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Ergodic Properties of a Class 
of Piecewise Linear Transformations 

Keith M. Wilkinson 

1. Introduction 

R6nyi, in his fundamental paper on ergodic properties of transformations 
associated with f-expansions [15], showed that the /~-transformation To)= 
/~o) (rood one), /~> 1, of the unit interval onto itself is ergodic with respect to 
Lebesgue measure and possesses an invariant measure equivalent to Lebesgue 
measure. The actual form of the invariant measure was found in [3-] and [12]. 
Rohlin [16] then showed that the /~-transformation is exact. In [13], Parry 
showed that the linear mod one transformation To)= flo)+ c~ (rood one), f l> 1, 
0<c~<l ,  of the unit interval onto itself possesses an invariant measure and 
discussed when this measure is equivalent to Lebesgue measure. More recently 
Shiokawa [17] introduced a class of transformations which generalise the 
fi-transformation, possess an invariant measure equivalent to Lebesgue measure 
and are exact. 

Because of the recent work on the classification problem for measure-preserv- 
ing transformations it is of interest to decide which endomorphisms are weak 
Bernoulli since the natural extension [-16] of a weak Bernoulli endomorphism is 
a Bernoulli automorphism (see [7] and [11]). The fl-transformation has been 
shown to be weak Bernoulli in [1] and [18] and the linear rood one transforma- 
tion with fl > 2 has been shown to be weak Bernoulli in [19]. 

In this paper we introduce a class ~ of piecewise linear transformations of 
the unit interval onto itself which contains the fl-transformation, linear rood one 
transformation and Shiokawa's generalisation of the fl-transformation as special 
cases. We shall show the existence of an invariant measure for T ~  which is 
equivalent to Lebesgue measure and shall discuss a subclass of 5e whose members 
are Markov shifts. We then demonstrate that each T e 5  ~ is weak Bernoulli, our 
proof being similar to that used in [18] for the fl-transformation. We finally 
look at an example which generalises the linear rood one transformation in 
essentially the same way that Shiokawa's transformation generalises the fl-trans- 
formation and discuss two examples of linear mod one transformations which 
are not in the class ~ but are nevertheless weak Bernoulli. 

Throughout this paper (O, N, 2) will represent the probability space of f2 the 
unit interval [0, 1) with N the Borel subsets of O and 2 Lebesgue measure on ~ .  

2. The Class 

Throughout this paper I will represent either a subset of the non-negative 
integers of the type {0, 1, ..., N} or the set of non-negative integers itself, we  also 
let b~, i6I, be a collection of real numbers satisfying 

bi>O and ~bi=l. 
iE l  
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Now let ao=0 and define at+ 1 =at+b~,  i~I.  Our transformation T: g2~O is 
then defined for ooe[ai, at+l) by 

(2.1) To) = fit (09 - ai) + ai 

where f l= inf f l t>  1 and for each ieI  0<oh< 1, ~t=f l tb i+ch< 1. 
i s l  

Since Tis piecewise linear it is a measurable and non-singular transformation 
of (Q, N, 2) to itself. 

Define P to be the partition of ~2 with atoms P~= [at, a~+l), ieI. If 2(TPi)= 1 
(i.e. if at = 0, Yt = 1) we say that P~ is a full interval of rank one, otherwise P~ is said 
to be non-full. For n > l  we let k/~,2~oT-kP represent the partition of O w i t h  
atoms 

Pj, n T - 1 P j ~ n . . . ~ T - ( ' - I ) P j . ,  jk6I ,  l<_k<n ,  

and we shall use the notation A (11 ,J2 , . . .  ,J,) or A (J,), where J, is understood to 
Vk=O T - k P .  We say mean the vector (it,J2, ...,Jn), to represent this atom of ,-1 

that an atom A(J,) of V~,2~o r - k p  is a full interval of rank n if 2(T"A (g,))= 1 
and non-full otherwise. Alternatively A (J,)e ~/~,2~o T - k p  is a full interval of rank 
n if and only if ZT~(j.)(O))=I 2-a.e. where here and in the sequel )~E(co).is the 
indicator function of the set E. 

Note that by the linearity of T, if P~, i~I, is a full interval of rank one, 

2 (Pi) = bi = 1~fit 
whereas if P~ is non-full, 

2 (P~) = bi < 1/fli. 

