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Let {W(t): t>0}  be the standard Wiener process (Brownian motion starting at 
0) with all paths continuous. Put 

MW(t)= max W(s), 
0<~ s<_t 

r ( t )  = M W ( t )  - W ( t ) .  

For e > 0  and t>0 ,  let d,(t) be the number  of times that Y crosses down from e to 
0 by time t. Thus d~(t) is the maximum integer n for which we can find points 
0 < Sl < tl < s2 < t2 < . - -  < s~ < t~ < t for which Y(sk) = e(V k) and Y(tg) = 0(V k). 

L6vy's Downcrossing Theorem 

P {lira ~d~(t) = Mw(0, V t > 0} = 1. 
~$0 

Chung and Durrett  ([1]) recently published a new proof  of this result. They 
based their argument on a rather involved result on Brownian excursions, and 
they also used one of Jacobi's theta-function identities. Their interesting proof  is 
therefore not particularly simple. 

We now give a proof  which is totally elementary, which requires no 
calculation, which does not even require the reader to know that Y is a 
reflecting Brownian motion (with M w as its local time), and which gives a more 
complete explanation. All of the credit goes to It6 who (in [21) did it all in a 
much more general context. For  further information on M w and Y,, see [3]. 

For  a > 0, define 

Tf f= in f{ t :  W(t)=a}=inf{t:  MW(t)=a}, 

T Y = i n f { t :  Y(t)=a}=inf{t:  Mr(t)=a},  

where MY(t)= max Y(s). Since Y(T,W)=O, the following implications are tri- 
o< s < t  

vially valid for O < b < a :  

[d~(Ty) = 03 ~ [MY(TY) < d ~* [TaW < T~Y] 

[MW(T~r)> a I ~ [TbW < TeYl <::1> [ M r ( r b w )  <81 .  (1) 
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Lemma. For every ~>0, {d~(TW): a>0}  is a Poisson process of rate ~-1. 

Proof of Lemma. Fix e > 0  throughout this proof. Pick x > 0 ,  y>0 .  Since Y(T w) 
=0, the strong Markov property (of W) applied at time T w makes it clear that 

P[Mr(T~W+,)<~] =P[MY(T~W)<e] P[Mr(Tf f )  <e] ,  

so that for some fl(e)> 0, 

P [ M r ( r  w) < e] = e - an (~) (V a > 0). (2) 

It now follows from (1) (let bTa) that for a>0 ,  

P [d~(T W) = O] = P [MW (T~ r ) > a] = e - "~(~), 

so that  MW(T~ r) is exponentially distributed with mean fi(e)-1 
Since M w -  Y= W is a martingale, we have 

EMW(tA T~r)=EY(tA T~ r) (V t>=0). 

The function Y(t A T~ r) is bounded by e and converges to e as t]" oe. The function 
MW(t A T~ r) is monotonically increasing in t with limit MW(T~r). Hence EMW(T~ r) 
=e, and fi(e) is identified as 5 -1. 

An obvious further use of the strong Markov property now completes the 
proof of the lemma. 

Note. Since {c-lW(c2t): t>0} is a Wiener process for every c>0 ,  it follows 
directly from (2) that fl(e)=fl(1)~ -1. 

Since d~(T w) is Poisson distributed with mean xe-1  and is monotonic in 5, it 
is easy to show (just from Cebygev's inequality!) that, with probability 1, 

lim~d~(TW)= x, 
~$0 

first for each fixed x, and then (by monotonicity) simultaneously for all x. L6vy's 
theorem is proved. 

Acknowledgement. The original version of this paper appealed to (the reader's) pictures for "proof". 
The referee persuaded me to tighten things up. The paper is thereby much improved; and since the 
reader can still draw pictures, nothing is lost. 
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