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Random Walks and the Strong Law 

M. F. Driscoll and N.A. Weiss* 

w 1. Introduction and Statement of Results 

A need for the following generalization of the strong law of large numbers 
for strictly stationary processes arises in the study of infinite particle systems. 

Let X1, X 2 ... be a sequence of i.i.d, integer-valued random variables and let 
P, be the n-th-step transition function of the random walk S, = X1 + . . .  + X,. The 
required result is that, for any finite nonempty set B, 

2irn ~ A ( x )  P,(x, B ) = A  IBI a.s. (1.1) 
2r 

for any G-process A(')  with parameter variable A. (A process A(')  is called a 
G-process with parameter variable A if 

1 _ ~ 1 - ~ l  
lim /__, A(x)= lira - -  A(x)= A 
. ~ o o  F/ x = l  n~oo  g/ x = O  

with probability one.) 
In this paper we establish this result for a large class of random walks {S.}. 

The interpretation to infinite particle systems will be given in w 3. 

Theorem 1. I f  E X  1 =0  and EX4 < o% then (1.1) holds for any G-process with 
parameter variable A and for any finite nonempty set B. 

The key lemma in the proof of Theorem 1 is obtained by applying refined 
versions of the central and local central limit theorems. 

Theorem 2. Let X1, X 2 ,  . . .  be as in Theorem 1. Then we have 

lim sup ~ Ixl Ig(0, x) -P, (0 ,  x +  1)l < ~ .  (1.2) 
x 

Remark. In a study of infinite particle systems, Stone [5], discussed a condition 
similar to (1.2); namely 

,lim E IP,( O, x)-P~(O, x+  1)1 =0. (1.3) 
x 

He proved that (1.3) holds for any strongly aperiodic random walk. However, 
it is not true that (1,2) holds for arbitrary strongly aperiodic random walk. To see 
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this take X 1 = 0  or 1 with probability 1/2. Then computations show that 

Ix] [Pz,(0, x)-P2,(0,  x+  1)l 

__ 4_,  {k~l k [ (k2+nl) _ ( 2 ; ) ]  + k~ k [(2kn) 2n +1}  

Consequently, (1.2) does not hold for this random walk. 

w 2. Proofs 

Throughout  the discussion the following assumptions will be made. X1, X 2 . . . .  
is a sequence of integer-valued i.i.d, random variables with mean zero, variance 
0 .2 +0, and finite fourth moment.  

Let ~k and fig denote, respectively, the k-th and absolute k-th moments of X 1. 
Also set P,(0, x)=P(XI + ... + X , = x ) ,  f,(x)=P,(0, alfnx), and F,(x)=y,t<=~f,(t). 
q~ denotes the standard normal density function and �9 the distribution function 
o f r  

Finally, for convenience we let b,(x)= 4)(x/lfna ) and B,(x) = cb(x/1/~a ). 
The proof of Theorem 2 is accomplished in several steps. The first step is to 

decompose (1.2) into components about which some information can be obtained. 
Computat ions show that 

Y, Ixl lb , (x)-  b.(x - 1)] 
x 

<~', Ix[ Ib,(x)-b.(x + 1)1+2 ~ b,(x). 
x x 

and that 

Ixl [P,(O,x)-b,(x)[ 
Ixl>m. 

< F~ IXl {IP,(0, x)-- [ B , ( x ) - B , ( x -  1)]1 + I b & ) - b & -  1)1}. 
Ixl>,n~ 

From these facts the following result is obtained: 

Lemma 1. Let {m,} be any sequence of positive real numbers. Then 

F, Ixl IP.(0, x)-P.(0,  x +  1)1 
X 

- - 0 ( 1 +  ~ [xllP,(O,x)-b.(x)] 
L:q-<m. 

+ Y', IxLIP,(O,x)-EB.(x)-B,(x-1)]I (2.1) 
Ixl>:,,. 

+ Y', Ix I lb,(x)-  b &  + 1)l + Y, b,(x)). 
X x 

The next problem is to control each of the terms on the right hand side of (2.1). 
The following fact will be required. Suppose {a(x): xeZ}  is a sequence of non- 
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negative real numbers such that (i) ~ Ix[ a(x)<oo; (ii) a(-x)=a(x),  xeZ;  and 
(iii) a(x+ 1)<a(x), for x>0 .  Then 

2 Ixl [a(x)-a(x+ 1)[ = ~  a(x)< oo. 
x x 

With this fact in mind an estimate is obtained for the fourth term on the right 
of (2.1). 

