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O. Introduction 

The classical random walk played an important role in the study of sequences of 
random variables. Deep results could be proved using the simple geometry of its 
paths. On the following pages we introduce random sheets, a two-dimensional 
analogue. Section 1 gives a formal definition. Section 2 is devoted to its 
combinatorics. Results on cardinalities of certain sets are obtained. The proof of 
Theorem (2.1) using the generating function was suggested by the reviewer. Our 
original proof had been based on geometric arguments. In Section 3 probability 
theory enters the field. Random sheets define in a natural way an array of 
vector-valued random variables, the underlying distribution being the uniform 
one on rectangles. By means of these variables we study the asymptotic behavior 
of random sheets along a strip of arbitrary width. The result is a normal 
distribution which is centered at the origin. For width one we compute the covari- 
ances explicitly and get 2/3. Having in mind that a symmetric random walk - suit- 
ably normal i zed- i s  asymptotically normally distributed with variance 1 we can 
interpret this as follows. On such a strip a random sheet behaves qualitatively in 
the same way as a symmetric random walk but its variance is smaller. This is 
obviously the effect of the strong correlation between neighbor states. 

The limit theorem got in this paper is "essentially" one-dimensional. Two- 
dimensional results are obtained in [2]. 

In a discussion on this paper with D. Abraham, G. Gallavotti, K. Jacobs and 
D. Ruelle it was realized that the interaction concept given by the random sheet 
construction is equivalent to the six vertex ice model studied in theoretical 
physics. In fact an isomorphism between the ice configurations on n x m lattice 
points and the random sheets on a rectangle of size n x m  can easily be 
constructed. Thus it is not surprising that the total number of random sheets on 
a rectangle is computed by means of a matrix (Section 2). The transfer matrix 
method has already a certain tradition in theoretical physics. Main contri- 
butions to the six vertex ice model have been made by E.H. Lieb. We note that 
his transfer matrix is not the same as ours. The differences are briefly explained 
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in Section 2. For  a survey on the type of questions asked by physicists and the 
answers known so far see [-5]. Further references are given there. 

I thank the reviewer for his comments and A. Gubitz for writing a computer program for me in 
an early stage of this research. 

1. Definit ions 

Let Z a denote the d-dimensional lattice and Za+ the subset of points having all 
coordinates non-negative. Given points (k, l) and (m, n) in Z 2 which satisfy 
(k, 1)<(m, n), i.e. k < m  and l<n, we consider the following rectangle in Z z 

r((k,/), (m, n)) = {(p, q) s Z 2 ] (k, l) <_ (p, q) < (m, n)}. 

Instead of r((0, 0), (m, n)) we shall usually write r(m, n). Two points (k, l) and (m, n) 
in Z z are called neighbors iff they have Euclidean distance 1, i.e. either k = m and 
I / - n [ = l  or l=n and [ k - m [ =  1. 

(1.1) Definition. A random sheet (RS)  on r(m,n) is a function w: r (m ,n )~Z  1 
such that 

(1) w(0, 0) = 0 

(2) if (p, q), (p', q') ~ r(m, n) are neighbors then Iw(p, q) - w(p', q')l = 1. 
Let 5e(m, n) denote the family of RSs on r(m, n). 19~ means the cardinality of a 
finite set 5 e. 

Recall that a random walk ( R W )  of length n is given by a (n+l)- tupel  x 
=(x(0) . . . .  ,x(n)) where x(k)EZ 1 and [ x ( k + l ) - x ( k ) l = l  for all O < k < n - 1 .  Set 
~f(n) for the family of these tupels and X0(n) for the subset of RWs satisfying 
x(0) =0. Define z,: :T(n)--* {0, 1}" by the following rule 

t~  if x ( k ) - x ( k - 1 ) = l  
(Z"(X))k---- ~1 if x (k ) - - x ( k -  1)= - 1. 

Then 

h.(x) = ~ (Z.(X))k 2 k- 1 + 1 
k= 1 

defines a numbering h.: Y'(n)~ {1 . . . . .  2"}. RWs of arbitrary starting value but 
consisting of the same sequence of ups and downs get the same number. 

For  every n we define nT-=(.Ti~)l<~,j=<2, to be the transfer matrix for RWs of 
length n where .Tij by definition equals the number of RSs w on r(n, 1) such that 

w]r(,,o)eh21(i) and W[r((O, 1),(n, 1))~hnl(j). 

