n)<log 2n, which follows by 
1 + log 2 (m - 1) < log 2 n. (This is true, since n => 2 m - 2.) Consequently, Theorem 4 
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contains Theorem 3 as a particular case (i.e., when 2 (n)= 1). Further, we mention 
that if 2(n)=n ~ with some /3>0 then A(n)<(2n)~/( f f -1)  1/~, if 2(n)=(log2n) p 
then A(n) < (log 2 n) ~ + 1, etc. 

The history of Theorems 3 and 4 goes back to Rademacher and Mensov. 
In the theory of sequences of orthogonal rv's (i.e., E(~ i ~k)=0 if i+k), a basic 
1emma is 

Theorem E (Rademacher-Mensov). I f  41, ..., in are mutually orthogonal rv's with 
finite variances ~2 . . . .  , cr 2, then 

E(M))=<(log 4n) 2 ~ ak 2. 
k=l 

The result is given and used, e.g., in Doob ([2], p. 156) and, more recently, in 
R6v6sz ([10], p. 83). Concerning more general result, Billingsley ([1], p. 102) 
indicates how to prove 

Theorem F. Suppose that there exist non-negative numbers u k such that 

I b+. ~ E ISb,.l'_-__ ~ Y~ ukl (all b>O, n< 1), (2.6) 
\ k = b + l  I 

where ? > 1 and c~ > 1. Then 

I b+. ? 
E(M{,,)_-<(log 4n) ? lk=~b+lUk} (all b>O, n> 1). 

When we restrict our attention to situations in which (2.6) is assumed to hold 
for some 7>2  and ~>�89 the above theorem is a special case of the following 

b+n 

theorem of Serfling [-12], which permits the quantity ~ u k to be replaced by 
quantities of other types, k=b+l 

Theorem G. Suppose that there exists a function h(Fb,,) satisfying 

h(Fb, k)+h(Fb+k,~)<=h(Fb, g+z) (all b>=O, l<=k<k+l) (2.7) 

such that 

EISb, nl?<h-~?(Fb, n) (all b>O, n > l ) ,  

where 7 > 2. Then 

E(M~,,)_<_(log 2n) ? h*~(Fb,,) (all b>O, n> 1). 

h (Fb,~). Since Consider now Theorem4 with 7>2,  2 (n) -1 ,  and g(Fb,~)= ~ 
�89 condition (2.7) implies condition (1.1), and hence Theorem3 contains 
Theorem G as a special case. On the other hand, condition (1.1) does not imply, 
in general, condition (2.7) with h(Fb,~)=g2/?(Fb,,) if ?>2.  Thus Theorem4 is 
more general than Theorem G, even in the particular case 7>2  and 2(n)= 1. 

Another important result in the theory of sequences of orthogonal rv's is due 
to Mensov and Paley (see, e.g., [-15], p. 189). 
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Theorem H (Mensov-Paley). Let ~>.. . ,  ~, be mutually orthogonal rv's with finite 
variances cr 2 . . . .  , rr~ and such that with probability 1 

[~kf<K(< oo) (k= 1, 2, ..., n). 

I f  ? > 2 then 

~'< K y - 2  ~ ~' E(M.~) = Cy n y - 2  _ o" k . 
k = l  

This resuIt is a simple consequence of Theorem 4 with 2(n)= n (~- 2)/y (see the 
note made after Theorem 4) if we take into account that by another theorem of 
Paley (see [15], p. 121) under conditions of Theorem H we have 

b+t 
EISb, t[Y<C~K>'-2I y-2 ~,, ~ (all b>O, l < l < _ n - b ) .  

k = b + l  

Thus Theorem 4 contains all theorems from E to H. Theorem 4 was proved 
by the author [7], apart from a slight modification in the definition of A(n). 
(Namely, there A(n) was defined by A(n)=A(~)+2(~) ,  where ~ denotes the 
integer part of �89 + 1).) For the sake of completeness, we shall present its proof 
here. 

