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Path Properties of Processes 
with Independent and Interchangeable Increments 

Olav Kallenberg 

In [14] random processes (r.pr.) with interchangeable increments (ich.incr.) 
were examined with respect to canonical representations and convergence in 
distribution. The main purpose of the present paper is to investigate the  path 
properties of such pr. Apart from the extensive litterature on independent (ind.) 
incr. pr. and from the results in [14], quite few such properties seem to be known 
(and then only in particular cases), including Biihlmann's proof [4] of the pointwise 
a.s. continuity, Takacs' generalizations [22] of the "ballot" theorem and Hag- 
berg's extensions [13] of Sparre Andersen's combinatorial results. 

As shown in [_4, 14], ich. incr. pr. on infinite intervals are merely mixtures of pr. 
with stationary ind. incr. On finite intervals, however, the class of ich.incr.pr, is 
much more extensive. In fact (Th. 2.1 in [14]), any pr. of this type on [0, 1] which 
is continuous in probability is equivalent to apr .  in D [0, 1] of the form 

X(t)=X(O)+~t+aB(t)+~flj[l+(t-zj)-t], teE0, 1], (0.1) 
J 

in the sense of a. s. uniform convergence, where 

(i) a, a, ill,/~2 . . . .  are r. v. with ~ f12 < ~ a.s., 
(ii) B is a Brownian bridge on [0, 1], 

(iii) zt, "c2, ... are ind. and uniformly distributed on [0, 1], 

(iv) the three groups (i)-(iii) of random elements are ind.; 

and conversely, any pr. of this form has ich.incr, and almost all its paths lie in 
D[0, 1]. Despite its greater generality, it will be shown here that many sample 
path properties known for ind. incr. pr. generalize in a natural way to this larger 
class of pr. As examples, we shall consider in w167 2, 3, 5 extensions of results on 
rates of growth, Hausdorff measure functions and variation due to IZIin6in [15], 
Cogburn, Tucker [5], Blumenthal, Getoor [3], Fristedt, Pruitt [8, 10, 11], Millar 
[17, 18] and others. Our main tools will be the approximation theorems in w 1. 

As implicit ba [5, 12], variational results are essentially limit theorems for 
certain random measures, and they are here explicitly stated as such. This approach 
leads us to improvements in the ind. incr. case, and in particular we are able in 
w167 4-5 to relax the symmetry assumptions of Millar ([17], pp. 60, 68, [18], p. 324). 
Furthermore, it indicates a close relationship between "weak"  and "strong" 
(or a.s.) convergence theory. This similarity is explored further in w 6, the results 
of which provide a link between ergodicity and variation. 

The paper is expected to be read in conjunction with [14], from which we take 
over notation and terminology. For brevity, let us further introduce some classes 
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of functions: 

cg = {f: R - * R + ,  f continuous, f(O)=O,f~gO}, 

cg s = {fefg: f even}, 

cg 1 = {fecg: 3 5>0;  f concave in ( - e ,  0), (0, 5)}, 

cg 2 = {fe~gs: f'(O) =0, 3 5>0;  f convex, f(1/7) concave in (0, 5)}, 

cg; = {fscg2: 3 5, c>O; f f  subadditive in (0, t)}, 

(ga = { IsCg~: f T on R +, f ( a  x) = O( f (x ) )  as x ~  O, a > 1 }. 

Note that for f in Cgl, cgz, ~ or cg3, there exists a well-defined continuous inverse 
f -  1 on some interval 1,0, e] into R+. For any finite partition 17 = {0 = t 1 < . . .  < tk=S } 
of I-0, S], write [l-llZ2=~,(tj--tj_l) 2, 1171~o=max(tFtj_O. Say that I-I1,172 . . . .  are 

j J 

nested if 17, +1 is a refinement of 17,, n ~ N. For any f :  1,0, s] ~ R, define 17 f ~  9l (R) 
by having its unit atoms at f ( t j ) - f ( t j _ O ,  j = l  . . . .  , k. Abbreviate /=1 v [logl-I[, 
12 =lol,  R'+ = R +  \{0}.  

Let us finally point out that most results in this paper (as well as in 1,14]) carry 
over with obvious changes to pr. taking values in R k, k > 1. 

List of Abbreviations 
r.v. random variable, 
r.e. random element, 
r.m. random measure, 
r. pr. random process, 
pr. process, 
ich. interchangeable, 
ind. independent, 
incr. increment, 
can. canonical, 
lcscH locally compact second countable Hausdorff. 

1. Approximation 

Throughout w167 1-3, let X be an ich.incr.pr, in D O 1,0, 1] with can. r.e. ~, a, ft. 
Define 

p x = i n f { c > O :  fl ]hlC< ~ } .  

If X is the restriction of an ich.incr, pr. in D o [0, ~ )  with can. r.e. 7~, a, 2, then 
clearly p x = i n f { c > O :  2 lhF< ~}  (cf. Th. 5.1 in [14]), so Px generalizes the largest 
index defined by Blumenthal and Getoor [3] for pr. with stationary ind.incr. 

To simply formulations, assume throughout that the basic probability space 
is rich enough to support any randomizations we need. In the following two 
theorems we state more than is actually needed in the present paper. 

