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On a.s. and r-Mean Convergence of Random Processes 
with an Application to First Passage Times 

Allan Gut 

1. Introduction 

Let X1, X 2 . . . .  be i.i.d, random variables, centered at expectation whenever 
this is finite and let S,, n ~  1, denote their partial sums. Set S o =0 .  

Suppose that E IX[ ~ < o% 0 < r < 2. According to a result of Kolmogorov (r = 1) 
and Marcinkiewicz (r4: 1) this is equivalent to n -1/~. S,  a's'~O as n-+ o% ([11], 243) 
and in [12] it is proved that this is also equivalent to n - 1 / ~ . S , ~ O  as n--+oo. 
In [2] and I-3] generalizations to certain dependent sequences are obtained and 
[8] contains an extension to randomly indexed partial sums of i.i.d, random 
variables. 

In Section 2 it is first proved that the first mentioned results also are equivalent 
t o n - I / ~ . m a x S k  ~ , O a s n ~ o e .  

1 < k  <-n "" 

Now, let {X(t); t>0}  be a separable random process with independent, 
stationary increments and with mean zero whenever the mean is finite: It is no 
restriction to assume stochastic continuity ([1 l], 542) and that the sample functions 
are continuous from the right ([5], 168). The aim of Section 2 is to establish a 
theorem for this class of random processes, which corresponds to the above 
mentioned results for i.i.d, random variables. 

Let T = T ( c ) = i n f { t ;  X ( t ) > c . a ( t ) } ,  where now E X ( t ) = t O ,  0 < 0 < 0 %  c > 0  
and a(y) is positive, bounded on compact subsets of [0, oo) and such that a(y) = o(y) 
as y---, oc. In Section 3 the results of Section 2 and [7] are applied in order to 
investigate the finiteness of the moments of T and X ( T )  and, under further re- 
strictions on a(y), asymptotic properties when c-* o% thereby extending results 
obtained in [7] for processes without positive jumps. See also [1, 14] and [16], 
where the case a(y)=-1 has been treated. 

Throughout  Y-+ =max  {0, Y}, Y- = - m i n  {0, Y} and II YII,=(EI Yr)  l/r, where 
Y is a random variable. 

2. 

Let X1, X 2 . . . .  be i.i.d, random variables centered at expectation whenever 
this is finite and let S, denote their partial sums, (S O =0).  

Lemma 2.1. Let  0 < r < 2. The following statements are equivalent: 

EIx l < (Ex  =o /fr > 1), (2.1) 

n - 1 / r ' S  n a's':'0 as n--~oo, (2.2) 

EIS,l~=o(n), i.e. n-lJ*. S,  " ,0  as n--,oo, (2.3) 

E max [ S J = o ( n ) ,  i.e. n -1/r. max S k ~ O  as n ~  oo. (2.4) 
l < < _ k < n  l<_bz<_n 



334 A. Gut  

I f  {z(c), c >__ 0} is a non-decreasing family of integer valued stopping times such that 
E z(c)< ~ and E z(c)/~ oo as c--~ o% then (2.1) implies that 

E}S~(~)r=o(Ez(c)) as c-- too.  (2.5) 

I f  moreover, c -1 .  E z(c) ~ # as c---~ ~ ,  where # is a positive constant, then 

EIS~cJ~=o(c) as c ~ o o .  (2.6) 

The equivalence of (2.1) and (2.2) is proved in [11], the equivalence of (2.1) 
and (2.3) is proved in [12], (2.4) obviously implies (2.3) and the converse follows 
from the first part  of the following lemma. (2.5) and (2.6) are proved in [8]. 

Lemma 2.2. I f  EJX[r < o% then 

E max ISy<8. max EIS/, 
1 <-k<-n " 1 <-k<-n 

E m a x y k l  ~ < 8.  EIS,I ~, 

I f  E ( X  +)~ < ~ ,  then 

r > 0 ,  

r > l .  

r > 0 ,  

r>_l .  