Proof of  Theorern4. Let n>  1 be given and let m be the integer part of �89 
Then n = 2 m - 1  or 2 m - 2 .  Let b>0.  Now, for m<k<-n,  we have 

I&,kl < I&.~l + ISb+ ~, k_,.I, 

whence, for such k's, 

ISb, kl < l&,ml + m~+ . . . . . . .  

Since, for l < k < m ,  we have [Sb, kl<Mb, m_l, thus, for any k between 1 and n, we 
have 

[Sb, k ] < ]Sa, m [ + (M~,, ,, _ * + M{+ m, ,-,,)1/~" 

Therefore, 

M~,. __< I&, m I + (M~, ~_1 + M L  . . . . .  )~/~ 

and, by Minkowski's inequality, 

[E(M~,,,)]a/r < [E ]Sb, =]y]l/r + [E(M~, . . . .  1) q-E(M7+ m . . . .  )]l/-f, (2.8) 

Suppose now that the conclusion (2.5) of the theorem is true for k < n. Then, 
by the choice of m, we have 

E(M[,, ,_I)< A ~ ( m -  1) g(F b .. . .  1) 
and 

E(M~+ . . . . .  )<=AY(n-m) g(Fb+ . . . . .  )<=AS(m - 1) g(Fb+ . . . . .  ). 

Putting these two inequalities together, by (1.1) we find that 

E (M{, ,,_ 1) + E (M~+ . . . . . .  ) < A ~ (m - 1) g (F~.,). (2.9) 
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Finally, (2.4) implies 

E I Sb, ,, r < 2' (m) g (Fb, ,,) < 2 ~ (m) g (Fb, ,). (2.10) 

Collecting inequalities (2.8)-(2.10), we arrive at 

[E(M~,,)]a/~ < [2 (m)+ A ( m -  1)] ga/~(Fb,,). 

By (2.3) this gives the wanted (2.5). Therefore, since the conclusion of the theorem 
is true for n = 1 by the condition (2.4), it follows by induction for all n = 1, 2, . . . .  
This completes the proof. 

3. The Case 0 < ~ < 1 

Now let us deal shortly with the case 0 < e < 1 and 7 > 1. Using the same ideas as 
in the proof of Theorem 4 we can show 

Theorem 5. Suppose that there exist a function g(Fbl ,) satisfying (1.1), and a positive 
and non-decreasing function 2(n) such that 

glSb,.le<.~'(n) g"(fb,.) (all b>O, n = l ) ,  (3.1) 

where 0 < ~ < 1 and ~ > 1. Then 

E(M{,.)<=Ae(n)g~(Fb,.) (all b>=O, n ~ l ) ,  

where A(n) is defined by A(1)=2(1) and, for n>_2, 

A ~/~ (n) = 2 (~- ~)/~ [2 ~/~ (m) + 2 <1- ~)/~ A ~1~ ( m -  1)] ; 

(3.2) 

(3.3) 

here m is the integer part of  �89 

We note that the case 2(n)_--1 is of special interest. Then, as it follows by (3.3), 
A(n)=O(n(~+l-2~)/~). It remains open, whether these estimates are exact or not, 
as far as the asymptotic order of magnitude as n -~ oo is concerned. 

On the other hand, we have to remark that the case 0 < e < 1 and 7--> 2 is some- 
what restricted in its application since, if condition (3.1) with 2 (n ) -1  and 

_ A  2 2 28 E(Sb, n)~Ab, n a g(Fb, n)-- b,, were met in this case, we would have for f i< l ,  an 
unrealistic condition in many applications. 