Here wIB means the restriction of w to a subset B of its domain. The following 
recursive procedure yields ,T  explicitly. To start we construct all RSs on r(1, 1) 
and r(2, 1) and get 

1T--(~ 12)and 2T= 2 1 
1 2 " 
1 1 
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Now assume ,T  is known. We split it in four submatrices of equal size IT, ..., 4 ,T  
in the following way 

t ~T ~T 

" r : \ , , r  3 4.r/ 
then 

~_ 2 T I 0 \  
,T -"3~ . . . .  I, . . . . . .  2 . ~ \  . . . . . . . . . . . . . .  _"_1___I_="_1__). 

, + I T  | ] T  ! ]T , 

~ "  0 . . . . . . . . . .  ,{ 3.T ~ .T  / 

We indicate how to prove this. Let x e 2f(n) be given. Define 

_~x(k) k=0,  . . . ,n 
x"+l(k)-[x(n)+l k = n + l ,  

x"+l(k)= ;!~! 1 k=O,...,n 
t ) -  k = n + l .  

Then h, + a (x" + 1) = h,(x) and h, + a (x, + 1) = h,(x) + 2". Thus the definition of the 
submatrix , + 1 T = (, + 1T~j)I __< i, j_< z- involves only x e ~(n + 1) with the property 
x(n+l)-x(n)=l.  In other words for such a pair (i, j) the RWs h2+11(i) and 
h221(j) are given already by their values on {0,...,n}. This implies ,+aT=,T .  
Similar arguments apply to the remaining submatrices. 

As the formula for , + I T  shows the sequence of matrices ( ,T),el  has the 
property that if 1<i,  j < 2 "  then ,+kT~j=,Tij for all k>0.  Therefore instead of 
considering the sequence (,T),> 1 we can consider the matrix T having rows and 
columns of unbounded length and being defined by Tcj=,Tij where n has to be 
sufficiently large, i.e. such that i, j<2". Writing only T it is clear from the 
domain of the running indices i, j which submatrix of T, i.e. which ,T  is actually 
meant. 

2. Combinatorial Results 

By the very definition of the transfer matrix the total number of RSs on r(n, m) is 
given by the following formula 

2 ~ 

k , i = l  

where T (m) stands for the m-th power of the 2" x 2"-matrix T. More precisely Tk(~ ") 
gives the number of RSs w on r(n,m) such that w[r(,,o)sh21(k) and 
w[~((O,m),(,,m))eh 2 a(i). Since this formula involves the m-th power of a possibly 
very large matrix we mention that for small m there are easier ways to get this 
number. For example 
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15r 2)1 =4  [SP(n - 1, 2)1 + 2 q.-1 

where q. satisfies q.=[5~(n-l,2)l+q._l and the initial values are given by 
15r 2)=18 and ql =5. By symmetry the number of RSs on r(n, m) equals the 
number of RSs on r(m, n). Thus the interpretation as cardinality of a set of 
RSs leads to the following combinatorial identity 

2 n 2 m 

i , j = l  i , j = l  

At this point let us quote Lieb's result (see [5]) which is essentially the 
computation of 

lim [~(n, m)] '/"'~. 

Lieb assumes periodicity of the ice configurations in the vertical and horizontal 
direction�9 Horizontal periodicity simplifies the transfer matrix. Using a slightly 
different counting function than h. Lieb's matrix for the n • m-configurations can 

be written as a diagonal block matrix. There are n + 1 blocks of size (~) x (~) for 

k = 0 . . . .  , n arranged in this order and each block has 2's on the diagonal and l's 
elsewhere. Since there are no physical reasons to justify the periodicity assump- 
tion it would be of interest to compute the limit using our T. 

Now we shall determine the number of RSs on r(n, 1) given a fixed value at 
the endpoint. Define 

~(n, 1 ; k) = {w ~ ~(n, 1) I w(n, 1) = k}. 

Of course 6e(n, 1; k)#J~ only if k = n + 1 - 2 1  ( 0 < / < n + l ) .  Remember that if ko, 

k~, k2 are nonnegative integers such that ko+ka+kz=n then ko, kl,k2 

denotes the multinomial coefficient. For every n>  1 and 0___i<_2n we introduce 
numbers D,,i setting 

Dn, i = E ko, kl k 2 
kl + 2k2=i  

More precisely the sum ranges over all (ko, kl, k2)ff Za+ satisfying k 0 + ks + k2 = n  
and k~ +2k2=i .  For completeness put D, , i=0 if i is not as above. 