(2.7) 

(2.7') 

(2.8) 

(2.8') 

E m a x  �9 max E(S~)',  l_<k_<. ( s 2 ) r <  8 l_<k_<. 

E max (S~-)r < 8 �9 E(S+~) ~, 
1 <--k<--n 

S ~ Note. (2.7') follows from [4], 337. Since { ,},=1 is a martingale when r >  1, 
{I ,[ },=1 and ~ , ,  ,,=1 are non-negative submartingales. Therefore,  

max max EISy=EISy and l<_k<_nE(S+)r=g(s+)" 
1 <-k<-n 

and hence (2.7) and (2.7') are the same if r > 1 and so are (2.8) and (2.8'). 

Proof Let #(X) denote a median of X. By integrating the L6vy-inequalities 
([11], 247), it follows that 

E m a x  ISk - -  # ( S  k - Sn)Jr ~ 2 E IS,I ~, (2.9) 
1 <-k<-n 

E max ((S k - #(S k - S,)) +)r N 2 E(S +)'. (2.10) 
l < k < n  

By Markov 's  inequality, P(IXI > (2. E IXI~) ~/~) < �89 Thus, [p(X)l r < 2 E IX[ r and hence 

I#(S,)[r<2EbSy and #(S+)~<2E(S+) r. (2.11) 

Thus, (2.9), (2.11) and the c -inequalities yield 

E max [ S T < c , .  E max [Sk--#(Sk--S.)I~+C~ " max [#(Sk-S,)[ ~ 
1 <-k<-n - -  1 <-k<-n 1 <-k<-n 

< 2 c .  EIS,I" + 2cr �9 max EISkJr <4c~ . max E[Skt ~. 
l<_k<n l<_k<~n 

Since 4 c, < 8 if 0 < r < 2, (2.7) is completely proved.  

Similarly, since (a + b) + < a + + b +, where a and be are real numbers,  

E max (S~)~<c~ . E m a x ( ( S ~ , - # ( S  k -  S,))+)~+c~ " m a x ( ( # ( S k -  S,))+) ~ 
l<k<_n 

<= 2 E(S+. + S.) 
1 --k--n 

N 4 c .  max  E( s+) rN8  . max E(S~) ~ if 0 < r < 2  
l<k<_n l<--k<--n 
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and thus (2.8) is proved for 0 < r < 2  and (2.8') for 1 < r < 2 .  If r >  1, E max (S~-)r< 
l < k < _ n  

�9 E(S,+) ~ by Doob's inequality, ([4], 317). Since ( ~ r  t~___8 if r >  1.3, (2.8) 
\ r - l / -  

and (2.8') also hold when r > 2 and so the proof is complete. 
Now, let {X(t),t>__O} be a separable random process with independent, 

stationary increments. As pointed out in the introduction, it is no restriction to 
assume that the process is stochastically continuous and that the sample functions 
are continuous from the right. Suppose that the mean is zero whenever it exists. 

Lemma 2.3. I f  ElX(1)[" < 0% then 

E sup [X(s)[~__<8 �9 sup E[X(s)F<oo, r > 0 ,  (2.12) 
O<_s<~t O<_s<_t 

g sup IX(s)lr<8.EIX(t)l~<oo, r > l .  (2.12') 
O<_s<_t 

I f  E(X(1)+)r < oo, then 

E sup (X(s)+)r<8 �9 sup E(X(s)+)'<oo, r > 0 ,  (2.13) 
O<=s<=t O<_s<_t 

Eosup(X(s)+)~< 8. E(X(t)+)r< oo, r >  1. (2.13') 

For a separable, stochastically continuous random process every Proof 
countable dense subset of the parameter set is a separating set (see [11], 510). Let 

I~ t = 0, 2"' 2"-1 . . . . .  t and set I t=  U,= o i ,  = lim I t. By (2.7), 

E max IX(s)] r < 8- max E IX(s)l r <_ 8. sup< E IX(s)l r. 
s s l tn  sr  - -  0 - s - t  

Since the sets I~ t are monotonically increasing, it follows that 

E sup IX(s)lr<8 �9 sup EIX(s)l" 
s s I  t O < _ s < t  

and since I t is a separating set for {X(s), 0 < s__< t} it follows that 

sup [X(s)l~= sup IX(s)l'. 
Thus, if r> 1, then s~;, O<_s<_t 

E sup IX(s)lr__<8 �9 sup ElX(s)l~=8 . E IX(t)lr< 0% 
O<_s<_t O <s <<t  

where the last equality follows from martingale theory. 