Proof of Theorem 5. The proof runs along the same lines as that of Theorem 4. 
Besides, we will apply the following elementary inequality: 

(u+v)S<__2~-l(uS+v s) if u > 0 ,  v=>0, s > l .  (3.4) 

We start with the inequality (2.8) obtained in the proof of Theorem 4. Apply- 
ing (3.4) with s = 7/ct > 1, we get that 

[g(Mg,.)]l/= <= 2(~ =~/~ (UE ISb, m r3 TM + [E(M{, m- 1) + E(M~+ . . . . .  )3~/~}, 
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where n >  1 is a given integer. Applying (3.4) once more  but  now with s =  l/e, it 
follows that  

rE(M{, n)] 1/~ _--< 2 (7-~)/~ {[E IS~, mlT] 1/~ 

+ 2 c~ - ~)/~ ( [ E  (m~, m-  1)] 1/~ + , 1/~ [E(M~+ . . . . .  )1 )). (3.5) 

Suppose that the conclusion (3.2) of the theorem holds for fi < n. Then we have 

rE(M~, re_l)] 1/e ~_ A Y / a ( m  - -  1) g(Vb ,  m-i) 

and 

[E (M{+ . . . .  )]a/~< AT/~(n-m) g(Fb+ . . . .  )<=A~/~(m- l) g(Fb+ . . . . .  ), 

since n = 2 m - - 2  or 2m--1 .  By (1.1), hence it follows that  

[E (M{, m -1)11/a -[- [E (M{+ m, n-m)11/c~ ~ AT/~ (m -- 1) g(Fb, ,). 

In view of (3.1) we have 

[E ISb, mlT]l/~< )J/~(m) g(rb, m)~.~'/~(m) g(fb,,). 

These last two estimates when put  into (3.5) show that  

[E (M~, ,)31/a ~ 2( 7 -  ~)/a {.~7/~ (m) ~- 2 (1 ~)/~ A ~/~ (m - 1)} g (Fb, n), 

which is the estimate (3.2), as desired. Since the conclusion (3.2) is obviously 
true for n = 1, it is true by induction for all n = 1, 2 . . . . .  This proves Theorem 5. 

Before turning to the applications, we make a remark on the validity of our  
results. Viewing the proofs, it is striking that we use no full power of a probabil i ty 
space. In fact, Minkowski 's  inequality was applied only, which is available in 
any (not necessarily finite, even not  a-finite) measure space. Thus, e.g., Theorems 1 
and 4 can be stated in a more  general form as follows. 

Theorem 1'. Let (X, d ,  #) be a measure space. Suppose that there exists a function 
g(Fb, n) satisfying (1.1) such that 

ISb,.lT d#<g~(Fb,.) (all b>O, n > l ) ,  
x 

where 7 > 0 and ~ > 1. Then 

~M{,.d#<CT,~g~(Eo,.) (all b>O, n > l ) .  
X 

Theorem 4'. Let (X, d ,  #) be a measure space. Suppose that there exist a function 
g(Fb,.) satisfying (1.1), and a positive and non-decreasing function 2(n) such that 

~]Sb,.lTd#<=PJ(n)g(Fb,.) (all b>O, n > l ) ,  
X 

where 7 > 1. Let A(n) be defined by (2.3). Then 

M y _ _ b, .d#<AY(n) g(Fb,.) (all b>O, n > l ) .  
X 
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4. Applications: Strong Convergence and Complete Convergence 

Now let us examine some of the consequences of Theorem 1. The consequences 
of Theorem 3 (which coincides with Theorem G if 7 =2  and e = 1) are discussed 
by Serfling [-13]. We shall concern the following convergence properties of S, 
under moment restrictions of type (1.2): 2 S,/A,  - .  0 (the strong law of large num- 

bers), or more generally S./b n ~ 0 with probability 1, where A n = a~ ~ oo 
\ k = l  I 

(n--. oo), {an} and {b,} are given sequences of numbers; furthermore, 

~ dnP [sup lSkl > ] 
n=l Lk=>n A~-k 2 = ~ ]  (4.1) 

and 

p [ISnl_> l (4.2) 
n = l  k e n  - -  J 

converge for every 5>0,  where {%} and {d,} are sequences of constants. 
Condition (4.1) represents information regarding the rate of the convergence 

in the strong law of large numbers. The larger the dn's may be chosen, the sharper 
is the result stated by (4.1). Condition (4.2) asserts that the sequence {Sn/cn} 
converges completely to zero in the sense of Hsu and Robbins [-5]. The smaller 
the cn's may be chosen, the sharper is the statement. By the Borel-Cantelli lemma, 
complete convergence implies strong convergence. 