(2.1) Theorem. For n>=l and 0_<i_<n+l 

Ib~ 1; n+  1-2i)[=Dn, Ei + 2Dn, 2i_ 1 "}- Dn, 2 i -  2" 

Proof We shall use during this proof one of the alternative ways to describe 
RSs. Since only RSs on r(n, 1) are involved here we shall deal only with this 
special case. It will be clear how the characterization runs for RSs on arbitrary 
r(n, m). Given w ~ ~9~ 1) we put 

Xk(W)=W(k,O)-w(k--l,0) ( l < k < n ) ,  

Yk(W)=w(k, 1)--w(k, 0) (O<=k<n). 
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Then the sequence (yo(w),xl(w),yl(w),...,x,(w),y,(w)) consisting of + l's and 
- l 's is an identification or a code for w. If we order the possible states (Xk, Yk) in 
the following way (1, 1), ( - 1 ,  1), (1 , -1 ) ,  ( - 1 , - 1 )  then the corresponding 
transfer matrix is 

~ =  t 1 
1 1 
1 1 

More precisely T((xg, Yk); (Xk+l, Yk+0) = 1 if there is a RS w such that 

(Xk(W), yk(w))=(Xk, Yk) and (Xk+ I(W), Yk+ I(W)) =(Xk+ 1, Yk+ 1)- 

Otherwise T((Xk,yk); (Xk+I,Yg+I))=O. The generating function for the number 
of RSs with w(n, 1)=x 1 +--. + x , + y ,  given can then be written as follows 

g(z)= ~ ~((1,yo);(xl,yl))...fr((x,_~,y,_l);(x,,y,))-z x~++x"+'". 
YO,...,  Yn 
X l ~ . . . , X n  

So if we put L((Xk- 1, Yg- 1); (xk, Yk)) = 7"((Xk- 1, Yk- 1); (Xk, y~))" Z ~, i.e. 

Z - 1  Z 

r z ~  z - 1  z z - 1  

z - 1  z z - 1  

and a = (1, 0, 1,0), b = (z, z, z- 1, z- 1) then g(z) = a T~(~) b r. The eigenvalues of T~ are 
0, 0, z + 1 + z- 1 and z -  1 + z- 1 As corresponding eigenvectors arranged as 
columns of a matrix we find 

t 1 1 1 
-zZ- -1  - 2 z  z 1 11 

Z - 2  1 Z - 1  - - Z  - 1  ' ] 
Z 2 Z 2 Z i - -  Z -  1 

Now g(z) can be got explicitly via the spectral representation of ~(n). 

g(z)= 2- l (z+ 1 + z- 1)n(z + 2 + z -  1)+2- l(z-- 1 + z- 1)"(z--2 + z- 1). 

Expanding the n-th power by the multinomial theorem our result follows. _1 

Basicly the method applies to solve the same problem for ~(n, m; k) where 
m >  1. But to get g(z) explicitly becomes difficult for larger matrices. 

3. Probabilistic Results 

In this section we interpret random sheets probabilisticalty. Our main goal is to 
describe the asymptotic behavior of a random sheet on r(k, m) when k ~ oe. 

Let mo be an arbitrary positive integer which wilt be fixed throughout this 
section. Put ~(mo)= {y = 0'(0), y(1) . . . .  , y(mo))ly(i)~ { 1, - 1}}. We consider the 

k 

product space f2k =2~o(rno)x I~ ~j(rno) where ~/~(mo)=~(m0) for each j. A subset 
j = l  
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O ] of O k will be used. co = (x, Yl . . . . .  Yk) ~ f2] if there is a RS w ~ 5P(k, too) such that 

(w(0, 0), . . . ,  w(0,  too)) = x 

and 

(w(j,O)-w(j-l ,O),. . . ,w(j,  mo) -W( j - l ,  mo))=yj for l <j<=k. 