Theorem 1.1. There exist ich.incr.pr. Y in Do1,0, ~ )  and Z in Do1,0, 1] with 
can. r.e. (700, a', 2) = (cr a, fl) and (ct', O, i f)  respectively such that X = Y +  Z on 1,0, l] 
and 

(i) fl'lh[ l-C< oo a.s., c>�89 
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(ii) f l ' l h l < ~  a.s. whenever fl 2 lC< ~ a.s. for some c > l ,  

(iii) pz=<px(1 +�89 -~ a.s. 

Proof. We may clearly assume that , ,  a, fl are non-random. Let ~ be N(0, 1) ind. 
of X, and note that B + 0 h is a Brownian motion on [0, 1]. Taking ~ h + a (B + ~ h) 
to Y and - a S h  to Z, we may thus assume from now on that (0.1) holds with 

= a  = 0. Separating positive and negative flj and noting that the assertions are 
trivially true when fl R < 00, we may also assume that e -1 >il l  >f12 > " "  >0. Let 

be a Poisson pr. on N ind. of X and with intensity ~ @ and let ~1 < 42 < "  be 
its unit atom positions. Define j~N 

fl)=fij-flr j e N ,  o~'=~fl), f l '=~,  cSp), 
J .1 

Y(t) = ~ Eflcj 1 + (t - z j ) -  fl~ t] = ~ flcj [1 + ( t -  r j ) -  t] - e' t. 
J J 

Since 2 fiPe~ is a Poisson pr. on R'+ with intensity fi, it follows by [7] and [14] 
3 

that e' exists a.s. and that Y has stationary ind. incr. with can. r.e. (0, 0, fl). Further- 
more, 

Z(t) = X ( t ) -  Y(t) = a' t + ~ fl) [1 + ( t -  z~)- t], 
J 

so Z has ich. incr. and can. r.e. (~', 0, fi'). 
For any c>�89 we get by convexity 

fl' [hi l - -c=~ [hi l-C(flj-flcj)<=~ [fli ]log fljl-Cflcj [log flCj[-~[. 
J J 

Writing fij=flj[logflj[ -~, f l=~6~j ,  it is seen that f i i - /~j[ logfiy,  so f l2R<oo 
J 

implies fi2/2~< c~, and hence (i) follows from (ii). To prove (ii), assume that 
f12 l~< ~ for some c >  1. Choose arbitrary ae(0, c -  1), put m ,=  [n2 (log n)-~], neN,  
and define the measures v +, v-egl (N)  by 

j n j n 

with unit atom positions {v~- } and {vj- } in non-decreasing order. Since fi,~ [1, k] = 1 
iff n 2 (log n)- ~ < k + 1, and further n 2 (log n)- ~ ,-~ k iff n ~ 2 - ~/2 k ~ (log k) a/2, we obtain 
for large k 

v-~l ,k]<=k-k~( logk)  "/3, k+k�89 k]. 

Hence we get for large k, by the Hartman-Wintner law of the iterated logarithm, 
v- [1, k] < r [1, k] < v + [1, k], or equivalently v~- < ~ <  vj- for large j. Thus 

f l j -  fl~; -< fi~- fl~ =< f l j -  fl~;, j large, 

so it suffices to prove the inequalities 

J J 

Expressing these sums as double sums in the differences fl~-flj+~ > 0 and reversing 
the order of summation, it is easily seen that both sums equal ~ tim.. 

n 
19" 
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We shall make  use of the inequality 

x y < x  2 Ilog xlC+y 2 flog yl -c, (1.1) 

which holds for any fixed c~R provided x, y > 0  are sufficiently small. To prove 
(1.1), note that t ~ s I log s I ciff s ~ t I log t I-c, so for any r e (1, 2) and for small x and y 

x y 

r x y< 2 ~ s llog sl c ds + 2 ~ t ]log tl -~d t  
o o 

x d r d 
"~ ~ ~-s  {s2 Ilog s] c} ds+ ~ -d-f- {t2 II~ tl-~} dt 

p 

= X  2 Ilog x l~+y 2 Ilogyl -~. 

N o w  put in (1.1) x=x. ,  y=y, ,  where 

x . =  n~ (log n)-a/2, ,~m.a, y.  = n-~( log n) ~/2, heN, 

and note that  
y2 l log y, I -~ ~ 2 c n-  1 (log n)-~ + ~ 

2 Ilog x.] ~, write f(s)=s 2 Ilog sl -~ and is summable  since c - a  > 1. To  estimate x. 
note  that 

m . -  m._ 1> f ( n ) - f ( n -  1 ) -  1 ~ f ' (n)~ 2 n (log n)-", 

so by  monotoni ty  for large no~N, 

> ~  tiff Ilog fl:l~>~. (m.-m._l) f12 Ilog fl,~.l ~ 
s . (1.2) 

> ~ n(logn)-"fl2. Ilogfl,. .I ~. 
n > n o  

In part icular it follows that x . - ~  O, so for large n 

2 i logx. l~=n( log  - .  2 x. n) tim. ]log{n�89 fl,..}l~ 

< n (log n)-" fl~. [log tim.It, 

which is summable  by (1.2). Therefore by (1.1); ~, tim. = ~ x. Yn < o% and the proof  
of  (ii) is complete. " " 