Lemma 2. With the notation as before 

Ixl - -  (2.2) 
x 

Proof Clearly b,(x) satisfies (ii) and (iii) of the above result, for each n. To 
verify (i)just note that 

21xl b,(x)= 2(~l/-n) -~ ~. xdp(x/~rl/~)<= l + fl* ~I/~ 
X X = l  

where fl* = ~  lYl 4~(Y)dy. Consequently, 

2 Ixl [b,(x)-b,(x+ 1)1--2 b,(x)< 1 + (2rcno'2) - m  
x x 

and (2.2) follows easily from this. 

We now turn to the problem of bounding the second term on the right hand 
side of (2.1). It follows from a result of Esseen [1] that if/3 k < oo for k an integer > 3 
then 

2 [xl IP,(0, x)-b,(x)l  
I~l_-<m. 

k - - 2  ~ ,  < 2 IC~ln-(~+l)/2 
- -  2 (2.3) 

v = l  j = l  (7 [x]<=m" 

+o(n "-k)/2) F~ Ixl 
] x [ < m .  

where the coefficients Cvj are constants determined by the distribution of X~. 
Consequently, if m, ~ oe and m, = O(n (k- 1)/4) then it follows that 

Ixl IP,(O,x)-b&)l 
Ixl <-m. 

k-2 ~ (2.4) 

v - - 1  j = l  (7 i x l<m,  ~ 

Thus to bound the seond term on the right hand side of (2.1) it is only necessary 
to demonstrate that the first term on the right hand side of (2.4) is bounded. 

To accomplish this first note that because of the exponential nature of qS, for 
each m = 0, 1, 2 . . . .  we have qS(m)(y) = pro(y) d~(y) where Pm is a polynomial of degree m. 
With this in mind the following lemma is obtained. 

Lemma 3. For or>0 and infixed 

Ix 1/ )1 = 0 (n). 
x 
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Proof Choose constants bo, bl, ..., b m such that pm(y)=~'=0 bky k. Setting 
d,,=max{lbkl: k=0,  1, ... ,m} we then obtain 

'(o(')(Y)' <-_ (o(y) max {(m + l) dm, dmk~,olY' Q 

< ~b(y) Cm(1 + [yl m) 

where C , ,= (m+ 1)din. It follows that 

L ~ ,  m) Cm Cra 
Ixl Z �9 n~"  x 

 ow, for,, ,seta,, n,ax{( l: O < , < ' + h  
oo 

2 IxlkgP(x/al/~) < [. (Y+ 1)k(o(Y/a] '/~) dy 
x 0 

oo 
< 2 ( k +  1) a k ~ (1 +yk) qS(y/a]/~) dy 

0 

= ( k +  1) ak a] /~  [1 + ak nk/2 fl~ '] 

where/3~' is the k-th absolute moment of the standard normal distribution. 

By using this last fact the following result is now obtained. 

1 ~ Ix~b(m,(x/av%l 

<= 2a C~,[n -1/2 + aft*] + (m+2) a,,,+ 1 C m [n_(m+ l)/2 + ~rm+ l [3,m+ l l " 
fire- 1 

For each m, the quantity on the right remains bounded as n ~ oe and hence the 
lemma is proved. 

Combining Lemma 3 and (2.4) it is easy to see that the following lemma is 
true. 

Lemma 4. Let k be an integer with k > 3 and suppose {m,} is a sequence of positive 
real numbers such that m n ~ oe and m, = 0 (n (k- 1)/4). I f  flk < 0% then 

l imsup ~ ]xllP~(O,x)-b,(x)l<oo. 

It remains to bound the third term on the right hand side of (2.1). Again a 
theorem due to Esseen [ 1] will be applied: If flk < oe for k an integer > 3 then 

< C(~, fl) n_(k_2)/2 (2.5) 
IF,(y)- ~ b ( y ) l - - = 1 ~  

uniformly for ]y[ >]/(1 + b)(k-2)  log n. Here C(6,/~) is a finite positive constant 
depending only on 6 (0 < 6 < 1, fixed) and the moments/~2, -.., ilk. 