The family of random sheets (5~(k, mo))k> 1 defines now in a natural way a 
triangular array of vector-valued random variables (Xk,j)l<=k,O<=j<=k. For  every 
kXk, o takes values in Wo(mo) whereas Xk, j for j > l  takes values in ~(mo). The 
distribution we are interested in is the uniform distribution on each ~(k ,  too) 
which reads explicitly as follows 

P[Xk o=X, Xk l = Y l , . . .  Xk, k=Yk']=~l,~ ~p(k'm~ 
if (x, yl, ..., yk)~E2~ 

' ' ' ( u  otherwise. 

We denote by ~3~,j the a-algebra generated by Xk, ~ (O<-i<_l<=j<_k). Re- 
member  that an array is called qo-mixing if for events Ele~3k, t satisfying 
P (E1)>0  and E2efsk+,,k we have 

IP(E2 IE~) -P(E2)[  _-< ~o(n) 

where ~0 is a real-valued function satisfying lira ~o(n)=0. 

(3.1) Proposition. The triangular array of vector-valued random variables 
(Xk, j)l <-k, 0 <-_)<-_ k is ~o-mixing. 

Proof We start with sets El=[Xk,  o=X,.. . ,Xk, t=yt] and E2=[Xk, I+,= 
Yl+,, "",Xk, k=Yk]" Of course we can assume both P(Ei )>0  since otherwise 
there is nothing to prove. In order to compute the values P(E2IE1) and P(E2) 
explicitly we have to count certain sets of RSs. The transfer matrix involved here 
is mo T which we can write T. Furthermore we shall use the abbreviations 

TY - V Z (p) - V Tj(f ) i - - Z . ~  ij  - - L . . ,  
J J 

and 

i,j 

Put m-= k - (l + n) then obviously 

p(Ea)=(T~) -1 Ti "+m 

where the index i is determined by (x, Yl, ---, Yt). For  any positive integer p with 
dual representation p =  ~ zi2 i we shall write d(p)=(z o, zl, ...). Now consider the 

i>o 
vector yk=(yk(O),yk(1),...,yk(mO)) occurring above. Define s(yg)={O<t<mo 
--l[yk(t+l)#Yk(t)} which we shall write S(yk)={ta,...,tq} such that 
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t I <f2 < . . .  <tq. Then if S(yk) is empty we put gg=g(yk)={1, ...,2m~ If S(yk) is 
nonempty and Yk(tl)= 1 say we put 

gk=g(yk) = {1 =<p+ 1 __--< 2"~ = 0  for i odd, d(p)t~= 1 for i even (1 <=i<=q)}. 

In c a s e  yk(tl)= - -  1 the words odd and even are exchanged. Now it is easy to see 
that 

PEXk, k =Yk] = (T0k) - 1( ~ T]-I) .  
jegk 

More generally we get 

P(Ea) = (Tg)- 1(~, T j+ , -  ~) 
jeg 

with the changement that s(yl+,, . . . ,yk)={Sl . . . .  ,&} is the union of the s(yi) 
(l+ n_%< i_< k). Note that the O's and l's at the coordinates s~ in the definition of g 
=g(Y~+,,...,Yk) are no longer necessarily alternating as they are in the de- 
finition of gk. The same reasoning gives 

P(E, c~E2)= (Tok) - 1 (~  Ti~- 1)). 
jeg 

We conclude 

[P(E2 I E 0 -  P(E2)[ : [(T~" +m) - 1 (~  T~,- 1))- (T~)- I(E Tj l+n- 1)[. 
j eg  jeg 

T (p) is diagonalizable with spectral representation 

T(p) __=)~fB 1 +...-k2~moB2m o 

where we can assume 21>=lA,21~..-~[),2mo ]. Since T is aperiodic we know 
21 >[2~1. This implies 

lim TI}P) Ry P=(B1)ij 
p~r  

where the rate of convergence is exponential. We determine constants L, LI such 
that uniformly in the sets g = g(y~+ . . . . .  , Yk) defined above 

j eg  j~g 

and 

[~  TiP- ~ Af B~(j)I ~ IAz fL1 
j~g j~g 

with BI (j) = ~ (B1)ij and - used below - B1 = ~ (B1)ij. Now write 
i i , j  



154 E. Eberlein 

IP(E2IE1)- P(E2)I < [(T/n+m) - 1( E T/~ n- 1))__(~1+mBl(i))- I ( E  21- l(B1)ij)l 
j~g jeg 

+l(Tg)-,(Z l+n-1 k - 1  2 { + n -  1 Tj ) - (21B0  ( E  BI(j))[ 
j~g jeg 

+ 1(27 § 1B~(i))- ~(~ (B~),j)-(Z~ § 81)- '(Y~ Bx(j))l 
jeg jeg 

= e i + e 2 + e a .  