To prove (iii) for px< 2, let p~(0, 2) be such that 

Z fl~ < oe. (1.3) 
J 

For  a>�89 put k + = j + [ y ] ,  k;=j - [ j~] ,  and let q~((2-1+p-1)- l , l^p)  be 
arbitrary. As in the proof  of (ii) it suffices to show that 

2 (flkj --fit) q< o0, 2 (flJ--flk;)q< O% (1.4) 
3 1 

provided a is small enough. We may restrict our  attention to the first sum in (1.4) 
since the second sum is always smaller. Write 

rn, = [nl /~  m', = [ (n+  1/2) 1/(1-")], 
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and note that 
m , - m , _  I ~(1 - a )  - t  ma,-~ (1 - a ) - t ( m , - k m . ) ,  

and similarly for m' , -  re'n_ t" For sufficiently large j o e N  we therefore obtain 

m a .Z. G ;  -~j)q _-< il - a)-i {Z . i/~m._l - /L . )  q + ~ m'd i/La_l -/L~)q �9 
J > d o  n n 

We shall prove that the first sum on the right is finite. The argument for the second 
sum is similar. Abbreviate/~m =x,,, a / ( 1 - a ) =  b, and note that (1.3) implies 

nbxP, < 00 (1.5) 
n 

by monotonity. Writing r =  1 + p ( q - ~ - 1 ) ,  we get by H61der's inequality 

Enb(x ,_~--x , )q<{Enbx~,- t (x ,_ , - -x , )}q{EnbxP.}  '-q, (1.6) 
n n n 

and here the second factor is finite by (1.5). Approximating sums by integrals and 
proceeding as in [-6], p. 150, it is seen that the first factor in (1.6) is finite iff 

n b- 1 x~ < oo. Applying H61der's inequality once more, we get 
n 

- -  p r i p  E nb-l x~,< { 2  nn}~-~/" {Z  nb x,} , 
n n n 

where 
d =  b -  (1 - r / p )  -1 =a/(1 - a ) - ( q  - l  _p-1) -1 .  

Now q-1 _ p - a < � 8 9  by assumption, so d < - 1  for a close to �89 making the first 
factor finite. The second factor is finite by (1.5). 

Theorem 1.2. I f  fll >= f12 ~ " "  ~ 0 and if f12 I c < 0(3 a.S. for some c > 1, there exist 
+ 

some ich. incr. pr. Y-+ in D O [0, oo) with can. r. e. ( ~ ,  ~, 2+), where 

2-+ = ~ [- l+(j  -~ 12j) ~] 6&, 
j = l  

such that Y+ - X  and X -  Y are a.s. non-decreasing on [-0, 1] apart from finitely 
many downward jumps. We may take 7o = e - ~ h  whenever a = 0  and ~ [h t < oo. 

Proof As in the last proof we may assume that (0.1) holds with e = a = 0  and 
non-random fit >//2 > ' "  > 0. Note that 

o0 n n 

2 (J -~ 12 J)~"~ ~ (x-a 12 x) ~ dx ~ ~ [-(log x) -~ + 12 x] (x l 2 x)-  �89 dx 
j = l  e e 

=2(n 12 n) ~. 

Iffl' is a Poisson pr. on R+ ind. of X and with intensity 2-+ and unit atom positions 
, <  /~ > fl~ > . . - > 0 ,  it follows by the Hartman-Wintner law that fl~>/~j (or /~j=/~j) 

for sufficiently large j. On the other hand, the arguments in the last proof show 
that ~ [/~)-/~j[ < o% so we may define I1+ on [0, 1] by 

i 

v-+ it) = ~ ~ [1+  ( t -  ~j)- t] + t Y~ G - / b )  = Y [-/~ 1+ i t -  ~j)-/~j t]. 
J J J 
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To see that Y+ have stationary ind. incr., let {e j} be the centering in [7] and note 
that 

Y• (t) = ~ [fl) 1 + ( t -  z j ) -  cj t] + t ~ (c j -  flj). 
J J 

The asserted monotonity of Y• - X  is seen from the formula 

Y• ( t ) - X ( t ) = ~  (fl)-flj) 1+ ( t -z j ) ,  te[O, 1], 
J 

while the last assertion follows from the fact that no centering is needed when 
B l h l < ~ .  

2. Local and Uniform Rates of Growth 

We first extend some results by I-]in6in [15], Millar [17] and Fristedt [8]. 

Theorem 2.1. (i) limsup X(t)(2t 12 t ) -~=a a.s. 
t ~ 0  

(ii) I f  f e ~  2 and a = 0 ,  f l f < ~  a.s., then 

l imX(t) / f  -~(t[logtlc)=O, c > l ,  a.s. (2.1) 
t--*O 

(iii) I f  feCgl and a = f l R  = e - f l h = O  a.s., fl(h+ f ) <  ~ a.s., then 

l imX( t ) / f - l ( t )=O a.s. 
t ~  0 

Proof (ii) The argument for Th. 4.3 in [17] yields in case of ind.incr. 

l imt - l [ log t l -CfoX( t )=O a.s., 
t ~ 0  

and (2.1) follows from the fact that, by the convexity of (f-1)2 near 0, 

lim limsup f -  ~ (a t)/ f  - 1 (t) = O. 
a~[O t~O  

Now Th. 1.1 reduces the proof to the case px < 1, since f l f <  ~ clearly remains 
valid for the pr. Z there. Next the pr. Y_+ of Th. 1.2 satisfy [X(t)l <[Y+ (t)l v I Y_ (01 
for small t >  0, so applying (2.1) to Y• completes the proof of (ii). 