Now, let 0 < r < 1. In this case the finiteness is no longer obvious, since the 
supremum is taken over all s belonging to an interval. Set g(u)=ElX(u)[ r, u>O. 
Then, g(O)=O, and, by the c,-inequalities, g(u) is a measurable, non-negative 
subadditive function. It now follows from [10], Chapter VII, that g(u) is bounded 
on finite intervals and so 

E sup [X(s)[~__<8. sup EIX(s)[~< oo, 
O<_s<_t O<_s<_t 

which completes the proof of (2.12). 

The proofs of (2.13) and (2.13') are similar and therefore omitted. 
23 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 31 
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Theorem 2.1. Let 0 < r < 2. The following statements are equivalent: 

EIX(1)I'< ~ ,  (EX(t)=O if r> 1), (2.14) 

t-1/, .  X( t )  . . . .  >0  as t -~oO,  (2.15) 

EIX(t) lr=o(t) ,  i.e. t -1/r. X( t )  " ,0 as t ~ ,  (2.16) 

E sup IS(sg=o(t), i.e. t -1/ ' .  sup X ( s ) - ~ O  as t ~ .  (2.17) 
O<s<-t O<s<-t 

I f  {z(c), c > O} is a non-decreasing family  of stopping times such that E z(c)< oo 
and E z ( c ) 7  oe as c---~ 0% then (2.14) implies that 

EIX(z(c) ) l '=o(Ez(c) )  as c - - ~ .  (2.18) 

I f  moreover, c -1 .  E z(c)--~ it as c-+ ~ ,  where It is a positive constant, then 

EIX(z(c))[ '=o(c ) as c--~oo. (2.19) 

Proof  Set Yo=0, Y k = X ( k ) - X ( k - 1 ) ,  k--1, 2, .... Obviously, X ( n ) = ~ = l  Yk, 
n=> 1. By Lemma 2.1, (2.15)-(2.17) each imply (2.14). 

Now, suppose that (2.14) holds and define 

V,= sup ]X( t ) -X( s ) [  and U,= sup [ X ( s ) - X ( n - 1 ) [ ,  n > l .  (2.20) 
n--1 <s,t<=n n - 1  <~s<n 

V,< 2 U,, and by the stationarity and Lemma 2.3, 

E V f < 2 E U [ = 2 E U ; = 2 E  sup ix ( s ) ,<  oo. (2.21) 
O_<s_<l 

Thus, {V,},~ 1 and {U,}n~=l are sequences of i.i.d, random variables having finite 
moments of order r. 

From (2.2) we obtain that n -1/ ' .  X(n)  .... ~0 as n ~ .  Furthermore, by the 
strong law of large numbers, n -1. ~,=1 U [ ~  E U~I as n ~ 0% from which it 
follows that 

n -I/ ' .  U, .... ,0 as n---~oo. (2.22) 

(2.15) now follows by observing that 

t-- l l , .  X(t)  = t -  11,. X([t]) + t -  1/,. ( X ( t ) -  X([t])) 
and that 

t -11". I X ( t ) - X ( [ t ] ) [  < 2 .  t - l I t "  U[0+I. 
Next (2.15)-(2.17) are considered. 

_ " ~  r C ElX( t ) r  <<_c, �9 ElX([t])lr +c ,  . E l x ( t ) - s O - t ] ) [  =c, .  ElX([t]) l  + r" E sup IX(s)l r 
O_<s_<l 

= o ( [ t ] ) + c / E U ; = o ( t )  as t--~ ~ ,  

by (2.3) and (2.21). Thus, (2.14) implies (2.16). (2.17) now follows from (2.16) and 
Lcmma 2.3 and the first part of the theorem is proved. 