Vk=0 T - k p  is full, Moreover, if the atom A (11,Jz . . . .  ,j,) of ,-1 

),(A (11 ,Jz . . . .  ,J,)) = 1/fljtfij2 ... flj, 

whereas if A (Jl ,J2 . . . .  ,Jn)  is non-full, 

)~(d (Jl ,J2 . . . .  ,j,)) < 1/flj, flJ2 "" flJ.' 

Hence all . -  1 atoms of Vk=O T-kP have Lebesgue measure no greater than O(n)=f l - ' .  
This implies that P is a generator for T. 

If A(/' 1,j2 . . . . .  j,) is an atom of V "-lk=o T - k p  with )c(A(11,j 2 . . . .  . j , ) )>0 then the 
atoms A(11,j2 . . . . .  j , ,  i), i e I  of V~=o T - kP  are subsets of A(1t, j2 . . . .  ,in) and 

U A(11 ,J2 . . . . .  j , ,  i )=A(11,j2 . . . .  ,j,). 

Among the sets A(11,j2 . . . . .  j , , i ) ,  i~I ,  with non-zero Lebesgue measure some 
will be full and the remainder non-full intervals of rank n+  1. We shall let 
l (Jl, J2, .-., J,) be the cardinality of the set of ie I for which 2 (A (11, J2,-. . ,  J,, i)) > 0 
and A( j l , j 2 ,  . . . , j , , i )  is non-full. That is to say l(jl , jz . . . . .  j.) is the number of 
non-full intervals of rank n+  1 which are subsets of A(h  , J 2 ,  . ' .  ,Jn)" We then let 

l. -= sup I (11, J2 . . . . .  Jn) 
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�9 Vk=O T with where the supremum is taken over all AI(l l ,J2, . . . , jn)E n-1 - k p  
2(A(jl,j2, . . . , j , ) )>0  and we define 

1 = sup i, 
n>0 

where lo is the number of non-full intervals of rank 1. In order to restrict the 
occurrence of non-full intervals we impose the following condition on our class 
of transformations: 

(2.2) fl > I. 

We shall denote by ~ the class of transformations of the form (2.1) satisfying 
(2.2) and in the sequel, unless otherwise stated, we shall always be working with 
transformations in the class s Note that (2.2) ensures the existence of full 
intervals of any rank and that Te 5 a is onto. 

We end this section with three examples of TeSf. A generalisation of these 
examples is studied in w 8. 

(1) Choose f l > l  and let N=[ f l ]  ([z] denotes the integer part of z), I =  
{0, 1 . . . . .  N}, bi= 1/fl, 0_<i_<N - 1, bN= 1 -N/ f l ,  fli=fl, ~ = 0 ,  i d .  Then defining 
T by (2.1) we obtain the transformation T: f2--+ ~ given by 

Too = fl co (mod one). 

T_he ergodic properties of this transformation have previously been studied in 
[1, 3, 12, 15, 16] and [18]. 

Now all atoms of P with the possible exception of PN are full. Hence if 
�9 \/k=o T - k P  with non-zero Lebesgue measure and A(JI 'J2  . . . . .  Jn) is an atom of ,-1 

if the atoms of V~,=o T -kP which are subsets of A(jl,j2 . . . . .  j,) with non-zero 
Lebesgue measure are 

A (], ,J2 . . . . .  J,,J), O<=j<=a=a(J, ,J2, ... ,J,,) 

then the only one of these atoms which may be non-full is A ql,j2,  . . . , j , ,  J). 
Hence I < 1 < fl and so Te 2'.  Note that in the special case of fl integral there are 
no non-full intervals of any rank. 

(2) Choose f l > l  and 0 < a < l  and let N =  [fl+~]. We distinguish between 
the two cases (i) fl+o~=N and (ii) fl+c~>N. In case (i) we let I =  {0, 1, ..., N - 1 } ,  
bo=(1-~)/fi ,  b~=l/fi, l<_i<_N-1, fl~=fl, O<_i<_N-1, ~0=a  and a~=0, 
l<_i<_N-1 whereas in case (ii) we let I =  {0,1, ..., N}, bo=(1-oO/fl, bi=l/f l  , 
l<_i<_N-1, bN=l - (N-oO/ f l ,  fli=fl, O<_i<_N, ~o=a  and ai=0, l<_i<_N. In 
either case, defining T by (2.1), we obtain the transformation T of Q onto itself 
defined by 

Tco=floo+a (mod one). 

The ergodic properties of this transformation have previously been studied in 
[13] and [19]. 