(i) Use the iterated logarithm for Brownian motion and Th. 1 in [14], and 
apply Th. 1.1 to reduce to the case Px < 1. Then apply (ii) with f ( t ) - ] t l  ~. 

(iii) This follows from Th. 1 in [8] and Th. 1.2 above. 

By Th. 3 in [15], the normalization in (i) is essentially the best possible even 
for a = 0. As for (ii) and (iii), we have the following result in the converse direction 
(cf. Fristedt [8, 9] and Millar [17]). 

Theorem 2.2. I f  fecg3 and f i f=  oo a.s., then 

limsup ]X(t)[/f-l(t)= oo a.s. 
t ~ O  

Proof Since f6cg 3, there exists for any a > 0  some b > 0  with a f - l ( t ) < f - l ( b t )  
for small t>0 .  The argument of Fristedt [9], p. 180, completes the proof. 
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We next extend some "lower function" results of Fristedt and Pruitt [10, 11]. 
(The remaining results of w 3 in [10] and w167 3-4 in [11] may be similarly extended.) 
Define for fl Ih[ < oe 

g(u) = ~  (1 - e-"PJ), u>O. (2.2) 
J 

Theorem 2.3. Let ~, a, fl be non-random with a = fl R _  = O, ct = fl h < 0% fl R + = oe. 

(i) Suppose that l iml iminfg(u)u-~=o% and let p > l .  Then for some non- 
random a~R+ ~o .~| 

timinf X(t) g - l ( p t - 1  l a t)/l 2 t = a  a.s. 
t ~ O  

- 1  1 (ii) Suppose that lim limsup g (c u)/g (u) > d > 1, and put Pl = P2 = d~. Then 
c ~  o~ g ~  oo 

r for  some non-random a 1, a 2 E R + 

liminf inf { X ( s + t ) - X ( s ) } g - l ( p l  t-1 I log t l ) / l log t l=a 1 a.s., 
t ~ O  se[O,  l - t ]  

limsupt.o s~to,infl-tl{X(s+ t ) - X ( s ) }  g - l ( p  e t -1 ]log tl)/llog t l = a  2 a.s. 

I f  lim liminfg (c u)/g (u)= co, then pt and P2 may be replaced by any p > O. 
c---~ oo u ~ oo 

Proof  To see that a, a~, a 2 are non-random (possibly 0 or or), note that the 
events in Lemma 2 of [11] are invariant under finite permutations of the zj and 
apply the Hewitt-Savage 0 - 1  law. To prove (i), define 2+ and Y+ as in Th. 1.2 
and put co 

g+ (u)= S ( 1 - e - " r ) 2 + ( d r ) ,  u>O.  
0 

Then Y ( t ) < X ( t ) <  Y+(t) for small t>0 ,  while for large u>0,  g+(u) /2<g(u)N 
g _ (u) p~ or equivalently g_ 1 (p- 21 u) = g-  1 (u) ___< g+ 1 (2 u), Hence 

a N liminf Y+ (t) g+ 1 (2 p t -  1 12 t)/l 2 t < co, 
t ~ 0  

a > liminf Y_ (t) g21 (p~ t -  t 12 t)/l 2 t > 0 
t ~ O  

a.s. by Th. 1 in [103. As for (ii), the same method works except that we have to 
change a finite (but random) number of jump sizes to make Y + - X  and X - Y _  
everywhere monotone. Clearly, such changes do not effect the events in Lemma 2 
o f [ l l ] .  

3. Hausdorff Measure of the Range 

We first extend a result by Blumenthal, Getoor [3] and Millar [17]. Write 
dim for Hausdorff dimension. 

Theorem 3.1. I f  a=0 ,  and if  c t=f lh  whenever fl ]hi < 0% then 

dim X ( A ) N  Px dim A a.s. (3.1) 

for  any Borel set A c  [0, 1]. 



264 O. Kallenberg 

Proof. Let (~, fl) be non-random and put d = dim A. Assume first that d < 1 and 
choose arbitrary a e (d, 1], c > a Px. For n~ N, cover A by intervals I,j, j = 1 . . . .  , r,, 
such that ~, ] I , y <  n-1. If we can show that 

J 

IX(I,)I c P ,0 ,  (3.2) 
J 

then (3.1) will follow by turning to some suitable sub-sequence. Now X = X 1 + X 2 
implies 

iX (i,j)[c < ~ {iXl (I,j)[ + iX 2 (i,)f}c 
i J 

<-- 2~ {Z  ]Xt (I,)[~ + Z ]Xz (I,)[*}, (3.3) 
J J 

so from the proof of Th. 5.1 in [17] and from Th. 1.1 above it is seen that the 
assertion may reduced successively, first to the case Px < 1, then to the case fl ]hi < oo 
and finally to the case of non-decreasing pr. But for the latter, (3.2) follows from 
[17] and Th. 1.2 above. 