Let -d=-d(c)=z if ~ is a positive integer and let ~ ' = [ z ] + 1  otherwise. This 
makcs z' an integer valued stopping time because 

{ z ' = l } = { O < z < = l } e a { X ( t ) ;  t < l }  
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and 
{ ~ ' = n } = { n - l < z < n } e a { X ( t ) ;  t<=n}, n>_>_2. 

Let l < r < 2 .  

"C' Itx(zG < Itx( )L+ IIX(~)-x(~gllr < Y~ Y~ + IIE, L 
k = l  r 

= (o(E z')) 1/r + 2 .  tl U~,tl~ = (o(E T)) '/r + 2 I[ U~, !It, 

by (2.5). Let 0 < r <  1. Similarly, EIX(~)I~<EIX(q)(+2. EU~, =o(E~)+2-EU~. 
To prove (2.18) it therefore remains to show that 

E U ~ = o ( E r ' ) = o ( E r )  as c--~w. (2.23) 

But this follows by exactly the method used in the proofs of Lemmas 2.4 and 3.2 
in [73, (which were inspireA by [63). Thus, (2.18) follows, from which (2.19) is 
immediate. 

Remark. If r =  1, (2.15) is known as the strong law of large numbers. See [43, 
364. 

3 ,  

Let {X(t); t > 0} be a separable random process with independent, stationary 
increments, such that E X ( t ) =  tO, 0 < 0  < co, and suppose, without restriction, that 
the process is stochastically continuous and that the sample functions are continu- 
ous from the right. 

Define the first passage time 

T=  T(c) =inf  {t; X(t)  > c . a(t)}, (3.1) 

where c > 0 and a(y) is positive, bounded on compact subsets of [0, co) and such 
that a(y) = o(y) as y--, co. 

The overshoot is defined as 

Z(  T) = X ( T ) -  c . a( T). (3.2) 

By the strong law of large numbers, T is a proper random variable, i.e. 
P ( T  < co)= 1. 

The purpose of this section is to investigate the behaviour of the first passage 
time, and to derive asymptotic properties as c--, oo. Most results have been ob- 
tained earlier for processes without positive jumps, (see [7]), but with this assump- 
tion the overshoot vanishes, (P (Z (T )= O)= I ) .  By the results of Section2 this 
extra assumption can be removed. The proofs of the theorems below are essentially 
as follows: The results of Section 2 are used to take care of the overshoot and the 
rest then follows as in [7]. We therefore confine ourselves to show how the results 
of Section 2 are applied and simply refer to [7] for the rest of the proofs. 

Theorem 3.1. Let  r > 1. 

E(X(1)-)r < co ~ E T r <  co, (3.3) 

EIX(1)I' < co ~ E(X(T) ) r<  co. (3.4) 
23* 
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I f  Eexp { s . X ( 1 ) - } < ~ ,  Isl<s 0, s0>0, then there exists a n  S l > 0  such that 
E exp {s T} < ~ ,  Isl < s 1 �9 

Proof The proofs given in [7], Section 4, for processes without positive 
jumps, of (3.3) and the last assertion are also applicable here. Thus, only (3.4) has 
to be considered. 

Throughout this section, let V, and U, be defined by (2.20), set v = T and define 
z' as in the proof of (2.18). Obviously, 

X(T) < c. a ( T - )  + X ( T ) -  X ( T - ) ,  (3.5) 

[ X ( T ) - X ( T - ) I  < V~, <2 U~, (3.6) 

and by Lemma 2.1 of [7], (2.21) and (3.3) it follows that 

If a(y) = - 1, then 

EU~ <=(Ez'. EU;)I/r < cz3. 

UX(T) llr<=c + HX(T)- X(T-)Hr < oo 

and the general case now follows as in [73, Theorem 3.1. 