Properties (4.1), (4.2), or the like will be obtained as consequences of restric- 
tions imposed upon the absolute 7-th moments, for some 7 > 2, of sums Sb, n = 

b+n 

~k" More precisely, throughout this Section we shall assume that (1.2) is 
k = , b + l  b+n 

~_1  2 where {ak} is a given satisfied with 7>2,  -gT,  and g(Fb, n)=A~,,= ~ ak, 
k = b + l  

sequence of numbers. That is, we shall assume that {~k} satisfies the moment 
inequality 

EISb, nI~<C~A~b, n (all b > 0 ,  n > l ) ,  (4.3) 

where 7 > 2, By virtue of Theorem 1, then we have 

E (M, ~) < C* A~ (An = Ao, n), (4.4) 

where C~*--C~ C~, ~lZ. This enables us to derive bounds on the tail distribution 
of M,,  which play a crucial role in the proofs given below. Applying Markov's 
inequality, (4.4) gives that 

P [ M , > y ] <  C* ( ~ y  (4.5) 

for any y > 0. 
Beside (4.5), in proving the convergence of series (4.1), we make use of the 

convergence part of the following assertion, applied widely in the theory of numer- 
ical series: Let d k > 0 be the terms of a divergent series with partial sums D n. Then 
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the series 

d, 
Z -- I+6 . D . ( log  D.) 

converges or diverges according as 6 > 0 or 6 < O. 

We note that the results below are proved, on the base of the probability 
inequality (4.5), by adaptation of more or less standard arguments [2, 6, and 10]. 
More exactly, Theorems 6-9 generalize Theorems 3.1, 5.1, 5.3 and the relation 
(6.5) of Serfling [13]. 

Theorem 6. Let  7 > 2. Suppose that (4.3) is satisfied and 

A, ~ oo (n ~ oo). (4.6) 

Then, for each 6 > O, we have 

P [-S, = o {A, (log A,)  1/7 (log log A,) (1 + ~)/7}] = 1. (4.7) 

Proof. Imitating well-known techniques of argument (e.g., Lamperti [6]), put 

2(n) = A,(log A2) 1/~ (log log A,)Z o + ~)/~. 

Inequality (4.5) gives that 

P [M, > 2(n)] < C* (4.8) 
= log A 2 (log log A2) 1+ 0- 

Now we define a sequence of positive integers n~ < n z < . . .  in the following way: 

2 ~ j 2 A, ,_ l=  2 <A,j  ( j=  1, 2, ...). (4.9) 

This is possible in virtue of (4.6), and obviously nj ~ oo as j ~ oo. 
On account of (4.8) and (4.9) we find that 

C *  ~ ( ' *  ' V' -7 < V ~ 
Zs P [M,j > 2 (n)] < ~ log A,2j (log log A2) ~ +a = s~2 J (log J) 1 +a < oo, 

where ~ '  means that the summation is taken only once for equal hiS. Hence, 
J 

by the Borel-Cantelli lemma, with probability 1 the inequality 

M., < ,~ (n) 

holds for all j large enough. It is evident, by repeating the above argument with 
(n j -  1)'s instead of nj's, that with probability 1 

M.~_I <)~(nj--1) 
for all k large enough, too. 

Now, for n~<n<n~+l,  we have 

2(n)>2(n)  and IS, I<M,s+I_I,  
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and thus, with probability 1 

IS.I <M,j+I_I  <2(nj+l_- 1) (4.10) 
,~(n)  = ,~(nj) = ,~%) 

for all n large enough. Since by (4.9) the right-hand side of (4.10) is bounded 
as j --+ o% it follows that 

1 2 1/r l o g A Z ) ( ~ + ~ ) / r } ]  = P [S, = 0 {A, ( og A,) (log 1. 

Taking into account that c~ is an arbitrarily small positive number, this imme- 
diately yields (4.7), which was to be proved. 