Next suppose that d =  1, assume without loss that A=  [0, 1), and let e>px .  
We intend to show that there exists for any ~ > 0 some partition of A into (random) 
intervals I i such that Z [X(Ij)l c<e for any refinement {Ij} of {Ij}. Now this is 

J 
true for pr. with ind. incr. according to the proof of Th. 5.1 in [17], and the method 
of successive reductions works as above, provided we replace {I,j} in (3.3) by a 
common refinement of the partitions used for X~ and X 2. 

We next extend Th. 3 of Fristedt and Pruitt [10]. Let g be given by (2.2) and 
define fp for p > 0 as the inverse (near 0) of the function t ~ l 2 t /g- ~ (p t -  1 12 t). 
Put f = f r  Write H for Hausdorff measure with respect to f .  

Theorem 3.2. Let a, a, fl be non-random with a = fl R_ = O, a = fl h < ~ ,  fl R = oo. 
Then H(X[0, t])=-ct a.s. for some non-random c~R+. 

Proof By the Hewitt-Savage 0-1 law, H(X[O,t])=a(t)  is a.s. non-random 
(possibly 0 or ~ )  for each t~ [0, 1], and since a is non-decreasing, this holds a.s. 
for all t simultaneously. To show that a(t)6R+, t~(O, 1], consider the pr. Ye of 
Th. 1.2 and change the largest jump sizes if necessary to make Y+ - X  and X -  Y_ 
monotone. (This will not effect the Hausdorff measures.) Then check that Th. 3 in 
[10] remains true with fp in place o f f  and carry through the comparison as in 
the proof of Th. 2.3. To see that a is linear, note that by definition 

a(s--)+a(t--)_~a(s+t)<=a(s)+a(t) ,  s,t>O, s+t<=l, (3.4) 

so a(s+t - - )=-a(s - - )+a( t - - ) ,  proving linearity on [0, 1). For t =  1 use (3.4). 

4. Variation of Independent Increment Processes 

Throughout w167 4-5, let H, H 1, H a , . .  be finite partitions of [0, 1]. In w 4 only, 
let X be apr .  in D O [0, 1] with (not necessarily stationary) ind. incr. and without 
fixed jumps. For e>0, define ~: [0, 1]---~ R, ~-269X([0, 1]) and ~69X([0, 1] • R') 
by the L6vy formula 

log E e i"xtt)- i u ~ ( t ) - �89  u 2 ~_2 [0, t] "~- I ( e lu~-  1 - i u h, (x)))~ ([0, t] • dx), 
R' 



Processes with Independent and Interchangeable Increments 265 

and put (72=~z [0, 1], 2=~,([0, 1] x .). Let ill, f12, "'" be the jump sizes of X and 
write fl = ~ 3a~. 

J 
Theorem 4.1. Let {17,} be nested with ]17,[oo ---' 0, and suppose that (17, ~)2 R ~ 0 

for some e > O. Then 

(H,X)2 w ,(7230+fl2 a.s. ingJl(R). (4.1) 

This improves slightly a result by Cogburn and Tucker [5]. By taking account 
of "time", we may easily restate this and the remaining theorems of w167 4-5 in 
terms of convergence in 9J/([0, 1] x R). 

Proof By Minkowski's inequality, we may assume that ~, =0, and then 

( t in  X )  2 R ~ (72 + f12 R a.s. (4.2) 

by [5]. To complete the proof, note that for any process X in D [0, 1], 

II, X v > fl a.s. in 91(R'). (4.3) 

We next improve and extend results by Fristedt [8] and Millar [17]. 

Theorem 4.2. Let (7 2 ~ 0  aFld [Ilnloo --~ O, and suppose that either 

(i) {H.} is nested, f e  cg~, f 2 �9 (R), (17, 9~) f--+ 0 for some e > O, or 

(ii) ')0 =0, fecg~ , f2egX(R).  

Then fl f < oe a.s. and 
f ( H , X )  w , f fl a.s. in fOl(R). 

Proof To see that f i f  < oo a.s., note that fl is a Poisson pr. on R' with intensity 
2, and conclude by monotone convergence from simple functions that E f l f  = 2f< oo. 