In case (i) each atom of P is full except for Po. Hence if the atom A (Jl ,J2, -.-,J,) 
of VT,=-~ T - k p  has non-zero Lebesgue measure and the atoms of V~,=o T - k p  
with non-zero Lebesgue measure which are subsets of A (Jl ,J2 . . . .  ,j,) are 

A(jl ,J2 . . . .  ,J.,J), J = J ( ] l , J 2  . . . .  , j . )<=j<=N-1,  
21" 
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then the only one of these atoms which may be non-full is d ( j l , j 2 , . . . , j , , J ) .  
Hence 1= 1 and so T e 5  ~ 

In case (ii) each atom of P is full except for Po and PN and hence, arguing in 
a similar way to the above, 1=2. Hence we must assume f i>2  for Tco=fico+a 
(rood one) to be in Y in this case. 

(3) Let bi, ieI, satisfy the conditions imposed at the beginning of this section 
and for each i~I let fli= 1/bi, ~ = 0 .  If T is defined by (2.1) then all atoms of P 
are full and hence I = 0. Moreover T preserves Lebesgue measure and is isomorphic 
to the Bernoulli endomorphism with probabilities b~, i~I. Any Bernoulli endo- 
morphism with finite or countably infinite state space can be represented in this 
way. 

Note that in the definition of the class ~ we restrict attention to piecewise 
linear transformations with positive slopes fl~, i~I. We could allow some or all 
of the fl,, i~I, to be negative, replacing conditions on the slope by conditions on 
[fl~], i~I, and obtain all of the results obtained in the sequel. As there is a 
straightforward isomorphism between the transformation with possibly negative 
slopes fli on Pi and the transformation with positive slopes ]fli[ on Pi, isI ,  we 
chose not to consider this extra generality further. 

3. Relationship of ~ with f-Expansions 

Following R6nyi's paper [15] much has been written about ergodic properties 
of transformations associated with ]=expansions. We shall briefly introduce the 
terminology off-expansions and then show that the transformations in the class A p 
may be considered to be the transformation associated with particular f-ex- 
pansions. 

L e t f b e  a strictly monotonic function mapping a subset D of the non-negative 
real numbers onto [0, 1). The associated transformation Tf of [0, 1) to itself is 
defined by 

T f c o = f - l ( c o )  (mod one). 

Because of the monotonicity off, Tr is a measureable, non-singular transforma- 
tion of (O, N, 2) to itself. The choice of f is always made so as to ensure that Tf is 
onto. This is done by insisting that for each co e [0, 1) there is at least one non- 
negative integer k for which k + coeD. 

For n >- 1, we define a stochastic process by 

X,(co) = [ f - 1  ( r~ - i  co)], 

this stochastic process being known as the sequence of digits in the J:expansion 
of co. The state space of this stochastic process, denoted by Ay, being known as 
the set of admissible digits. Note that A s is a subset of the non-negative integers. 

We say that f gives rise to f-expansions with independent digits if, for any 
al, a2, . . . ,  a n ~ A f ,  there is a point coco  with 

Xi(co ) = a i, 1 <- i <- n, 

otherwise the digits are said to be dependent. This terminology was introduced 
by R6nyi [15] and should not be confused with stochastic independence of the 
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process X.(co),  n > 1. Note that 

co = f ( X  1 (co)= f(X2(co ) +.- .  +f(X. (co)+ Tflco)... )). 

We say that f gives rise to valid f-expansions if 

co = lim f ,(X1 (co), X2(co), ..., )(,(co)) 
n ~ o o  

- !imo~ f ( x ~  (co)+ f ( x 2  (co) +--- +f(x , (co) ) . . .  )) 

where f is the unique monotonic extension of f to the domain [-0, m) and range 
[0, 1]. Note that for some coes there may be n_->l for which T~ o~=0 and in this 
case 

CO = f n ( X  1 (co), X2(co ) . . . . .  Xn(co))  , 

the remainder of the digits )2, +k(CO), k > 1, representing the digits in the f-expansion 
of 0. If this is the case we say that co has a finite f-expansion and we always take n 
to be minimal. 

In order to show that T~5~ fits into the category of transformations derived 
from f-expansions we let D be the subset of [0, oo) defined by 

D = ~  [k+ak,  k + Tk ) 

and define f on [k + ~k, k + ?k), k e l, by 

(3.1) f (x) = ak + (X -- a a -  k)/fla. 

