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Ergodic Properties of a Class
of Piecewise Linear Transformations

Keith M. Wilkinson

1. Introduction

Rényi, in his fundamental paper on ergodic properties of transformations
associated with f-expansions [15], showed that the f-transformation Tw=
Bw(mod one), f>1, of the unit interval onto itself is ergodic with respect to
Lebesgue measure and possesses an invariant measure equivalent to Lebesgue
measure. The actual form of the invariant measure was found in [3] and [12].
Rohlin [16] then showed that the S-transformation is exact. In [13], Parry
showed that the linear mod one transformation Tew=fw + o (mod one), i>1,
0<a<1, of the unit interval onto itself possesses an invariant measure and
discussed when this measure is equivalent to Lebesgue measure. More recently
Shiokawa [17] introduced a class of transformations which generalise the
p-transformation, possess an invariant measure equivalent to Lebesgue measure
and are exact.

Because of the recent work on the classification problem for measure-preserv-
ing transformations it is of interest to decide which endomorphisms are weak
Bernoulli since the natural extension [16] of a weak Bernoulli endomorphism is
a Bernoulli automorphism (see [7] and [11]). The S-transformation has been
shown to be weak Bernoulli in [1] and [18] and the linear mod one transforma-
tion with f>2 has been shown to be weak Bernoulli in [19].

In this paper we introduce a class .# of piecewise linear transformations of
the unit interval onto itself which contains the f-transformation, linear mod one
transformation and Shiokawa’s generalisation of the f-transformation as special
cases. We shall show the existence of an invariant measure for Te.¥ which is
equivalent to Lebesgue measure and shall discuss a subclass of .% whose members
are Markov shifts, We then demonstrate that each Te.? is weak Bernoulli, our
proof being similar to that used in [18] for the S-transformation. We finally
look at an example which generalises the linear mod one transformation in
essentially the same way that Shiokawa’s transformation generalises the B-trans-
formation and discuss two examples of linear mod one transformations which
are not in the class % but are nevertheless weak Bernoulli.

Throughout this paper (@2, 4, 1) will represent the probability space of Q the
unit interval [0, 1) with # the Borel subsets of  and 1 Lebesgue measure on 4.

2. The Class &

Throughout this paper I will represent either a subset of the non-negative
integers of the type {0, 1, ..., N} or the set of non-negative integers itself. We also
let b;, iel, be a collection of real numbers satisfying

bi > O and Z bi = 1.
iel
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Now let aq=0 and define a; _ =a;+b;, ieL Our transformation T: Q— Q is
then defined for wela;, a;. ) by

(2.1) To=pw—a)+o;

where B=inf §;>1 and for each iel 0=Za;<1, y;=p;b;+o; = 1.
iel

Since T'is piecewise linear it is a measurable and non-singular transformation
of (2,4, 7) to itself.
. Define P to be the partition of Q with atoms B=[a;, a;_,), iel. If A(TB)=1
(ie. if a;=0, y,=1) we say that P, is a full interval of rank one, otherwise P, is said
to be non-full. For n=1 we let \/?ZL T~"P represent the partition of Q with
atoms

B,AT'P,n--nT~"=Dp jel 1Zk<n,

and we shall use the notation A(j,,j,, ..., ) or A(J,), where J, is understood to
mean the vector (j;,j;,...,J,), to represent this atom of \/7Z T—*P. We say
that an atom A4(J,) of \/j=4 T™*P is a full interval of rank n if A(T"4(J,))=1
and non-full otherwise. Alternatively A(J,)e \/?Z% TP is a full interval of rank
n if and only if ypm,,(@)=1 A-a.e. where here and in the sequel yz(w)-is the
indicator function of the set E.

Note that by the linearity of 7, if B, i€l is a full interval of rank one,
AB)=b;=1/p;
whereas if P, is non-full,
A(R)=b;<1/B;.

Moreover, if the atom A(jy, j,, ..., j,) of Vizh T %P is full,
A’(A(]l a.jZ’ “').jn)):l/ﬁhﬁjz ﬁjn

whereas if 4(,j,,...,j,) is non-full,

MAGisdzs i) <UBi By - B

Hence all atoms of \/?ZL T ~*P have Lebesgue measure no greater than 0(n)="".
This implies that P is a generator for T
If AG,,j,5-..,J,) is an atom of \/7Z % T~*P with A(4(,.j,,.-..J,))>0 then the

atoms Ay, jzs ..., jn, 1), i€l of VV/2_o T7*P are subsets of 4(jy,j,,...,J,) and

U A(ilaj27 ~"=jna i)=A(il’j27 7.}n)

iel
Among the sets A(j;,ja,.-->Ja» 1), i€L, with non-zero Lebesgue measure some
will be full and the remainder non-full intervals of rank n+1. We shall let
11, ], ---»J,) be the cardinality of the set of iel for which A(4(iy,ja, - s jns 1))>0

and A(j;,j,,---,jn» 1) i non-full. That is to say I(j, /s, ...,j,) is the number of
non-full intervals of rank n+1 which are subsets of A4(j,,j,, -..,Jj,). We then let

In=Sup101 aj2’ ---ajn)
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where the supremum is taken over all A(j,j,,....j)e Vich T~*P with
MAGyajzs---»jn))>0 and we define
[=supl,
nz0
where [, is the number of non-full intervals of rank 1. In order to restrict the
occurrence of non-full intervals we impose the following condition on our class
of transformations:

(2.2) B>1.

We shall denote by & the class of transformations of the form (2.1) satisfying
(2.2) and in the sequel, unless otherwise stated, we shall always be working with
transformations in the class . Note that (2.2) ensures the existence of full
intervals of any rank and that Te.% is onto.

We end this section with three examples of Te . #. A generalisation of these
examples is studied in § 8.

(1) Choose f>1 and let N=[f] ([z] denotes the integer part of z), I=
{0,1,...,N}, b;=1/8,0=iEN—1, by=1—N/B, B;=8, 0,=0, icL Then defining
T by (2.1) we obtain the transformation T: Q@ — Q given by

Tw=pfw (mod one).

The ergodic properties of this transformation have previously been studied in
[1, 3, 12, 15, 16] and [18].

Now all atoms of P with the possible exception of B, are full. Hence if
AGy . jys--es),) is an atom of \/EZ§ T %P with non-zero Lebesgue measure and
if the atoms of \/?_, T %P which are subsets of A(j,j,,...,j,) with non-zero
Lebesgue measure are

A(jlajl?"'5jnaj)’ Oé.]é‘[:'](]l’]z”]n)

then the only one of these atoms which may be non-full is A(,,j;,...,Jju J).
Hence [£1<f and so Te.%. Note that in the special case of § integral there are
no non-full intervals of any rank.