Assume furthermore, during the rest of this section that a(y) is non-decreasing 
and, for sufficiently large values of y, concave, differentiable and regularly varying 
at infinity with exponent p, 0 ~ p < l ,  i.e. a(y)=yP.L(y), where L(y) is slowly 
varying at infinity. Let 2=2(c) be the solution of the equation c. a(y)=Oy, see 
[15] and [7]. This solution is unique if c is sufficiently large. In the following, 
asymptotic results for the first passage time and the overshoot are established. 

Let us start by showing how the results of Section 2 can be applied to investigate 
the behaviour of the overshoot. 

Define 
~'n= sup (X(t)-X(s)) + and U,= su<p<(X(s)-X(n-1)) +, n > l .  (3.7) 

n - 1  <s, t<-n n - 1  - s _ n  

By stationarity and (2.13') 

^ A (3.8) EV/, < 2EUI < 16. E(X(1)+)~< oo. 

Thus, {~}~=1 ~ and {U,},= 1 ^  ~ are sequences of i.i.d, random variables with finite 
moments of order r. 

Since a(y) is non-decreasing, (3.6) may be replaced by 

O<Z(T)< X ( T ) - X ( T - ) < ~ ,  <2f@ <ZU~,. (3.9) 

Lemma 3.1. Let r>= 1. I f  EIX(1)[~ < 0% then 

T -1/'. U~, a's'>0 and T-1/ ' .Z(T)  .... ,0 as c ~ o o .  (3.10) 

If  E(X(1)+)~< ~ ,  then 

EU(,=o(ET) and E(Z(T))~=o(ET) as c ~ .  (3.11) 

Proof Since z . . . . .  ,+Go as c ~  it follows from (2.22) that (z') -1/~- U~, a's',0 
as c ~  ~ ,  and so T -1/r. U~, a's',O as c---~ ~ (because 0 < z ' -  T <  1). 
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By exactly the same me thod  as in the p roof  of [7], L e m m a s  2.4 and 3.2, (cp. 
(2.23) above),  it follows that  EfJ( ,=o(E~' )=o(ET)  as c ~  oo. The p roo f  is com- 
pleted by applying (3.9). 

Theorem 3.2. 2 -1 .  T . . . .  ' 1 a s  c - - *  oo. 

Proof Since T - ~  + oo as c ~ oo, the s t rong law of large numbers  yields 

T - 1 . X ( T )  .... >0 as e--~ oo, 

which, combined  with (3.10) and the fact that  

c . a( T) 
implies t h a t -  

T 

c. a(T) < X ( T ) =  c. a(T)+ Z(T) ,  

.... ,0  as c--~ oo and, since c - a ( 2 ) = 2 0 ,  

(3.12) 

The result now follows as in [15], L e m m a  4 and  [7], T h e o r e m  3.3. 
Theorem 3.3. Let r >_ 1. 

E(X(1)-)r < o o ~  2-r .  ETr--> I as c - , o o ,  (3.14) 

E ( X ( 1 ) + ) r < o o ~ 2 - 1 . E ( Z ( T ) ) * ~ O  as c ~ o o .  (3.15) 

Proof In [7], Section 4, (3.14) is p roved  for processes without  posit ive jumps,  
but the same p roof  applies here. (3.15) follows f rom (3.11) and (3.14). 

Theorem 3.4. Suppose that Var X(1) = a 2 < oo. Then 

P ( T - 2 < O  -1 . ( l - p )  -1 . a l ~ . x ) - - ~ ( x  ) as c---~oo, (3.16) 
where 

1 22 
q~(x)-- j ~ e - y l  dy. 

_| y 2 ~  

Proof. The p roo f  follows the ideas of  [13] and [7]. 

X ( T ) -  TO X(r')-~:'O (r '--T)O X ( T ) - X ( r ' )  
- ~ + 

= A 1 (T) + A2(T ) + A3(T ). 