Since the only possible accumulation point of the points aa, k e I, is 1 f is a mapping 
onto [0, 1). Moreover, since at least one Pk, kEI, is full, D satisfies the condition 
to ensure T s is onto and if coe[ak, ak+1), 

Tf (co) = f  -1 (Co) (rood one) 

= i lk(Co- a~) + :~. 

The set of admissible digits for these f-expansions is I and, since for each k e I 

Pk = [ak, ak+a)= {Co: Xl (co)=k}, 

for any k~, k2, ..., k, e I  

A (k~, k2, . . . ,  k,) = {Co: X~(~o)  = k l ,  X2(Co)  = k2  . . . .  , X , (Co)  = k , } .  

Hence the fact that not all atoms of n-~ T-k Vk=O P need be full shows that f-expan- 
sions with f as defined in (3.1) need not have independent digits. However since P 
is a generator for T these f-expansions are valid. 

We conclude this section with a lemma which gives a useful expression for 
the f-expansion of a point Co e g2. 

(3.2) Lemma. For Coe g2, 

B(Co, 
n=O 
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where X,(m), n > 1, are the digits in the f-expansion of  co, 

B(co, n)= flx~(o~)flx~(~) ... flx,(~o), n> l, 
and for k~I  

g (k) = f ( k )  - ~ l ~ k  = ak - ~ d ~ .  

Proof Since, for all n > 1, 

= L ( x , ( o ~ ) ,  x2(co) . . . . .  x . ( ~ )  + v ;  ~) 
it will suffice to show that 

. - 1  

(3.3) f,(X,(co),X2(m),... ,X,(o.))+ Tfco)= ~, g(Xk+,(o~))B(o.),k)+B(o~,n) Tfco. 
k = 0  

We prove (3.3) by induction. First note that, by the definition o f f  in (3.1), (3.3) is 
true for n = 1. We now assume that (3.3) is true for n = 1, 2 . . . . .  N -  1. In particular 

fN_, (X2(r X3(co), ..., XN(co) + T f  m) 
N - - 2  

=flx,(o) Z g(Xk + 2(~ B(co, k+ 1) + fix, (~) B(og, N) T~ o.). 
k = O  

Hence, 

fN(X~ (~0), X2(r XN(to) + TfN~)=f(Xl(Co)+fv_~(X2(o9),..., XN(r T~o9)) 
1 

= ax,(~)+ fl~,,,o) { fN_ ~(X2(r ..., XN (<~)+ Tf u ~)} 

N - 1  

= Z g(Xk+,(m))B(c9, k)+B(co, N) T~(o 
k ~ O  

and the lemma is proved. 

4. Some Properties of Full Intervals 

In this section we introduce some results on the way full intervals may be 
used to approximate other subintervals of ~. 

(4.1) Lemma. For any e>0  we can find k=k(e) such that for all n> l" we can fill  
(2 to within a set of Lebesgue measure e with disjoint full intervals of ranks between n 
and n + k. 

Proof Fill O as far as possible with full intervals of rank n. Suppose that 
A(kl, k2 , . . . ,  kn) is a non-full interval of rank n. Its Lebesgue measure is smaller 
than 1/flk~ ilk2 "" ilk,. If we fill A (k I , k2,..., kn) as far as possible with full intervals 
of rank n + 1 the remainder will have Lebesgue measure smaller than 

(ilk, f l k ~  . . .  flk.)-~ (I//~). 

If we now fill this remainder with full intervals of rank n + 2, what is left has 
Lebesgue measure smaller than 

(~,/~2 . . .  ~.)-~ (1//~) 2. 
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Continuing, the remainder, after filling A(kl, k2,..., kn) as far as possible with 
full intervals of ranks n + 1, n + 2, ..., n + k, will have Lebesgue measure no larger 
than 

(ilk1 ilk2 --- f l~~  ( I / i lL  

By condition (2.2) the lemma will be proved if we show that 

(4.2) F(n) = ~ (flkl fi~,2 "'" fig,)-1 

is bounded uniformly in n where the sum is over all A (kl, k2 . . . .  , k.) with non-zero 
Lebesgue measure. Now 

(4.3) F(n) = ~1 (ilk, flk~ "" ilk.) -1 + E 2 (ilk, ilk2 "'" ilk.) -1 

where ~1 represents the sum over A (kl, k2 . . . . .  k.) which are full and ~2 represents 
the sum over A(kl, k2, . . . ,  k,) which are non-full and have non-zero Lebesgue 
measure. But 

El(flk~ ilk2"'" flkn) -1 ~ 1 
and 

(4.4) Z 2 (ilk1 f12"" ilk.) -1 <=F(n- 1)(l/fl). 