(2) Choose f>1 and O0<a<1 and let N=[f+a]. We distinguish between
the two cases (i) f+a=N and (ii) f+a>N. In case (i) we let I={0,1,..., N—1},
bo=(1—w)/B, b;=1/8, 1Zi=N—-1, B;=f, 0ZiEN-1, gy=a and o;=0,
1=i=N—1 whereas in case (i) we let I={0,1,..., N}, bg=(1—a)/B, b;=1/8,
ISiEN-1, by=1—-(N-a)/B, B;=P, 0<i<N, ag=0a and o;=0, 1ZiZ<N. In
either case, defining T by (2.1), we obtain the transformation T of Q onto itself

defined b
Y To=Fw+a (mod one).

The ergodic properties of this transformation have previously been studied in
[13] and [19].

In case (i) each atom of P is full except for F,. Hence if the atom A, , j,, ..., j,)
of \/}Z6 T™*P has non-zero Lebesgue measure and the atoms of \/}_, TP
with non-zero Lebesgue measure which are subsets of A(jy,j,,...,J,) are

A(jl:ij'“’jnaj)’ J=J(]1,]2,,]")§]§N~—1,

21*
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then the only one of these atoms which may be non-full is A(;,js,...,Jj,, J).
Hence [=1 and so Te%.

In case (ii) each atom of P is full except for B, and B, and hence, arguing in
a similar way to the above, [=2. Hence we must assume f>2 for Tw=fw+a
(mod one) to be in £ in this case.

(3) Let b;, iel, satisfy the conditions imposed at the beginning of this section
and for each iel let B;=1/b;, o;=0. If T is defined by (2.1) then all atoms of P
are full and hence [=0. Moreover T preserves Lebesgue measure and is isomorphic
to the Bernoulli endomorphism with probabilities b;, iel. Any Bernoulli endo-
morphism with finite or countably infinite state space can be represented in this
way.

Note that in the definition of the class ¥ we restrict attention to piecewise
linear transformations with positive slopes f;, iel. We could allow some or all
of the f;, iel, to be negative, replacing conditions on the slope by conditions on
[B;1, iel, and obtain all of the results obtained in the sequel. As there is a
straightforward isomorphism between the transformation with possibly negative
slopes f5; on P and the transformation with positive slopes |f;| on B, iel, we
chose not to consider this extra generality further.

3. Relationship of # with f-Expansions

Following Rényi’s paper [15] much has been written about ergodic properties
of transformations associated with f-expansions. We shall briefly introduce the
terminology of f~expansions and then show that the transformations in the class &
may be considered to be the transformation associated with particular f-ex-
pansions.

Let f be a strictly monotonic function mapping a subset D of the non-negative
real numbers onto [0, 1). The associated transformation 7, of [0, 1) to itself is
defined by

T,0=f""(w) (mod one).

Because of the monotonicity of f, T, is a measureable, non-singular transforma-
tion of (2, 4, A) to itself. The choice of f'is always made so as to ensure that T} is
onto. This is done by insisting that for each we[0, 1) there is at least one non-
negative integer k for which k +weD.

For n= 1, we define a stochastic process by
X, (0)=Lf 1T} w)],

this stochastic process being known as the sequence of digits in the f-expansion
of w. The state space of this stochastic process, denoted by A, being known as
the set of admissible digits. Note that A, is a subset of the non-negative integers.

We say that [ gives rise to f~expansions with independent digits if, for any
a,, 4, ...,a,€ Ay, there is a point we with

X{w)=a;, 1=iZn,

otherwise the digits are said to be dependent. This terminology was introduced
by Rényi [15] and should not be confused with stochastic independence of the
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process X, (w), n=1. Note that
o=f(X;(@)=f(X(@)+ -+ (X, (@) +Tfw)...))
We say that f gives rise to valid f~expansions if
o= JLH; f;l(Xl (CU), X2((J)), ey Xn(w))

= lim f(X, (@) +/(X; @)+ + (X, (@) ...)

where f is the unique monotonic extension of f to the domain [0, co0) and range
[0, 1]. Note that for some wefQ there may be n=1 for which 77 w=0 and in this

case
w=[(X1(0), X;(0), .., X,()),

the remainder of the digits X, , .(w), k=1, representing the digits in the f~expansion
of 0. If this is the case we say that © has a finite f~expansion and we always take n
to be minimal.

In order to show that Te.% fits into the category of transformations derived
from f-expansions we let D be the subset of [0, c0) defined by

D= [k+ay, k+7)

kel

and define f on [k+a,, k+y,), kel, by
G.1 JX¥)=ap+(x— 0o —k)/By.

Since the only possible accumulation point of the points a,, kel is 1 fis a mapping
onto [0, 1). Moreover, since at least one B, kel is full, D satisfies the condition
to ensure T, is onto and if we[ay, a; 1),
T;(w)=f~'(w) (mod one)
=pl0—a)+o.

The set of admissible digits for these f~expansions is I and, since for each kel
B=lay, apy ) ={0: X, (0)=k},
foranyk,, k,, ..., k,el
Atk kg, .. k) ={w: X (w)=k,, X,(0)=k,, ..., X,(w)=k,}.

Hence the fact that not all atoms of \/?Z} T ~* P need be full shows that f-expan-
sions with f as defined in (3.1) need not have independent digits. However since P
is a generator for T these f~expansions are valid.

We conclude this section with a lemma which gives a useful expression for
the fexpansion of a point we Q.

(3.2) Lemma. For weQ,
0= g(X,,()Blo,n)
n=0
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where X,(w), n= 1, are the digits in the f-expansion of w,

1
B(w, n)={ ’
l/ﬁXl(w) ﬂXz(w) BXn(w)a

g(k) =f(k) — 0t/ B =t — %/ B«
Proof. Since, for all n=1,

o=f(X(), X;(@), ..., X,(0)+ T} o)

and for kel

it will suffice to show that
n—1

(33)  f(Xi(w) Xy (), ..., X @)+ Tro)= Y g(X;.1(0) Blw, k)+B(w,n) T} o.
k=0

We prove (3.3) by induction. First note that, by the definition of f in (3.1), (3.3) is
true for n=1. We now assume that (3.3) is true for n=1, 2, ..., N— 1. In particular

S 1(Xa (@), X5(@), ..., Xy(w)+ TfN w)

= %, 8(Xe,2(0) B@.k+ 1) +By, 0 B@ N T o,
Hence, B
Tu(X (@), %), ..., Xy (@) + T o) = f(X (@)} + fy 1(X2(0), ..., Xy (@)+ T} )

1
=aX1(w)+E(_F) {fN_l(Xz(w), oo Xy () + Tcho)}
N-1

= Y g(Xi,1(@) B(w,k)+Blo, N) TF o

k=0

and the lemma is proved.

4. Some Properties of Full Intervals

In this section we introduce some results on the way full intervals may be
used to approximate other subintervals of Q.

(4.1) Lemma. For any >0 we can find k=k(e) such that for all n21 we can fill
Q to within a set of Lebesgue measure ¢ with disjoint full intervals of ranks between n
and n+k.