Assuming (i), it suffices by (4.3) to prove that 

liminf limsup (H, X,) f = 0 a.s.. (4.4) 
U ~  0 . ~  o0 

where X, is obtained from X by deleting all jumps of modulus > u. We may 
therefore assume the properties defining cg 2 to hold on all R. In particular, by 
subadditivity and Minkowski's inequality, for some ce(0, 1) and any xi, y j , j e N ,  

{Z  f ( x j  + yj)}~ = { ~  [f~ (xj + yj)] l/~}c _< { 2  [f~ (x j) + f~ (yj)]l/~}c 
J J J 

--< (Z; I%)}  < + (2 S(y,)} 
J J 

i.e. 
I{Z s%)} <- {Y'. f%)}cl--< {Z (4.5) 

J J J 

Since (17,7~)f-* O, we may therefore assume that 7,=0, and since 9 , - ~ .  is con- 
tinuous and of bounded variation, implying 

as u > 0 ,  

it suffices to prove (4.4) with X u replaced by Y , - -X , -~ , .  For symmetric Y,, the 
arguments leading to Lemma 4.4 in [17] yield E(F/, Y, , ) f<2 , f ,  where 2 ,= i~  2. 
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Sinc e {(H, Y,)f} is a reversed supermartingale by Lemma 3.1 in [17], we get by 
Doob's maximal inequality 

P { s u p ( / / . Y . ) f  >a}<=sup E(H. Y . ) f / a < 2 u f / a ,  a>0.  

Proceeding as in [17], p. 60, and applying (4.5), we obtain for nonsymmetric Y. 

P{sup [[(H. Y . ) f ]~ -m~ . . J>a~}<42 . f / a ,  a>0 ,  (4.6) 

where m.. is a median of(//.  Y.)f .  Now it follows as in the proof of Th. 4.1 in [17] 
that E(//. Y . ) f<22 . f ,  so 

�89 P {(//. Y . ) f > m . . }  <-< E(//. Y . ) f / m . . < 2 2 . f / m . . ,  

and we get m.. < 42. f Thus by (4.6), sup (//. Y.) f v , 0 as u ~ 0, and so (4.4) holds 
for Y. and place of X.. 

In case of (ii), we may assume by (4.3) that f is concave on R+ and R_. But then 
( 1 - l . X ) f < f l f  by monotonity and concavity, while l i m i n f ( I I . X ) f > f l f  since 

XeD[O,  1], so we get ( I I . X ) f ~ f l f ,  which by (4.3) completes the proof. (Note 
that the last proof applies to any pure jump process with bounded variation.) 

5. Variation of Interchangeable Increment Processes 

In this section, let X be an ich. incr. pr. in D O [0, 1] with can. r.e. ~, o-, ft. 

Theorem 5.1. Relation (4.1) holds if either 

(i) {//,} is nested with I//.1~o -* 0, or 

(ii) ~ I//.1~ < oo. 
n 

Part (ii) extends and improves results by Ruhin and Tucker [2l] (who assume 
Y~ IU.l~ <m) and by Millar [18], p. 324. Results by BIumenthal and Getoor [2] 
n 

show that I//.Io~ ~ 0 is not sufficient in general. 

Proof In case of (i) it suffices by (4.3) to show that 

l imsup l ( I1 ,X , )ZR-aZ l  P ~0, u-*O,  (5.1) 
n---~ oo 

where Xu is defined as in the proof of Th. 4.2. Using Minkowski's inequality and 
applying Th. 1.1 and 4.1, the proof of (5.1) may easily be reduced to the case a =0 
and px < 1. Repeating the same argument twice with Th. 1.2 in place of Th. 1.1 
completes the proof. As for (ii), the assertion follows by (4.3), Minkowski's in- 
equality and Fubini's theorem from the following lemma. 

Lemma 5.1. For non-random ( a, fl) ~ O and ~=0, 

I~ {- (HX)2R 
a2 +/~2 g 1~ 2 = o(I//12). (5.2) 

Proof  Abbreviate flo = a, v = •2 ~_ f12 R, pj = t~ -  t j_ ~, ~j = X ( t j ) -  X( t j_  O, ~1~o = 
B (t j ) -  B (t j_ O, rlik = 1 + (t~ --'rk) -- 1 + (t j_ ~ -- Zk) -- p~, and write Y, and Y' for sum- 



Processes with Independent and Interchangeable Increments 267 

mation over Z+ and N respectively. By the fact that, for jointly Gaussian variables 
,9~, 02,03, O~ with zero mean, 

E O~ 0 2 0 3 0 4 = E 0~ 02 E 03 04 + E 0~ 03 E 0 2 0 4. -]- E 01 0 4 E O~ 03, 

and by the formulae in 1-1], pp. 65, 107, we get for i#j, k#l ,  

Erl2R=pj(1--Pj), E~hkrljk = -PiPj, 
2 2 2 2 2 2 Vart/jo=2(Eqjo) =O(p2), Cov(q~o,t/~o)=Z(E~hot/jo) =2p~ pj, 

Varrlzk-----pj(1--pj)4+(1--pj)p4--pZ(1--pj)Z=p2+O(p2), k#O, 

Cov(/~2k, 2 2 2 2 rl~k)=Pi( 1 --Pi) Pj +Pi p~(1--p~)Z + (1--Pi--P~) Pi2 pj2 

--p,p~(1 -- p,)(1 --p~)= --p,p~(1 +O(p,+pj)), k=t=O, 
2 2 2 2 Var I1jktljl:=pj (1 -pj)  =O(p~), Cov(t/i~ t/i~, ~]jkrljl)--;p 2 pj. 