Hence 

F(n)<l+F(n-1) ( l / f l ) ,  n>=l, 

where we put F(0) = 1 and so 

F(n)<(1-1/fl) -1, n> l, 
yielding the result. 

The proof of this lemma in the special case n = 1 yields 

(4.5) Corollary. Let B, be the union of those atoms A(kx , k2 . . . . .  k,) of V~-lo r - k  p 
which are full but none of A(kl , k2, ..., kin), 1 <_m<_n- 1, is full, then 

2(B.)= 1. 
n=l 

(4.6) Corollary. Given any sub-interval E of s and s > 0  we can find nl=nl (e  ) 
and k = k (~) such that for n >= n 1 we may fill E to within a set of Lebesgue measure 
with disjoint full intervals of ranks between n and n + k. 

Proof Using (4.1) we can find k(0 such that for any n > 1 we may fill s to within 
a set of Lebesgue measure e/3 by full intervals of ranks between n and n + k. 
However, the end-points of the interval E may be contained in two of these full 
intervals. Choosing n 1 so that 0 (n,)< e/3 yields the result. 

(4.7) Corollary. Any sub-interval E of f2 is an at most countable union of disjoint 
full intervals (to within a set of Lebesgue measure zero). 

Proof By (4.6) we can fill E to within a set of Lebesgue measure I/m, m > 2, 
by full intervals of ranks between nl(1/m ) and n l(1/m)+k(1/m). Let the union of 
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these full intervals be denoted by D,,. Then 

E = U  Dm 
m=2 

and each Dm is an at most countable union of full intervals. 

The final lemma of this section, while being simple to state and prove is crucial 
to the remainder of the paper. 

(4.8) Lemma. I f  F is a full interval of rank n and B e ~ ,  then 

2 ( F n  T - " B )  
=~(B). 

2(F) 

Proof T" maps F linearly onto Y2 and F c~ T - "  B onto B. 

5. The Invariant Measure 

In this section we shall show that for each T~Se there is a probability measure 
# on (f2, ~)which is invariant under T and equivalent to Lebesgue measure. We 
then introduce a version of dlx/d2 and examine its discontinuities. In order to 
prove the ergodicity of T ~ 5  ~ with respect to Lebesgue measure we shall need the 
following result of Knopp [10], a proof of which may be found in [19]. 

(5.1) Lemma. I f  E ~  with 2(E)>0  and there is a class J of sub-intervals off2 
such that 

(a) Every Open sub-interval of E2 is an at most countable disjoint union of these 
sub-intervals to within a set of Lebesgue measure zero, and 

(b) For each F ~ 3 e, 2 (E n F) > 7 2 (F), where ~ > 0 is independent of F, then 

2 (E) = 1. 

Our first theorem in this section generalises a theorem of R6nyi 1-15] for the 
fi-transformation. 

(5.2) Theorem. I fT~LP  then 

(i) T is ergodic with respect to 2, 
(ii) There is a probability measure # on (f2, ~ )  which is invariant with respect 

to T and such that for each F~J)  

(5.3) (1 - lift) 2 (F) <_ # (F) <= (1 - lift) - '  2 (F). 

Proof (i) Suppose T - 1 E = E ~  and 2(E)>0. By (4.7) we see that the set J 
of all full intervals satisfies (a) of (5.1). Also, by (4.8), for each F ~ J ,  

2 (E c~ F) = 2 (E) 2 (F) 

and so (b) of (5.1) is satisfied with y=2(E). Hence, by (5.1), 2(E)= 1. 