Proof. Fill Q as far as possible with full intervals of rank n. Suppose that
A(ky, k,, ..., k,) is a non-full interval of rank n. Its Lebesgue measure is smaller
than 1/B;, By, --- By, If we fill Ak, k,, ..., k,) as far as possible with full intervals
of rank n+ 1 the remainder will have Lebesgue measure smaller than

(Biy Br, --- Bi) " (U/B).

If we now fill this remainder with full intervals of rank n+2, what is left has
Lebesgue measure smaller than

(Bi, B --- Br) /).
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Continuing, the remainder, after filling A(k;,%,, ..., k,) as far as possible with
full intervals of ranks n+1, n+2, ..., n+k, will have Lebesgue measure no larger
than

(B, Bry - Bu) " (VB

By condition (2.2) the lemma will be proved if we show that

4.2) Fm)=Y (B, Brs --- Bi,)

is bounded uniformly in n where the sum is over all A(k,, k,, ..., k,) with non-zero
Lebesgue measure. Now

(4.3) F)=3" By, B, .- Bu) ™ + 2% By By - Br) ™

where ) ! represents the sum over 4(k, , k,, ..., k,) which are full and 32 represents
the sum over A(ky,k,, ..., k,) which are non-full and have non-zero Lebesgue
measure. But

> (Bi Bry - Br) IS

and

44) 22 (B Bz - B) T SF(— D (UP).

Hence
Fm=1+Fn—-1)(1/p), nzl,

where we put F(0)=1 and so

Fim=(1-1p~', nzl,
yielding the result.
The proof of this lemma in the special case n=1 yields

(4.5) Corollary. Let B, be the union of those atoms A(ky , k,, ..., k)of Vit T~*P
which are full but none of A(ky, k,, ..., ky), 1Sm=<n—1,is full, then

S AB)=1

(4.6) Corollary. Given any sub-interval E of Q and ¢>0 we can find n,=n,(c)
and k=k(g) such that for n=n, we may fill E to within a set of Lebesgue measure ¢
with disjoint full intervals of ranks between n and n+k.

Proof. Using (4.1) we can find k (¢) such that for any n = 1 we may fill Q to within
a set of Lebesgue measure ¢/3 by full intervals of ranks between n and n+k.
However, the end-points of the interval E may be contained in two of these full
intervals. Choosing n; so that 8(n,)<e¢/3 yields the result.

(4.7) Corollary. Any sub-interval E of Q is an at most countable union of disjoint
Sull intervals (to within a set of Lebesgue measure zero ).

Proof. By (4.6) we can fill E to within a set of Lebesgue measure 1/m, m=2,
by full intervals of ranks between n,(1/m) and n,(1/m)+k(1/m). Let the union of



310 K.M. Wilkinson

these full intervals be denoted by D,,. Then
E={J D,
m=2

and each D,, is an at most countable union of full intervals.

The final lemma of this section, while being simple to state and prove is crucial
to the remainder of the paper.

(4.8) Lemma. If F is a full interval of rank n and Be %, then
MFAT"B)

A(F)
Proof. T" maps F linearly onto Q and F T " B onto B.

=A(B).

5. The Invariant Measure

In this section we shall show that for each T'e.# there is a probability measure
1 on (©, %) which is invariant under T and equivalent to Lebesgue measure. We
then introduce a version of du/d/ and examine its discontinuities. In order to
prove the ergodicity of Te.# with respect to Lebesgue measure we shall need the
following result of Knopp [10], a proof of which may be found in [19].

(5.1) Lemma. If Ee€# with A(E)>0 and there is a class .# of sub-intervals of Q
such that

(a) Every open sub-interval of Q is an at most countable disjoint union of these
sub-intervals to within a set of Lebesgue measure zero, and

(b) For each Fe #, A(E N F)ZyA(F), where y>0 is independent of F, then
AME)=1.
Our first theorem in this section generalises a theorem of Rényi [15] for the
B-transformation.

(5.2) Theorem. If Te.¥ then

(i) T is ergodic with respect to 4,

(ii) There is a probability measure u on (R, %) which is invariant with respect
to T and such that for each Fe %
(5.3) A=Y AF)Su(F)=(L-YP~ A(F).

Proof. (i) Suppose T~ E=Ee# and A(E)>0. By (4.7) we see that the set .¥
of all full intervals satisfies (a) of (5.1). Also, by (4.8), for each Fe.Z,

MEnNF)=A(E) A(F)

and so (b) of (5.1) is satisfied with y=A(E). Hence, by (5.1), A(E)=1.
(ii) Let Fe® and K,=(k, k,, ..., k,) where k;el, L <i<n. If A(4(K,))>0, then

MT™"F A AK)SAF) By B - Bo) ™' nZl.
Hence,

(54) MTT"F)SMUF)Fm=AF)(1-1/p), n2l,
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where F(n) is defined by (4.2). However, if A(K,) is a full interval of rank », then
J(T~"F 0 A(K,)=4(F) By, B, - Bi,) ™
AT "Fy=G(n) A(F)

Gm=), (B, Br, - Br) ™
and the sum is over all 4(K,) which are full. Now using (4.3) and (4.4) we see that

Gm)zF(n)—(/p) F(n—1).

Hence

where

Hence for n>1,

(5.5) i Z MT*Fyz— /I(F){I—I— Y (F(k) (I/ﬁ)F(k—l))}gl(F) (1-1/p).

k=1

Thus, combining (5.4) and (5.5), for n21,

(5.6) (1=1/p) A(F) é%i MT*F) (1=t A(F).

The right hand inequality allows us to use the Dunford-Miller ergodic theorem
([4]) to see that

n—1

lim i Z ¥r(T* w)

n— o

exists for A-almost all we Q. We now define for Fe %
1 —k
o (F)=— Z MT+F)

- (7:; 1o w)) di(w)

and using the Dominated Convergence Theorem of Lebesgue integration we sec
that

u(F)=lim p,(F)
exists for all FeZ. Moreover, by the Vitali-Hahn-Saks Theorem ([6] p. 32) s a
probability measure on # which because of (5.6) satisfies (5.3). Also
n+1 A(F)

nr1(F)————

(T F)=
and so, letting n — oo,
w(T ™1 F)=u(F),
L.e. p is invariant under T,
We now list some straightforward corollaries of this theorem. Note that

since u and A are equivalent all almost everywhere results can refer to either
probability measure. In particular Lemma (4.1) and its corollaries may be stated
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in terms of the invariant measure y rather than A. As we repeatedly use (5.3) we
shall let C=(1-1/8)~! in the sequel.

(5.7) Corollary. If his a version of du/d A then
Cl'sh(w)£C ae

(5.8) Corollary. Te ¥ is weak mixing.

Proof. By [9] pp. 39-41 we have to show that the Cartesian product trans-
formation T xT of the Cartesian product space (Q x 2, & x %, A x 1) is ergodic.
The proof of this is similar to (i) of (5.2) where we take .# as the set of products of
full intervals.