Hence by independence, if fl has only finitely many atoms, 

SO 

2 E  E ~j - V a r  ~, flk rljk=Y', f12 Var rljk=Vp~(1 --pj), 
k k 

Var ~ = Var Z fl~, rlJ 2 + Z Y', flk fl, rljk rlj, 
k keel 

k k:~l k 

Cov (r r = Cov {Z 
k k4:l k k # l  

==Z 175 C~ (r/i 2, r/.~2) +2 Z Z fi~, 82 C~ (rhk rh,, r/~k r/jr) 
k k # l  

= -PiPj ~'  fi4 +v z PiPj O(Pi+Pj), 
k 

E(FIX)aR=~, E ~ =v ~, p2(1 -pj )  =v(1 - ]//12z), 
d d 

Var(HX)2 a =~ Var ~ +y '  ~, Cov(~ 2, ~Y) 
j i * j  

= ~ '  fl~ {~ PJ- ~ ~ PiPj} + v2 0 (~  P 2 % ~ ~ PlPj(PI + Pj)} 
k j i * j  j i * j  

= Y,' f12 Inl  + v 2 o (In[@) = v 2 o (Inl ), 
k 

and (5.2) follows. In case of infinitely many fl-atoms, apply (5.2) with fl replaced by 
fl~=lz~fl, e>0, and X by the corresponding pr. X~. Since f l2R-. f lER and 
(H X~) z R ~ (1I X) 2 R a. s. as e ~ 0, the truth of (5.2) for/~ and X follows by Fatou's 
lemma. 

Let us finally point  out that Th. 4.2 as well as the results by Blumenthal, 
Getoor [3] and Monroe [19] on "strong" variation generalize in an obvious way 
to ich. incr. pr. The details are omitted. 
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6. Ergodicity and Variation 

Th. 5.1 may be considered as the "strong" counterpart to the "weak"  Th. 2.2 
in [,14,1. In this section we proceed by giving strong analogues to Th. 1.2, 3.2, 4.2 
and 4.1 in [14,1. 

Theorem 6.1. Let ~1, ~2, ... be ich.r.e, with can. r.m. # in a l c s c H  space S, and 
let n, be the can. p.pr. of  ~1, ... ,  ~,, n ~ N. Then for any measurable f :  S ~ R +, 

f n J n  w , f p  a.s. within { # f < ~ } .  

This is an obvious extension of a result by Varadarajan (for f =  1, see Th. 7.1 
in [20,1; see also [,16,1, p. 400, and [4,1). 

For the remainder of this section, let X be an ich.incr.pr, in Do [0, ~ )  with 
can. r.e. F, A (or 7~, a, 2). The next two theorems improve and extend results by 
Rubin and Tucker [,21,1. 

Theorem 6.2. For suitable versions of  the can. r.m. #p of  

{ X ( j p ) - X ( ( j - 1 ) p ) : j e N } ,  p>O,  
we have as p ~ 0 

#,g,/p---~F, g2#p/P w ,  A a.s. (6.1) 

Proof. Let F, A be non-random. Then (6.1) holds as p ~ 0 through any sequence 
by [,6-1, p. 564, and the assertion follows. 

Theorem 6.3. For suitable vet&ions of  the can. r.e. (~s, as, fls) of  the restrictions 
of  X to [-0, s,1, s > 0, we have a2/s =- 0 "2, and as s ~ ~ ,  for any measurable f :  R --* R +, 

f (a~ 6o+g2fls)/s w , f A  a.s. within { A f < ~ } ,  (6.2) 

[ ~  - fl~ (h - gO]I s  ~ F a.s .  (6.3) 

Note that the last assertions may also be written 

f f l J s  w , f 2  a.s. within { 2 f < ~ } ,  (6.4) 

( c q -  fl~ I~)/s ~ 7~, e > 0, a.s. (6.5) 

Proof. Let F and A be non-random. By Th. 5.1 in [14], it is possible to define 
a~ - s 0 -2, and we may further take as = X(s) and let the fls be given by a Poisson pr. 
on R ' x R +  with intensity 2 times Lebesgue measure. Then {fl, f }  is a pr. in 
Do [13, ~ )  with stationary ind.incr., and so f l s f / s ~  E f l l f = 2 f  a.s. by the law of 
large numbers ([,16,1, p. 558). By [,20,1, Th. 6.6, this implies (6.4). Finally, (6.5) is 
merely a restatement of the law of large numbers for the pr. X~ obtained from X 
by omitting jumps of modulus > e. 

Taking a statistical point of view, suppose we want to estimate F, A from the 
incr. of X. As discussed at length by Rubin and Tucker [-21], we may then proceed 
in two steps, using either Th. 6.1-6.2 or Th. 5.1 and 6.3. An estimate in one step is 
given by the following ergodic-variational result. 

Theorem 6.4. For n~N,  let c .=s~  t > 0  and let 1I, be a partition of [0, s,] into k, 
intervals of  length p.j, j = 1 . . . . .  k, .  Let s, --~ ~ and suppose that 

(i) e~ I /LI~- '  0, 
(ii) ~ c, z I//~1~ < ~ ,  

n 
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(iii) ~ cn~p,  je-e/P"J<o% e>0. 
. n 

Then 
c, (17, X) gl ~ F a.s., (6.6) 

c, g2 (17, X) w , A a.s. (6.7) 

Note that, if p,j=p,,  j= 1, ..., k,, heN, then (i)-(iii) reduce to 

Zk;~<~, y e-~ 5>0. 