In view of this result the sequence {m,} can now be specified. Set m, equal to 
the smallest integer greater than 

at/(1 + 6) (k -  2) n log n (2.6) 
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where 6 is any fixed number  in (0, 1). Notice  that m , ~ o o  and m,=o(n (k-1)/4) if 
k > 4 .  

Because of (2.5) we now obtain for large n and Ixl > m, 

IP~(0, x ) -  EB,(x) - B,(x - 1)]1 

< C((5, fl)n -(k-2)/2 [ 1 1 
a ~ k  ~ X _ I  k 

0.V  

-] <3 C(6, fl) 0.k n[x]-k. 

In view of this last inequali ty it is clear that  for sufficiently large n 

F, [xllP,(O,x)--[B,(x)--B.(x--1)]l<3C(&,fl)Gkn Y, Ixl -k§ 
Ixt>rn~ Ixl>m, 

= O(n(4-k)/2 (log n) (2 -g)/2). 

F r o m  this result the following lemma is deduced. 

Lem ma  5. I f  f14<oo and m, denotes the smallest integer greater than 
l / 3  0 .2 n log n then (1) 

F, Ixl IP.(O,x)-EB.(x)-B.(x-1)]=O lo~gn 
Ixl>m. 

and so in particular the term on the left tends to zero as n ~ oo. 
Combining Lemmas  1, 3, 5, and 6 the validity of Theorem 2 is now apparent.  
Now that  Theorem 2 has been proved we proceed to verify Theorem 1. To  

prove (1.1) it suffices to show that  

!irn Z A(x) P,(O, x ) = A  (2.7) 
x 

with probabil i ty one. 

To begin, let {fl(x)} be C6saro summable  to )~ and set [10 
- - T y  x~+l fl(y); X < 0  

0.(X)=/1; = X = 0  

[ 1  ~ /~(y) ;  x > 0 .  
y = l  

Then, x a ( x ) -  ( x -  1) 0 . ( x -  1)= fl(x) for all x and consequently,  

F,/~(x) P.(0, x)=y~ x0.(x) EP.(0, x)-~(0,  x+ 1)] 
(2.8) 

+ ~ [0 . (x -  1 ) -  0.(x)] P~(0, x). 

Since [0.(x- 1)-0.(x)] ~ 0 as Ix]--, oo and P,(0, x ) ~ 0  as n ~ oo the second sum on 
the right hand side of (2.8) tends to zero as n ~ oo. It remains to prove that  the 
first sum on the right hand side of (2.8) tends to 2 as n ~ oo. 

For  convenience let 7,(x)=x[P,(O,x)-P,(O,x+l)].  Because E IXl]<oo it 
follows that ~xy , (x)  = 1 for all n. Since, for all x, y, P.(x, y) ~ 0 as n ~ oo for r andom 
walks it is obvious that  7,(x) --+ 0 as n ~ oo for each x. Finally, because of Theorem 2, 
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the sequence {~ I?dx) l} is bounded. Consequently, from a well-known summability 
theorem (see,, e.g. Hardy [3]) we conclude that ~ ~r(x)7n(x)-+ 2 an n ~ oe. The 
proof of Theorem 1 now follows. 

w 3. Interpretation to Infinite Particle Systems 

Suppose that initially particles are distributed throughout Z according to the 
point process Ao(" ). Subsequently the particles are translated independently 
according to stochastic processes isomorphic to some fixed stochastic process 
{ I1.}. Let v. be the distribution of Y.. If A. (') represents the distribution of particles 
at time n then 

E(A.  (B) IAo)= A o �9 v,(B). (3.1) 

This quantity is important for results concerning convergence in distribution of A, 
to a Poisson process. See, for example, Stone [5] and Goldman [2]. The asymptotic 
behavior of A o , v  . is also needed for obtaining important generalizations of 
results in Weiss [6] and [7]. 

Now, assume A o is any G-process with parameter variable A and that {I1,} 
is a random walk with mean zero and finite fourth moment. Then according to 
Theorem 1, 

lim E(A.(B) IA o) = A IBI (3.2) 
n ~ o o  

with probability one. Since (see Spitzer [4]) lira sup P.(x, B)=0, it follows by a 
n ~ o o  x 

result of Goldman [2] that the process A. is asymptotically mixed Poisson with 
parameter variable A. 
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