This corollary is based on a remark of Parry [12] with respect to the trans-
formation Tw=pFw (mod one). The next two corollaries are similar to results
proved in [2] for the continued fraction expansion.

(5.9) Corollary. If f is integrable (with respect to u or 1) then
1 n—-1
lim o Y f(TFro)={fw)du(w) ae
n—o k=0

and in particular the asymptotic relative frequency of the digit iel among
X (), X, (@), ...,

) 1 n—1
lim— Y yp(T* )
n—o N gog
is a.e. equal to u(P).

Proof. The proof is an application of the Birkhoff Ergodic Theorem.

(5.10) Corollary. X,(w)e.%,(Q, B, u) (equivalently X, (w) has finite expectation),
n=1, if and only if
Y ib;<oo.

iel

Proof. By (5.3),
C1 Y ib <] X, (@) du(@)= Y in(R)S C Y. ib,.
iel el

iel
(5.11) Corollary. T has finite entropy if and only if
Y b;log ;<

iel

h(T)= ), u(R)log B;.

iel

in which case the entropy is

Proof. By Parry’s formula [14] we see that
h(T)=), u(B)log B;

il
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which by (5.3) is finite if and only if

Y b;log ;< oo.
iel
We now give an expression for a version of the Radon-Nykodym derivative

du/dA. This expression is a particular case of the density of the invariant measure
for a class of transformations studied by Fischer [5]. For n=1, we shall let D,
represent the union of all non-full intervals of rank n which are not subsets of full
intervals of any lower rank, ie. D, is the union of atoms A(k,,k,, ..., k,} of
ezt T%P such that A(k;,k,,...,k,) is non-full for each 1<m=<n. We then
define

dolw)=1

()= Z X1makn) (@) B(w (K, ”)

4(Ky) < Dn

and for n=1

where w(K,)e A(K,).
(5.12) Theorem. The functions ¢,(w), n=0, and

b= 3 Biw)
are Lebesgue integrable and
h(w)=¢ (@)/f ¢(w) di(w)
is a version of dp/d 1.
Proof. Fornz1,

[ @) dd@)=] ¥  rrmamy (@) B(o(K,),n)di(w)

4(Kn) = Dn

= z B(w(Kn)sn)jXT"A(K")(w)dl(w)

4(Kn) < Dn
= Y MT"4(K,)B(w(K,),n)

A(Kn) <D,

where the interchange in the order of summation and integration is justified by the
Monotone Convergence Theorem of Lebesgue integration. Now there are at
most [" atoms of \/;Z§ T ~* P which are subsets of D,. Hence

§ dule) dA(w) < (1/B)"
Moreover, again using the Monotone Convergence Theorem,

0

[l di@)< ¥ (pr=(1-Up~"

n=0

In order to show that h(w) is a version of du/dA we have to show, by a result of
Parry [13], that

¢>(w)=k2l xrp (@) O(fl0+k) [ f(w+k)] Iae
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where f is as defined by (3.1). But
2 Xrp @) Gu( f (0 +R) | f (0 + k)|

kel

=y 2 XTPk(w)XT"A(KH)(.fT((D—I_k))B(w(Kn)’n)ﬁk—l

kel A(Kn)= D,

= Z XTnHA(KnH)(CU) B(a)(Kn+1),”+1)

AKn+1) <D+ g

+ Y B(w(K,, 1), n+1)

A(Kn+1)<Bp+y
=¢n+l(w)+/1(Bn+1)

where B, is as defined in (4.5). Using (4.5) now gives the result.
In the sequel it will be useful to approximate h(w) by

()= z b2(@)/] b (@) dA ()

Note that ¢,(w) is a step function with discontinuities at the end-points of the
intervals T" 4(K,), A(K,)= D, . Hence h,,(w) is a step function with at most

2+ P+ -+ My=1(m)
discontinuities.
Moreover

o) —hy(@)= Y. ¢ )] @)diw)

n=m+1
< Y UBY/fd(w)di(w)=p(m).
n=m+1
We can now extend the results on full-intervals of §4 to full-intervals which
contain no discontinuities of &,,(w).
(5.13) Lemma. For given ¢>0 and m=1 we can find k=k(e, m) and fi="n(c, m)
such that for n=n we can fill Q to within a set of Lebesgue measure (equivalently

u-measure) ¢ with disjoint full intervals of ranks between n and n+k on each of
which h,(w) is constant.

Proof. Choose ny=ng(e,m) so that 0(no)<e/2t(m). Taking away from Q
those atoms of \/7,' T~'P which contain discontinuities in h,,(w) leaves at
most 7{m)+ 1 intervals on each of which k() is constant. Name them

Ay 1Si<tm)+1

where some A; are empty if necessary. Using (4.6) we may find n,(e, m), k;(e, m)
such that for n=n;(e, m) we may fill 4, to within a set of Lebesgue measure

&/2(t(m)+1)
with disjoint full intervals of ranks between n and n+k;(e, m). Taking
i = i\O» s s = ki >
fi(e, m) Oéirg%)ﬂnl(s m), k(e, m) 122132)“ (s, m)

yields the result.
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In [16] Rohlin shows that the p-transformation is exact. We extend this result
to Te # wsing the following criterion of exactness.

(5.14) Theorem ([16]). Let ¥ be a countable system of subsets of Q of positive
measure such that the unions of disjoint sets Ae¥ generate %. If there exists a
positive integer-valued function n(A), Ac.#, and a positive number q such that
w(T"DA)=1 for all Ac# and for any Borel set B< A with measurable image T"“Y B

u(T"B)=qu(B)/u(A)
then T is an exact endomorphism.

(5.15) Theorem. Te.¥ is exact.

Proof. We use (5.14) with .# the set of all full intervals and n(A4) the rank of
the full interval Ae.#. Let Bc A, where Ac.#, and let B =T"“Be#. Then,
using (5.3) and (4.8),

u(B)= CA(B)
=CAANT "“WB)/A(A)
= CA(B)/A(A4)
< Cu(B)/u(A).

Hence the hypotheses of (5.14) are satisfied with g= C>.

6. Markov Properties

Cigler [3] and Smorodinsky [18] have studied the Markov properties of
Tw=Bw (mod one) where § is of a particular form. Shiokawa [17] has used
Cigler’s methods to obtain similar results for his generalisation of the p-trans-
formation. (This generalisation will be discussed in §8.) We generalise these
results to Te.# where restrictions are placed on the images of the end points
of the atoms of P. The method employed is based on that of Cigler [3]. The
first two lemmas give equivalent statements of the conditions used and also a
useful consequence of these conditions.

(6.1) Lemma. In the following, for fixed icl with o;>0, (i) and (ii) are equivalent
and both imply (iii):
(1) Tmai=0, Tk(xi>0, ]ék m— l,

<
(ii) OCizfm(Xl (o) Xaloty), ..., Xm(ai))a «; 4‘=fk(X1 (), Xo(ety), ..., Xk(“i)),
1£k<m—1,

(ill) o; is the end-point of an interval of rank m and hence also the end-point of
an interval of any-fank greater than m.