As the proof will reveal, (i) and (ii) suffice if a = 0, while (ii) and (iii) suffice if (70, 2)= 0. 
Moreover, (i) and (ii) imply 

c , ( H , X ) 2 R ~ a 2 + 2 2 R  a.s., (6.8) 

provided 2 has bounded support, (or even provided 24 R -- 2 h 4 < c~). 

Proof We may assume F, A to be non-random. Suppose that )~ has support 
in [ -  M, M]. If ~,, o s~, ft. are the can. r.e. of the restriction of X to [0, s,], we get 
by Lemma 5.1 

E {% [/7. (X--  c. a. h)] 2 R - ( a  2 + c. f12 R)}2 = E (a 2 + c. f12 R)2 0 (c 2 I/7.12) �9 

Using an auxiliary result in [17], p. 56, we obtain 

E(tr2 + c~fl2 R)2 < 2cr4 + 2c 2 E(flE R)2 < 2tr4 + Scn24 R + 4(22 R) 2, 

so by (ii) and Fubini's theorem, 

c,[Fl,(X-c,%h)]Z R-(tr2 +c, fl2 R)--~O a.s. 

By (6.4), c a f12 R may be replaced by/L 2 R, and furthermore, 

(% ct,) 2 c, (/7, h) 2 R ~ 2 7~ c.I/7.1~--,0 a.s. 

by (6.5) and (i), so (6.8) follows by Minkowski's inequality. 

Assuming 2 R < ~ ,  ?o = 0, write X = X~ + X2, where Xa is the purely discrete 
part of X and let {~,j} and {t/.;} be the//,-incr, of X~, X2. Let Y(s) be the number 
of X~-jumps in [0, s], s > 0, and note that Y is a Poisson pr. with intensity 2R. Now 

c.(/7, y)2N>c,Y(s.)+�89 Y)2(N\I ) ,  n~N, 

and letting n ~ 0o it follows by (6.8) and the law of large numbers that 

c,(H, Y ) 2 ( N \ I ) - ~ 0  a.s. 

Hence for any interval I 

C, n 1(I1 n X1) 2 1 - fiE II < M 2 c, (/Tn y)2 (N \ 1) -+ 0, 
so by (6.4), 

c,(/7.X02 w ~22 a.s. (6.9) 

As for X2, note that for any e > 0 

E ( / ' / nX2)  2 IC-~- 2 E [t,]2j'~ Inn j] > 5] --~-0 "2 2 PnJ E [ 0 2 ;  10l > /~G -1  - ~  P,i ] ,  (6.10) 
J J 
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where 0 is N(0, 1). But 

E E02; I01 >eP -~] ~ 1, p--~ o0, 

E[~gE;10[>ep-~]~e(np/2) -~ exp(-�89188 p-->O, 
so 

sup E 1-92; 1~91 >ep -~] exp(�88 oo, 
p>o 

and hence by (6.8), (6.10), (iii) and Fubini's theorem 

c,(ii, X2)2 w :'a26o a.s. (6.11) 

Returning to X, fix u, v > 0 and let e~(0, u ^ v). Abbreviate A = ( -  ~ ,  - u ]  w 
I-v, oo), A ~ = ( - o o , - u + e ] u  [v-e,  oo). My Minkowski's inequality, 

[(H, X) z A] + = [ Z  {(~.J + r/,J) 2 ; ~,J + q,i ~ A}] ~ 
J 

--< [Z {~.~J; ~.j~ a~}]~ + [g  {,.~J; ~.j~ A~, ,.j~ I~}]~ 
J J 

+ [Z {~.~;; ~.j~A~, , . ~  I~}]~ + [y, {,.~j; ,.j~I~}]~ 
J J 

=< [(/-/. Xt)2 A~] ~ + e [(H, Xt) a , ]  + + (u v v - e) [(H, X2) I~]* 

+ Eft/. x~) ~ I~]~. 

Multiplying by c~ ~, and the letting n ~ ~ and ~ ~ 0, we obtain 

limsup cn(HnX)ZA<=Z2A a.s. (6.12) 
I 1 ~  oO 

by (6.9) and (6.11). Similarly, 

liminf c, (/7. X) 2 A ~ > 22 A ~ a.s., (6.13) 

and by comination of (6.8) with (6.12) and (6.13) for arbitrary u and v, 

cn(llnX)2 w :.0.260+22 a.s. (6.14) 

The restrictions 2 R <  ~ and 7o=0  may be removed by (6.8) and Minkowski's 
inequality. 

Now (6.14) implies (6.7). To prove (6.6), conclude from the law of large numbers 
that c.(II, X) t R ~  7oo and use (6.14). Finally, for 2 with arbitrary support, write 
X = X ' + X "  where X" contains the jumps of modulus >M .  By the law of large 
numbers 

c,[gk(H,X)I--gk(H,X')I}<2c.(H,X")R'<2c,  fl, I~t--~22I~t a.s., k =  1,2, 

for any interval I, so it suffices to apply (6.6) and (6.7) to X' and then let M -~ ~ .  
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