With the approximations made above an upper bound for el and e2 can be 
given using the following inequality which holds for real numbers a>0 ,  x >0  
and small c > 0, d > 0 

](a_+ c)(x +_d)- 1 - a x -  11 =<2(a+ c) dx -  2 "JV CX-- 1. 

The result for el is 

el =<~.1 m- 1 [2(1-1- ([22]/,~1) n- 1LBI(i)- 1)(122]/21)"+mL1Bl(i )- 1 

+ (1221/21)"- ~ LB 1(/)- 1] 

=0(122[.- 1A7.-"). 

Analogously e 2=O(k7 k [22l~+"-*). The transformation of T into a diagonal 
matrix can be done by an orthogonal transformation which implies BI(i ) BI(j) 
=(BI)ijB1. Consequently e3=0. i ~, 

To finish the proof we have to consider sets F1 = FI and F2 = F~ where 
i=t j= l  

each F{ is assumed to be of the same type as Ex above and F~ being as E 2. A 
straightforward computation shows that if the bounds hold for each FI then the 
same bounds hold for F 1. We have only to use the fact that given q pairs 

ai, bi > 0 and c > 0 such that ]alb ~ 1 _ c[ < a then [(~ rlai)(~ ' ribl)- 1 _ cl < e for any 
i i 

positive integers r i (1 _-<iN q). Concerning F2 it is clear that the bounds got for F2 ~ 
add up t times. But the number of sets F~ such that P(F2J)>0, i.e. the upper 
bound for t, is of the order 0(2'i'+1). Thus 

[P(F2IF1)- P(F2)I <= (p(n)=O((12 21/21)"- l). _l 

We consider now 

Sk = Xk ,  o-[- Xk ,  1 -4- "'" "~- Xk ,  k. 

The variables Xk, j (l__<j<k) stand for successive increments of random sheets 
weSe(k, mo) and Sk describes the values at (k, 0) . . . . .  (k, mo). The asymptotic 
behavior of these values is therefore contained in the following theorem. 

(3.2) Theorem. Let (Xk,  j)l<=k,O<=j<=k be the triangular array of vector-valued 
random variables defined before then Ski]Ilk has asymptotically a normal distribu- 
tion centered at the origin. , ,  

,\ 

Proof. Each Xk, j is centered and the array is (p-mixing with ~ q)(n)l/2<~oo. 
rl=l 
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Therefore the multivariate version of the central limit theorem for a (0-mixing 
array applies ([1, 61). 

Finally let us compute explicitly the covariances in the case m o = 1. We have 
15P(k, 1)l = 2 . 3  k and one shows easily tha t -omi t t i ng  the k in the index-(Xj)j> 
is a stationary process. The structure underlying this process is actually Mar- 
kovian which would appear explicitly if we had used the description introduced 
in Section 2. Writing E[X] for expectation we have to compute for 0<  i,j< 1 

cqj=E[X,(i) Xjj ) ]  + ~ E[Xa(i ) Xk(j)] + ~ E[Xk(i) XI(j)]. 
k = 2  k = 2  

Of course E[X~(0)] =E[X2(1)] = 1. Furthermore we find 

E[X~ (0) Xk(0)] =E[X~(1) Xk(1)] = -- 3 -k (k~ 2) 

and 

El-X1 (0) Xk(1)] = E[XI(1) Xk(O)] = 3 -k (I, > 2). 

Summing up the result is o~;=2/3 (0__<i,j__<l). 
There is a more elementary way, i.e. without using the central limit theorem, 

n - - 1  

to get this asymptotic variance. The squares of S,(1)= ~ Xk(1) satisfy the 
following difference equation k= o 

ElSe+ ~(1)] ~z . -2 ~2 3-(.+ ~) -E[S. (1)1 =E[S. (1)1 -E[S._ 1(1)1 +2-  

From this one derives 

E[S~ (1)1 = 2n/3 + o(n) 

which implies 

lira E [S~ (1)/n] = 2/3. 
n ~ c o  
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