Proof. (i) and (ii) are equivalent from the fact that
=il X1 (o), Xo(0t), ..., Xplo)+ Tre), k=1
To show that (ii) implies (iii)) we note that
A(X (o), Xo (o), -y X)) <[ fon( X (o) Xa(et)s -, X,(2)),
T X1 (o), X5(0), -, Xplot) + 1)
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But since o,e4(X; (o), X5(a), ..., X,u(2)), the left-hand endpoint of 4 (X, (o),
Xo(o), oo, Xon(o)) 18 0 =1( Xy (o), X5 (o), ..y Xolot)):
(6.2) Lemma. In the following, for fixed il with y;<1, (i) and (ii) are equivalent
and both imply (iii):

(i) T"y;=0, T*y,>0, 1£k<n—1,

(i) ?i=fn(X1 (0, Xo(73), - .- Xn(?i))a Vi *fk(X1 (s Xo2(93), ey Xk(?i)),
1g£ksEn—1,

(i) y; is the end-point of an interval of rank n and hence also the end-point of
an interval of any rank greater than n.

Proof. The proof is identical to that of (6.1).

Our aim is to prove

(6.3) Theorem. Suppose for each icl

(a) Either o;=0 (in which case we put m;=0) or for some 1 Em;< oo T™a;=0
and T*«;>0 for 1<k<m;—1, and

(b) Either y;=1 (in which case we put n;=0} or for some 1<n;< o0 T"y,=0
and T*y;>0 for 1 Sk <n;—1 then, if m=sup (m;, n;) is finite, Tis an m-step Markov

icl

chain with respect to P (a O-step Markov chain is a Bernoulli shift).

Note that because of (6.1) and (6.2) conditions (a) and (b) of (6.3) are equivalent
to assuming that each o;+0 has finite f~expansion of length m; and each y,+1

has finite fexpansion of length n;. In order to prove (6.3) we need the following
lemma.

(64) Lemma. Under the assumptions of (6.3), if A(d(ky, ky, ..., k,))>0 then for
n=m,

(65) A(A (kl ’ k27 ceey kn))=(ﬂk1ﬁkz Bkn_m)~1 /,]'(A (kn—m+1 ’ kn—m+2’ seey kn))

where for n=m the first term on the right hand side is equal to 1.

Proof. We use mathematical induction. For n=m (6.5) is clearly true. Suppose
(6.5) is true for n—1. Then, in particular

MAky, kyy oo k) =BisBry - Broy_ ) " AA Ky 1> Ky 25+ k).
Hence it remains to show
(6.6) A(A(kl,kz,...,k,,))=ﬁ,;1/1(A(k2,k3,...,k,,)) for nzm+1.

Suppose first of all that A(k,) is a full interval. Then T maps A(k,, k,, ..., k,)
linearly onto A(k,, k5, ..., k,) and (6.6) is proved.

Now suppose A4(k,) is non-full. Then TA(k;)=[e,, ;). But since o, is the
left-hand end-point of an interval of rank m, Sm<n—1 and y, is the right-
hand end-point of an interval of rank n,, Sm=<n—1, we must have

Alky, ks, s k) < Lo, > i)
and since T maps 4(k,, k,, ..., k,) linearly onto A(k,, k5, ..., k,) (6.6) is proved.

Proof of (6.3). Recall that h, the density of u, has discontinuities only at the
points T"«;, T"y;, n21, iel. Hence the assumptions of the theorem ensure that h
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is constant on intervals of rank no less than m. Hence for n20, if A(4(k,, k5,
e Ky ) >0,
.u(Xm+n+1(w):km+n+1 ! Xl(w)zkl s Xl(w)=k2a sy Xm+n(w)=km+n)
=.U(A (kl ’ kZa [AAK] km+n"km+n+1))/)u(A (kl ’ k27 A ] km+n))
=)"(A (kla k25 ceey km+n5 km+n+1))/;"(A (kl ’ kZ’ LERE] km+n))
=’1(A (kn+1 ’ kn+2’ tero km+n7 km+n+1))/'1(A (kn+1 ’ kn+2’ e km+n))
by (6.5). Since the last term depends only on k,_ 1, Ky, 2, -+ Kypns Kimyns1, WE S€E
that T is an m-step Markov chain.
We showed in (5.15) that Te % is exact and hence Te.# is mixing. Since a
mixing m-step Markov chain is weak Bernoulli (the case m=1 is demonstrated
in [7], the case m=2 follows similarly) we see that if the hypotheses of (6.3) are

satisfied then T is weak Bernoulli. We shall show in the next section that T is
weak Bernoulli for each Te ..

7. TeX is Weak Bernoulli

In the proof that T is weak Bernoulli we shall use the approximation of
h(w) by h,(w). Corresponding to h,(w) we define an approximation to u by

tm(F)= [ h(w)di(w), Fe®A.
F

The first lemma provides a useful estimate involving the convergence of u,, to u.
(7.1) Lemma. Given >0 we can find M =M (¢) such that for m> M
tmlENF)  w(ENF) WENF)

milE)  u(E) H(E)

for any E,Fe4.
Proof. Define a(w, m)=(h(w)— h,,(w))/p(m) and note that 0<a(w, m)< 1. Then
§ (h(@)— (o, m)p(m)di(w)

Hm(E) 1(E) g (h ()~ (e, m) p (m)d A () H(E)
_|MENF)—a,p(m)A(ENF)  p(EnF)
| wB)—o,p(m)A(E) w(E)

for some 0o, <1,i=1,2,
% p (M AE)W(ENF)~oy p(m) L(ENF) u(E)
((B) =0z p(m)A(E)) u(E)
2p(m)  WENF)
“(Ct—p(m)  u(E)
providing m is large enough for p(m)< C~*. The fact that p(m)— 0 as m — oo now
yields the result.
In (5.2) we expressed the invariant measure of a Borel set F as the Cesaro

limit of the sequence A(T~"F). Our next result shows that ordinary convergence
takes place and moreover this convergence is uniform over partitions.
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(7.2) Lemma. Let Q be a finite or countable partition of Q. Given >0 we can
find L= L(g) such that for n>L

Y AT "F)—p(F)| <e.