We note that the conclusion (4.7) improves as 7 increases. By letting 7 ~ o% 
we find that 

P[S, = o {A,(logA,)~}] = 1 

for each 6 > 0. 
It is obvious that (4.7) implies the strong law of large numbers, i.e., S,/A2, ~ 0  

as n ~ o c  with probability 1. The following result characterizes the rate of 
convergence. 

Theorem 7. Let ~ > 2. Suppose that (4.3) is satisfied and 

An--*oe (n--*oe) and ~ 2 < ~ 2  u, =~t~, (n>-_no), (4.11) 

where 0 < q < 1. Then, for each 6 > 0 and e > O, we have 

anAn2 7--2 [ [Ski ~ ] 
V - - P  ,sup (logA,) 1+~ kk>=n A2-=SA k < 00. (4.12) 

Proof. Let p = ( 1 - q ) - L  It is clear that p>  1. We begin with proving that (4.11) 
implies the existence of a strictly increasing sequence {@ of positive integers 
such that 

j <  2 j+ l  p =A, j<p  (4.13) 

for all j large enough. Otherwise, for infinitely many n's, we have 

AZ<p J and A2 > n J + l  

with suitable fs. Hence 

2 A 2 1 
a"+12 - 1 - ~ - ~ - > l - - = q  
An+l An+I P 

for infinitely many n's, which contradicts (4.11). 

By a remark made above, to prove (4.12) it is enough to show that 

P ,=P  [sup ISk-l->e]- < C  (4.14) 
,-k__>n A ~ -  J - A ~  
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for all n large enough. To this effect, let jo=Jo(n) be defined by njo<n<__njo+l. 
It is obvious that 

GO 
P,< ~ P [  max ]S~[>e]=<~ P 1 2 _ ~ = j EM.,+ > ~ A.,]. 

J=Jo Lnj<k<nj+ l J=jo 

The use of (4.5) on the right-hand side yields 

~_<C~*e ' ~ <  * ' e - '  A2,', _ A2, = C, p (4.15) 
j=jo j J=jo 

since by (4.13) 

A 2 < -2 n2 
n j + l = / J  /In 3" 

The series on the right of (4.15) is convergent due to p>  1. Putting 

C1 = C,p~ e-~(1 __p-~,/2)- 1, 

we find that 

p, < C1 p-  ~jo/2 < C1 pTA2 ~, 

in accordance with (4.14). Thus Theorem 7 is proved. 
We note that if (4.3) holds for 7's arbitrarily large, then we have a conclusion 

substantially better than (4.12). Namely, in this case we have 

2 a2,A~,P [sup l~2 >_el < oo 
. Lk>. A k -  J 

for any choice of c~ and e > 0. 
Turning now to convergence rates corresponding to the law given by 

Theorem 6, we can assert 

Theorem8. Let 7>2. Suppose that (4.3) and (4.11) are satisfied. Then, for any 
choice of ~ and fl satisfying 

0 < f i < e T - 1 ,  (4.16) 

we have 
a~ r IS~l 

~"~ A, 2 ( log~ . ) ,_  p P |sup =--_ 1 ] I-ka, Ak(IOgAk) J 
< oo. (4.17) 

Proof Consider a strictly increasing sequence {@ of positive integers defined 
by (4.13). The existence of such a sequence is ensured by (4.11), a condition 
appearing among the assumptions of the theorem. 

For a given n large enough, define the integer jo =jo(n) such that njo < n<  njo+!. 
We obviously have 

[ ISki ] ~ [ ISkl >1]  
P suPAk(logA~)~l  <-~,, P max iAk(logA2)~ = j .  (4.18) 

Lk>--n --J=Jo tmj<k~nj§ 
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Applying (4.5), the series on the right-hand side of (4.18) is bounded from above 
by the series 

C A  7 nj+ 1 

A, ~ (logA2) ~7" 
J=Jo  j j 

The same use of (4.5) and (4.13) as in the proof of Theorem 7 now yields the 
convergence of (4.17). The proof of Theorem 8 is ready. 