P(AI(T)<=x)~ 4)(x) as c--* oo by [13], T h e o r e m  1. A2(T ) a.~., 0 as c ~ oo, because 
0 < r ' - T < l  and z'- .... , +oo as c--.oo. JX(T)-X(r ' )r<V~,~2U~, and thus, by 
(3.10), it follows that  A 3 (T) .... , 0 as c-- ,  c~. By Cram6r ' s  theorem, 

e(X(T)-TO<=af f~ .x ) - - -~q)(x  ) as c-- ,  oo 

and by Theo rem 3.2 and Cram6r ' s  theorem,  

P ( X ( T ) -  TO <= a ] ~ .  x) ~ cI)(x) as c--~ 0% (3.17) 

which combined  with (3.10), (3.12) and Cram6r ' s  t heorem yields 

P ( c . a ( T ) - T O G a ~ f 2 . x ) - . q ~ ( x )  as c - ~ .  (3.18) 

2. a( T) 
. . . .  *1 as c--~ oo. (3.13) 

T. a(2) 
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The  conclusion now follows as in [7-1. 

Theorem 3.5. I f E  I X ( D r <  o% 1 < r < 2 ,  then 

2 - x / ~ - ( T - 2 )  a's~'0 as C---).00, 

2-1/" Z(T) a'sx-~0 as c---~oo. 

(3.19) 

(3.20) 

Proof (3.20) follows f rom (3.10) and T h e o r e m  3.2. 

Since T a.s.~ + ~ ,  T h e o r e m  2.1 yields 

T -1/r. ( X ( T ) -  TO) ..... , 0  as c ~  o% (3.21) 

which, together  with Theo rem 3.2, (3.12) and  (3.20), implies that  

2 -1/~. (e. a ( T ) -  TO) .... ,0  as c ~  oo. (3.22) 

The rest of  the p roof  follows as in [7]. 

Finally, a result under  the assumpt ion  that  a(y) = 1, y > O, i.e. T =  inf{t; X(t) > e}, 
c > 0, in which case 2 = 2(c) = c/O. 

Theorem 3.6. I f  E(X(1)+) 2 < oo, then 

c/O<ET<c/O+O(1) as c--~oo. (3.23) 

I f  Var X(1) = a 2 < o% then 

V o . 2 c  
ar r = - - ~ - + o ( c )  as c---, oo. (3.24) 

I f  E IX(1)l'< 0% 1 __<r<2, then 

c - 1 / ~ . ( T - o ) - Z ~ O  as c---~oo. (3.25) 

Proof Define TN=inf{t;X(t)>c, t > l  is an integer} as in [7], Sect ion4.  

0_< T_< T N and by [7], Theorems  2.6 and 2.7, ETN=-Co-+O(1) as c---~ oo Obviously,  

if E(X(1)+) 2 < oo. By Wald 's  lernma, EX(T)  = O. ET. Thus, c < EX(T)  = O. ET<___ 
O. ETN=c+O(1 ) as c--~ oo and thus (3.23) is proved.  

( 0 )  2 N o w  suppose that  Var  X(1) = a 2 < oo. Var  T =  E T -  - T -  and 

by (3.23), T -  = O(1) as c ~ oo. It therefore suffices to prove  

( o; E T -  = ~ + o ( c )  as c - - ,oc .  (3.26) 

By Theo rem 3.4 and Fa tou ' s  l e m m a  we obta in  

{t~ ol} ! i rnE ~ g - ]  �9 T -  >=1 
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and it therefore remains to prove the opposite inequality. 

HOZ-cl]2 < ]IX(T)- T0[I2 + ]lX(Z)-c[]2= !IX(T)- ZOIt2 + ]IZ(T)IIz 
[ O.2 C ~1/2 

=(~2. ET)1/2+o(cl/2)< ~ T + O ( 1 ) }  +o(dJ2) as c ~ o o ,  

by [9], Theorem 3, (3.15) and (3.23). This proves (3.26). 
If E I X(1)l r < Go, 1 < r < 2, the above reasoning yields 

IlOr-c[1,<[lx(r)-ro[l,+]lz(r)H~=o(d/r) as c-*o% 

by (2.19) and (3.15), and the opposite inequality follows from (3.19) and Fatou's 
lemma. 

The proof is terminated. 
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