FeQ
Proof. Put L, =L,(g)=M (¢/2), where M is as in (7.1). Let E be a full interval
of rank r, say, such that h; is constant on E. Once chosen we keep the set E fixed.
Let %, be the c-algebra generated by U,i“;mT“'P. Using Doob’s Martingale
Theorem ([2] p. 121) and the fact that by (5.15) ﬂ°°=19';,, is trivial we know that
HE|Z)w)—pn(E)  ae.
as m —oo. Hence, by Egoroff’s Theorem ([8] p. 88), for any ¢ >0 we can find a

set D with u(D)<¢ such that on Q~D, u(E|%,)(w) converges uniformly, ie. we
can find L,=L,(¢) such that for m>L,,

|W(EI ) (@)~ u(B)| <& for gD,
Now, since h;,(w) is constant on E, by (4.8)
e, (EAT " F)uy, (E)=A(EnT~""F)/A(E)=4(T~"F)
for all FeZ%. Moreover,

WEAT B [ W(EIF, ) @h(@)dAw)

U(E) 7-r=nF
Hence,
STy (P < S [P ENT TR pEAT )
LD 2 ) w(®)
+3 | u(EId;+n)(w)h(w)di(w) p(F)|.
FeQ (E)T renp

Now, by the choice of L, and (7.1), the first term on the right hand 51de is smaller
than g/2. The second term is no larger than
1
Y | WEIZEL) @) - uE)h()di(w)
ME) Fep T-7-nF
1
=) [ uEI%, ) (@) —pE)| h()di()

B(E) Feo T~r=nFn(Q~D)

1
3 - h A
B HEIE =Dl i)

=& u(@~D)/u(E)+ u(D)/p(E)
=2¢'/u(E)
for n>L,. Hence, putting ¢ =¢u(E)/4 and L =max (L, L,) yields the result.
We now prove the main theorem of the paper.
(7.3) Theorem. TeL is weak Bernoulli.
Proof. We need to show that for any >0,

(74) (QV"T ‘P, \/T ‘P)

i=qg+n i=0
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where g depends only on ¢ and for any two partitions Q, R of (2, %, u), D(Q, R)

is defined by
D(Q,R)= ) |p(AnB)—u(A)u(B)].

AeQ
BeR

In order to establish (7.4) we shall use the approximation of y discussed in
(7.1) and the approximation of intervals by unions of full intervals.

Put ¢ =¢/6 and put M =M(¢), where M is a defined in (7.1). This fixes our
approximation of p.

Using (5.13) we can find k=k(¢, M) and Ai=7(¢, M) such that for n=7 we
can fill Q to within a set of y-measure ¢ with full intervals of ranks between n
and n+k on each of which hy(w) is constant. The set of these full intervals will
be denoted by %, . Clearly we only need to prove (7.4) for nz 7.

For each n># we approximate \/?_, T P by a partition Q, formed in the
following way. If R is an atom of \/7_, T~*P then the corresponding atom R of
Q, is formed by taking the union of all the sets in &, ; which are subsets of R.
The remainder of Q when an atom R has been formed corresponding to each
Re\/!_o TP will also be an atom of Q,. This last atom, because of the nature
of Z ,, will have y-measure less than &'

Now let FeZ, ,, of rank n+j(F), say, 0<j(F)<k and let B=T"""1B', where
Be\/! o, TP and q is to be chosen later. Then (4.8) implies that

u(FAB) AFAT"B)
u(F) A(F)

:._/1(T—q+j(F) B').

Hence

atan . #(FNB)  py(FNB)
D(Qn,i)]/ﬂT P)éZH(F)l WF) (P

+ 3, WB) AT 1O B)— u(B)[+2¢

where the sums on the right hand side are over FeZ , and Be /{27, T-'P
(equivalently B'e \/7_o T~ P). Now the first term on the right hand side of the
above inequality is smaller than ¢ by the choice of M and the second term is

smaller than ¢ provided q is larger than L(¢')+k where L is as defined in (7.3). Now

q+2n n
p( V' TPV TTP) =T In(RAB - (R (B
<Y |#(RNB)—u(RNB)|
+Y |lu(RB)—u(R) u(B)|
+Y |#(R) u(B)— p(R) u(B)|
<p (o, 'V T-1#)
+Y.|p(RnB)—u(R N B)|

+ Y |1(R) 4(B)— u(R) u(B)|
268 =¢
22 Z. Wahrschemlichkeitstheorie verw. Geb., Bd. 31
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by the choice of Q,. Each of the sums on the right hand side is over
q+2n n

Be V TP and ReV T~'P

i=q+n i=0

(with the corresponding ReQ,). Hence the theorem is proved.

8. An Example

In this section we shall introduce an example of a transformation in .% which
is a generalisation of the following transformations:

(i) The p-transformation, Tw=pfw (mod one), > 1, whose ergodic prop-
erties have been studied in [1, 3, 12, 15, 16] and [18].
(i) Shiokawa’s generalisation of the f-transformation [17].
(iii) Linear mod one transformations, Tw=fw+ o (mod one), f>1, 0Za<1,
whose ergodic properties have been studied in [13] and [19].

In this example we take 1={0, 1,2, ..., N} and choose a;, b;, ieL, as outlined
in §2. For 1<i<N-—1, we set §;=1/b;,o;,=0(and hence y;,=1), for i=0 we set
ap=0a{0=a<l)and B,=(1—a)/by (hence y,=1) and for i=N we set

ay=0, By=1/by

(hence y=yy < 1). Then, defining T by (2.1) we obtain

@&.1) T _{BoaH—oc, wePR

ﬁi(w*ai)a (I)EB, 1§1§N5
~where P=[a;,a; ).
We obtain the g-transformation by setting «=0 and choosing

b=b, i=0,1,...,N—=1, by<h.

Then we put B;=p=1/b for each icl. We obtain Shiokawa’s generalisation of
the B-transformation just by setting =0 and we obtain linear mod one trans-
formations by setting b;=b, 1<i<N—1, by <h, by<b and letting f;=p=1/b for
each iel.

The intervals B are clearly full for 1<i<N—1, R is full if and only if =0
and B, is full if and only if y=1. Hence we find that

0 a=0,y=1,
8.2) [={1 a=0,y<l or >0, y=1,
2 a>0, y<],

and so Te.? provided B=miln p:>1 except when both >0 and y<1 when we

must insist §>2. Wherever we discuss T as defined by (8.1) in the sequel we shall
assume that the conditions for Te % are satisfied. By (7.3) T as defined in (8.1)
is weak Bernoulli. This has already been noted for the p-transformation in [1]
and [18] and for linear mod one transformations in [19]. In the last paper it was
assumed that $>2 whereas as we have seen we only need to assume f>1if y=1.

Note that if a=0, y=1, T is a Bernoulli shift. If =0, y<1 and T"y=0,
Tiy>0, 1ZjSm—1, or if >0, y=1 and T"a=0, TVa>0, 1<j<m~1, then T
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is an m-step Markov shift. If >0 and y<1 then T is an m-step Markov shift if
k=0, T'a>0,15j<k~1, T'y=0, T"y>0, 1<j<1—1 and m=max (k, ).

A version of the density of the invariant measure for the f-transformation
was introduced in [3] and [12] and that for linear mod one transformations in
[13]. In [17] Shiokawa gives a version of the density of the invariant measure for
his generalisation of the f-transformation. We give here a version of the density
of the invariant measure for the class under consideration.