We note that the least restriction on ~, namely ~ > 0, occurs if ~ may be chosen 
arbitrarily large. In this case, the relation (4.17) holds for any choice of ~ > 0  
and 0 < f l < l .  

Finally, we consider the question of norming S, suitably for S,/c, to converge 
completely to zero. The inequality (4.5) immediately provides the following, 
slightly stronger conclusion. 

Theorem 9. Let 7 > 2. Under conditions (4.3) and (4.6) the sequence 

2/7 (~ + 2)/7 (1 + ~)/7 {a, M, /A,  (logA,) } 

converges completely to zero for each ~ > O. 

As a particular case, consider a sequence {~0k} of weakly multiplicative rv's 
of order r, i.e., we assume that 

2 E2 {~0kl ~Pk2"'" q)kr} < ~ ,  (4.19) 
l ~ k l  < k 2 < . . .  <k  r 

where the summation is extended over all integers satisfying only the condition 
l<=k l<k2<. . .<k  r and r > 4  is an even integer. This is a generalization of the 
concept of multiplicativity of order r defined by 

E{qOk, qOk2...Cpkr}=O ( l<=kl<k2<. . .<kr) .  (4.20) 

The condition (4.20) is stronger than (4.19). Even the former includes the case 
of a sequence of martingale differences and the case of mutually independent 
rv's (when the expectations in (4.20) exist), etc. 

In [8] we proved that (4.3) with y = r is valid for any sequence of weakly 
multiplicative rv's of order r, whose r-th moments are uniformly bounded. More 
precisely, the following result holds. (See Theorem 1 there.) 

TheoremI. Let r be an even integer, r>4.  Let {~0k} be a sequence of rv's such 
that (4.19) and 

E(q~,) < K ( <  ~ )  (k= 1, 2, ...) (4.21) 

are satisfied, Then, for every sequence {ak} and for every integer n, we have 

t b+.  \ ,  , E I ~ ak~Ok}<C, Ab,, (allb>O,n>=l). 
\ k = b +  l / 

Hence, via Theorems 6-9, we obtain the following corollaries. 



Moment Inequalities and the Strong Laws of Large Numbers 313 

Corollary 1. Let r >=4 be an even integer and let {~ok} be a sequence of  rv's satisfy- 
ing (4.19) and (4.21). Let {ak} be a sequence of numbers with (4.6). 7-hen, for 
each ~ > O, 

P ag (Pk = O {(A, ( log A,) 1/r ( log log A,)  (1 + a)/r = 1. 
k = l  

Corollary 2. Let {(Pk} be a sequence of rv's satisfying (4.19) and (4.21) for an even 
integer r>=4. Let {ak} be a sequence of numbers satisfying (4.11). Then, for each 
3 > 0 and ~ > O, we have 

aZAr-2 z q)k 

Corollary 3. Under the same conditions as in Corollary 2, we have 

~ [ : ] 
,~ 1 I _ ~ P  s u p ~  ~ ~akCPk > 1  <OC 

A , 2 ( o g A , )  z_>, A, ( logAl)  k=~ = ' 

provided ~ and fl satisfy (4.16). 

Corollary 4. Under the same conditions as in Corollary 1, we have 

_2/r 1 ] 
P A~+2)/r(logAn)a+o)/r m a x  ~ak~O k >e <o0 

l<-l<-n k = l  

for each ~ > O. 

W e  n o t e  t ha t  C o r o l l a r i e s  1 -4  for  a s equence  of  m u l t i p l i c a t i v e  rv ' s  of  finite 
o r d e r  in the spec ia l  case  a 1 = a ;  . . . . .  1 were  p r o v e d  b y  Serf l ing  [11] .  C o r o l l a r i e s  1 
a n d  3, u n d e r  s o m e w h a t  m o r e  r e s t r i c t ed  c o n d i t i o n s  s t i p u l a t e d  on {ak}, were  
p r o v e d  by  the a u t h o r  [9].  
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