(ii) Let F e N  and K,  = (kl , k 2, . . . ,  k,) where kiE I , l < i < n. If2(A(K,))>0, then 

2 ( T - " F  c~A(K,))<=2(F)(flklfik2 ... flk,) -1, n> l. 
Hence, 
(5.4) 2(T-nF)<2(F)F(n)<)~(F)(1-1/ f l ) ,  n> l, 
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where F(n) is defined by (4.2). However, if A(K,) is a full interval of rank n, then 

2 (T-n F ~ A (Kn)) = 2 (F) (flkl fig2"'" flk.)--l" 
Hence 

)o (T-n F) > G(n) 2 (F) 
where 

and the sum is over all A (Kn) which are full. Now using (4.3) and (4.4) we see that 

G(n) > F(n) - (I/fl) F ( n -  1). 
Hence for n > 1, 

(5.5) - -  ~ 2(T  F ) _ > ~ 2 ( F )  (F(k ) - ( l / f l )F(k -1)  >=2(F)(1-1/fi). 
Y / k = 0  

Thus, combining (5.4) and (5.5), for n ~ 1, 

n--1 

(5,6) (1 - I/fl) 2(F) < - -  ~, 2 (T-k  F) < (1 -- 1/fl) -~ 2(F). Hk=O 
The right hand inequality allows us to use the Dunford-Miller ergodic theorem 
([4]) to see that 

lim - -  ZF(T k co) 
n ~  YI k=O 

exists for 2-almost all c o ~ .  We now define for F ~  

#,(F) 1 ,~1 = - -  2(T  -k F) 
r/ k=O 

1 "-~ =S \~k~__O ZF(Tk co)) d'~(co) 

and using the Dominated Convergence Theorem of Lebesgue integration we see 
that 

# (F )=  lim #,(F) 

exists for all F ~ .  Moreover, by the Vitali-Hahn-Saks Theorem ([6] p. 32) # is a 
probability measure on ~ which because of (5.6) satisfies (5.3). Also 

p n ( T _ I F ) =  n + l  #n+I (F) -  2 ( F )  
n /,/ 

and so, letting n ~ ~ ,  
# (T  -~ F)=#(F) ,  

i.e. # is invariant under T. 

We now list some straightforward corollaries of this theorem. Note that 
since # and 2 are equivalent all almost everywhere results can refer to either 
probability measure. In particular Lemma (4.1) and its corollaries may be stated 
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in terms of the invariant measure # rather than 2. As we repeatedly use (5.3) we 
shall let C =(1 - I/fl) -1 in the sequel. 

(5.7) Corollary. I fh  is a version of d#/d2 then 

C -1 <h(o))<= C a.e. 

(5.8) Corollary. Te ~q~ is weak mixing. 

Proof. By I-9] pp. 39-41 we have to show that the Cartesian product trans- 
formation T x T of the Cartesian product space (f2 x f2, ~ x ~ ,  2 x 2) is ergodic. 
The proof of this is similar to (i) of (5.2) where we take J as the set of products of 
full intervals. 

This corollary is based on a remark of Parry [12] with respect to the trans- 
formation Tco=fi~o (rood one). The next two corollaries are similar to results 
proved in [2] for the continued fraction expansion. 

(5.9) Corollary. I f  f is integrable (with respect to li or 2) then 

1 n--1 

l i r a - -  ~ f(Tkco)=~f(co)dp(co) a.e. 
n~oo  n k ~ O  

and in particular the asymptotic relative frequency of the digit ieI among 
Xl(~), x~ (~o), ..., 

lim m Zp,(r k co) 
n ~ o o  n k = O  

is a.e. equal to #(Pi). 

Proof. The proof is an application of the Birkhoff Ergodic Theorem. 

(5.10) Corollary. X,(co)e~q~l(O, ~ ,  #) (equivalently X,(co) has finite expectation), 
n >= 1, if and only if 

ie| 

Proof By (5.3), 

C -1 ~ ib, <5 X,(co)d/l(co) = ~., i#(P~)<= C Z ibi" 
iel iel iel 

(5.11) Corollary. T hasfinite entropy if and only if 

b i log fll < oo 
ie l  

in which case the entropy is 

h(T) = ~/~ (P/) log fli- 
i E l  

Proof By Parry's formula [14] we see that 

h(T) = ~, #(P~)log fll 
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which by (5.3) is finite if and only if 

b i log/3~ < oe. 
i~I 

We now give an expression for a version of the Radon-Nykodym derivative 
dg/d2. This expression is a particular case of the density of the invariant measure 
for a class of transformations studied by Fischer [-51. For n > 1, we shall let D, 
represent the union of all non-full intervals of rank n which are not subsets of full 
intervals of any lower rank, i.e. D, is the union of atoms A(ka,kz . . . . .  k,) of 

n--1 Vk=o T - k p  such that A(kl,kz . . . . .  k,,) is non-full for each l<m<n.  We then 
define 

4o (~o)- 1 
and for n > 1 

4 . (0 )=  ~ ZT.~(K.)(o)B(o~(K.),n) 
A (K.) ~ D,~ 

where co(K,)e A (K,). 