(8.3) Theorem. Let T be as defined in (8.1) and if x=0, y=1, let
h(w)=1,
fa=0,y<1, let |
h(w)=1 +T Z B(y, n) 110, Ty (@),

N n=0
ifa>0,y=1, let
1 0
hw)=1+-—— Zo B(x, n) X[T"m,l)(m)a
0 n=
and if >0, y<1, let

(8.4) k(w)——1+§— Y, BG, ™ X0, 7y (w)+ Z B(o, 1) fypns, 1) (@)

N n=0 0 n=0

where D, , D, are the solutions of

8.5) Dl_1+%2—3(a), D2—1+——B()
and

B)= 3 Blun  BO)= Y, B
Then

W(F)=[h()di@), Fea,
F
defines a finite measure (not necessarily normalised ) which is equivalent to A and
invariant under T.

Proof. We first note that since
0<B(y)/By<1/(f—1) and O<B(x)/Bo<1/(B—1)

and since in the case a>0, y<1 we assume f>2, the solutions of (8.5)

1+B()/Bo n.__ 1+BG)/By
1—BO)B@/Bo By~ 7 1~B(y) B@)/Bo by
are both positive and bounded. Hence
I=h(w)=D BAB—1)

ensures the finiteness of u and the equivalence of i and 2 in this case.

D1=

The equivalence of ¢ and 1 in the other cases is immediate. We shall prove
the invariance of y under T only in the case a>0, y <1, the other cases being
proved similarly. We use the relationship of Parry [13] already introduced in
22*
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(5.12). We ﬁrst look at

il = 1
2 X1o, T"y)(f(w+k)) XTPk(a)) ; X0, Ty~ Pk(f(w + k)) E“

No
" R, 0k< X, 1),
[Os Tn'}))ch= [aXnH(y)aTn’V)a k=Xn+1(y)a
Xn+1(y)<k§N,

P,

where @ represents the empty set.

Hence
1 1
Z Ao, T"y)(f(w+k)) XTPk(w) =———Xio, Tn+1y)(w)+ Afa, 1)(60)
Bk BXnH(V) B
+Xn+1(v) 1 1
k=1 ﬁk ﬂXnH(V) '
Similarly
il - 1 1 1
Z X[T"a,l)(f(w+k)) Xrpl@) =714 (@) +—— Xo, »@)
k=0 B  Bxniiw By
N1 1 1
+ — :
k=Xn+1(®) Bk ﬁxn+1(‘1)
Hence, with / as in (8.4),
ZhU@+WhM@ﬁ
N
XTPk(w)+— z B(y,n)
k=0 ﬁ N n=0
1 1 ma( 1
. n+ 1 (0) +—— X 1y{@0) + —_—— }
{me(v) o1 0(@) Bo Y k; Br  Bxo.itwy

D, 2 1 1
+—2 Z B(a, n){ Xprn+1 0,1 (@) Xjo, @)
ﬂXnJrl(“) ﬁ

0 n=0
N-1 1 1 }
+ L
k= X;l(a) Bk BXn+1('1)

1
— X, (@) + 75— B Xio, »{®)+ Z -

Bo
o Z B(y, ) xpo, T"v)(w)+Tﬁ(oz)—

N n=1
Dl w© Xa+1(y) 1 1 }
B(y,n ——
N nZO ()) ){ k§1 Bk anu(v)
D D, B(x)
+=2 Z B(a, n) X[T"a,l)(w)“‘ﬁ—
z o PN

Xfa, 1)(0’)

Ao, y)(w)

0 n=1
D, Z N1 1 1
+-= ZB(oz,n){ Y - }
ﬂX,.+1(at)

0 n=0 k=Xpn+1(a) Bk
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Now & 5 Xns1() | © l—a
Pl S e L L
1—a
=y—
and N_1 P
S B ,,){ y oLt
n=0 ’ k=X,4+1(®) ﬁk ﬁXmm(a)
N-1 g 1
= Z B(o, n){ —g( n+1(0¢))-ﬂ }
Xn+1(@)
=—E:B(oc)—<x+1.
Hence

(f@+h) xra(@) ﬁl

[T
_gﬂ 8 Ly U)o o L OB

1 D, 1
ﬁ = X, 1)(®) {1 + By B(V)} Ba — 10, »{®@) {1 +“:23(°‘)}

D 20
P Z B(y, n) Xfo, T"y)(w)

N n=1

\;Mz

D o0
+ 2 Z Bl(a, n) X{T"u,l)(w)
0 n=1

=h(w)
using (8.5) and the fact that the constant term is equal to

R | D, 1—a D,

T A —*Jp, L -
5 {Dl | B(“)}+ 2 { "By B(y)}

as required.

Note that in the proof of (8.3) in the case x>0, y <1, we only needed the assump-
tion f>2 in order to prove that u is equivalent to A. In fact the proof that u is
invariant with respect to T depends only on the existence of a solution of Egs. (8.5).
A solution always exists with D; and D, positive if f>2. However a solution
may exist for 1 <$<2, with possibly one or both of Dy, D, negative (for instance
if B;=8, 0Zi<N, B+2, the solution is D, =D, =(f—1)/{B—2) which is negative
for 1< <2), which still gives a measure x which is invariant with respect to 7.
The question then arises as to whether this measure g is equivalent to A. The
following lemma, which was proved for the special case Two=fw+u (mod one)
in [13], gives a partial answer to this question.

(8.6) Lemma. Suppose there is a solution to Egs. (8.5) and define h(w) as in (8.4).
If h(w)=0 and T is strongly ergodic, then

U(F)= fh(w)di(co) Fe4,
F

defines a finite measure which is equivalent to A.
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Proof. As h{w)=0 there are three cases to consider:
(i) h(w)=0, i-ae.,

(i) h(®)=0, 1-a.e, and

(iii) h(w) assumes both positive and negative values on sets of positive
Lebesgue measure.

Case (ii) reduces to case (i) if we replace h by —h. Hence we only have to
consider cases (i) and (iii). In each of these two cases there is a point w,eQ such
that h(wy)>0. We shall first show that h is right continuous at each point of
and hence in particular at w,. Hence if E={weQ: h(w)=£0}, A(E)<1. The
remainder of the proof will show that T"!EcE (1-a.e) and hence, since T is
assumed to be strongly ergodic, A(E)=0, proving the lemma.

Define for m=1,
D m
hu(@)=1+—2Y" By, n) 110, 12 5(®)

Nn=0
D, X
+ , ZOB(% 1) Xirng, 1) ().
Then B
D] & 1 D] & 1
h(@)—hp@)| 12 Y 2y
e R
=03(m), say.

Given ¢>0, choose M so large that 6(M)<¢/2 and for any we®, let w, be the
smallest member of the set {1, T*«, T*y,1<k< M} which is strictly greater
than w. Then, for v 2w’ <w,,

|h(@) —h(@)| 1 h(0)— hyy(0) |+ aar(@2) — By (@) |+ g (@) — h() | <&

by the choice of M and the fact that h,, is constant on [w, ;). Hence h is right
continuous.
Now define the linear operator U on %, (Q, 4, 1) by

Ut(w)= kz; trr (@)t (f k+ )| f'k+o)l.

Note that by Parry’s relationship [13] a necessary and sufficient condition for ¢
to be the density of a measure invariant with respect to T is that 7 is a fixed point
under U (i.e. Ut=1, i-a.e.). Moreover U is &, norm-preserving since

fUt(w)di(w)= jkzl xrp (@) T(f(k+a)| f (k+ )| dA(w)
=2 § xrp @)t (f k+ @) ' (k+ )| dA(e)
=Y [t(@di()

kel Py

= [1(w)dA(w)

for any 1€ %,(Q, 8, 7).

Now let hw)=h*(w)—h~ (w);
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where )
h*(w)=max (0, h{w)) and h~{(w)=—min(0, k(w)).
We also put t*=Uh*, Then, since Uh=h, t*{(w)=h*(w), weQ. However,
since U is norm-preserving,

[rH(w)dA(w)= | h* (w)dA(w).
Hence, 17 (w)=h"*(w) i-a.e, 1.e. Uht=h* A-ae. and so

pt(F)=[h*(@)di(w), FeB,

defines a measure which is invariant with respect to T. Since E={w: h*(w)=0},
[ht(@)di(w)= [ h*(w)di(w)=0.
E T-'E

Hence T 'EcE (J-a.e.), which completes the proof.

9. Concluding Remarks

The proof of (7.3) depended essentially on the facts that there is an invariant
measure for T which is equivalent to 1 and that there are sufficiently many full
intervals to approximate any sub-interval of Q arbitrarily closely by full intervals.
The following special cases of Tw=pfw+a (mod one) demonstrate that these
conditions are not always satisfied for 1< =<2 and also that these conditions
are not necessary to ensure that 7 is weak Bernoulli The first example was
discussed in [13].

(9.1) Example. Let § be the positive solution of f?=p+1 and let a=(3— f)/2.
Then Tw=fw +a (mod one) is not strongly ergodic since T-'[(f—1)/2, 3—)/2)
=[1/p%1/p) and (B—1)/2<1/B*<1/B< (3~ p)/2. Hence (8.6) is not applicable.
In fact, since Ta=p/2, T?a=0, T3a=uq, ..., etc. and Ty=(2—p)/2, T?*y=0,
T3y=q,..., etc. where y=f+a—2=(f—1)/2, the density of the invariant
(probability) measure given by (8.4) is

1(7-4p), wel0,1/25%)0[/2,1),
h(@)=11/38—4), we[1/2p%(B-1)/2)0[3-B)2, B/2),
0, we[(B-1)/2,3-p)2)
and hence p(F)= [y h(w)di(w), Fe, defines a measure with respect to which 1
is not absolutely continuous.
Now the non-empty rank two intervals are
4(0,1)=[0, 1/28%,
40,2)=[1/2p%1/28%,
4(1,00=[1/28%1/2p),
A1, 1)=[1/28,(3-p)/2),
4(1,2)=[(~B)2, B/2),
4(2,0=[p/2,3/2p),
42, 1)=[3/28, 1).
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Hence we see that the set on which h(w)=0 is A(1, 1) and so regarding (1, 1) as
a state with zero probability the techniques of § 6 may be used to see that T
=B w+a (mod one) where f# and « are as defined above is a 2-step Markov shift
whose associated 1-step Markov shift has state space a=(0, 1), b=(0, 2), c=(1, 0),
d=(1,2), e=(2,0), f=(2,1). Moreover the rank three intervals with non-zero
J-measure are

4(0,1,2)=[0, 1/2 8%,
4(0,2,00=[1/2 8% 1/%),
40,2, )=[1/p*1/2%,
A(1,0,1)=[1/25 1/p%),
4(1,0,2=[1/8%1/2p),
A(1,2,00=[3-p)/2,2/p%),
A(1,2, )=[2/p% B/2),
A(2,0,)=[8/2,(3—p)/B),
4(2,0,2)=[(3-B)/B, 3/2B),
4(2,1,0=[3/28,1).

Hence the one-step Markov shift associated with T has stationafy distribution
Pa=Py/B=Dc=ps=D./B=p;=1/2*(7—4p) and transition matrix = given by

0 0 0 1 0 0

0 0 0 0 1/B1/p?
18218 0 0 0 O

{1 0o 0o o 0 181
g1/ 0 0 0 O
0 0 1 0 0 O

Since #n° is a matrix with all entries non-zero we see that the one-step Markov
shift associated with T is mixing and so T is weak Bernoulli.

(9.2) Example. If we choose f>1 and O<a<1 such that B+« <2, then there
are no full intervals of rank one and consequently no full intervals of any rank.
In particular let § again be the positive solution of f2=f+1 and let a=1/2 2.
Then Ta=12=(1-a)/f, T?*a=0, T*a=a, T*a=1/2,..., etc. and Ty=1/2,
T?y=0, T3y=a, T*y=1/2, ..., etc, where y=f+a—1=p/2. Hence the density
of the invariant (probability) measure given by (8.4) is

hw) =P +D, 0el0 1280182, 1)
CIEVRAB D), well28%8/2),

which defines a measure equivalent to 1. Moreover Tis a 2-step Markov shift
whose associated one-step Markov shift has state space a=(0,0), b=(0, 1),
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c¢=(1,0), d=(1,1) and stationary distribution

pa=u(4(0,0))=p([0,1/2%)=1/2(>+1),
po=n(4(0, ) =p([1/2% 1/2))=p*/2(8* + 1),
pe=w(A(1, 0)=p([1/2, B/2))=p*/2(B*+1),
pa=n(4(1, D)=p([4/2, D)=1/2(8*+1).

Since the non-empty rank three intervals are
4(0,0, 1)=[0, 1/2 8,
4(0,1,0=[1/241/p%,
A(0,1, D=[1/p%1/2),
4(1,0,00=[1/2, 1/p),
41,0, 1)=[1/B, B/2),
4(1,1,0=[5/2,1),

the one-step Markov shift associated with T has transition matrix m given by

0 1 0 O

0 0 1B 1
\yp g o o

0 0 1 0

Since w* is a matrix with all entries non-zero, Tis weak Bernoulli,

Since we have examples of piecewise linear transformations which do not
satisfy condition (2.2) but which are nevertheless weak Bernoulli with respect to
the time-one partition we must ask whether the class .# may be widened to define
a class which includes these transformations. Because of the remarks preceding
{9.1) it is clear that techniques quite different from those used in (7.3) would have
to be used to show that such a class was weak Bernoulli. In particular, is Tow=
Bw+a (mod one) weak Bernoulli for 1< <2, f+a not integral?
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