(5.12) Theorem. The functions 4,(~o), n>O, and 

are Lebesgue integrable and 

is a version of dg/d2. 

Proof For n > 1, 

4(co)= ~ 4.(0) 
n = 0  

h (co) = 4 (co)/y 4 (o) d2 (co) 

~ 4.(o) d2(o)=~ ~ ZT.a(K.)(co)B(o~(K.),n)d2(o) 
A (K.) ~ D~ 

= Z B(o(K.),n)~ZT.mK.)(o)d2(co) 
A (K,O c D .  

= E 2(TnA(Kn))B(c~ n) 
A (Kn) = Dn 

where the interchange in the order of summation and integration is justified by the 
Monotone Convergence Theorem of Lebesgue integration. Now there are at 
most I n atoms of "-1 Vk=o T -kP which are subsets of D n. Hence 

4.(~) d;. (o)< {lift)" 

Moreover, again using the Monotone Convergence Theorem, 

4(~o) d;4co)< ~ (I//~)"=0 - I//~) -1. 
n=O 

In order to show that h(o) is a version of d#/d2 we have to show, by a result of 
Parry [13], that 

4(~0) = Z )~rp~(o) 4(/(co+k))[f'(o)+k)l 2-a.e. 
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where f is as defined by (3.1). But 

Z Zrek(c~ qS.(f(co + k))[ f'(co + k)[ 
ke l  

= ~  ~, Zwpk(cO))~r.a(K.)(f(co+k))S(o~(K.),n)fl6' 
k~l d(Kn)~Dn 

= Z ~T.+'~(K.+,)(CO) B(co(K,+!) , n + 1) 
A(K~+ 1) CDn+ 1 

+ Z B(co(K,+,), n+ 1) 
A(Kn+ 1)=Bn+ l 

= q~,+,(co) +2(B,+1) 

where B, is as defined in (4.5). Using (4.5) now gives the result. 

In the sequel it will be useful to approximate h (co) by 

h,.(~o)= ~ q~.(co)/~ ~b(~o)d).(co). 
n = 0  

Note that q~.(co) is a step function with discontinuities at the end-points of the 
intervals T"A (K.), A (K . )~  D.. Hence hm(c0) is a step function with at most 

2 ( l + t 2 +  ... + 1") = z (m) 
discontinuities. 

Moreover 

h(c~)-h ((~)= ~ ~bn(co)/~(co)d2(co ) 
n = m + l  

< ~ (I/fl)"/~d?(co)d2(cg)=p(m). 
n = m + l  

We can now extend the results on full-intervals of w 4 to full-intervals which 
contain no discontinuities of h~(co). 

(5.13) Lemma. For given e>O and m> l we can find k=k(e ,m)  and fi=fi(~,m) 
such that for n > fi we can fill ~2 to within a set of Lebesgue measure (equivalently 
g-measure) e with disjoint full intervals of ranks between n and n + k  on each of 
which h,,(co) is constant. 

Proof Choose no=no(e,m) so that O(no)<e/2v(m ). Taking away from (2 
those atoms of *~=o\/"~ T - i p  which contain discontinuities in h,,(r leaves at 
most z(m)+ 1 intervals on each of which hm(co) is constant. Name them 

A i, l<=i<=z(m)+l 

where some A i are empty if necessary. Using (4.6) we may find ni(e , m), ki(e, m) 
such that for n >= n~(e, m) we may fill A i to within a set of Lebesgue measure 

e/2(z(m) + 1) 

with disjoint full intervals of ranks between n and n + ki(e , m). Taking 

h(e,m)= max ni(~,m), k(e,m)= max ki(~,m) 
0 < i -<r(rn)+l  i < i < z ( m ) + l  

yields the result. 
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In [16] Rohlin shows that the/3-transformation is exact. We extend this result 
to T ~  using the following criterion of exactness. 

(5.14) Theorem ([16]). Let J be a countable system of subsets of ~2 of positive 
measure such that the unions of disjoint sets" A e J  generate ~.  I f  there exists a 
positive integer-valued function n (A) ,AeJ ,  and a positive number q such that 
#(Tn(A)A) = 1 for all A ~ J  and for any Borel set B c A with measurable image T'(a)B 

# (T"(A)B) <= q# (B)/# (A) 

then T is an exact endomorphism. 

(5.15) Theorem. T~s is exact. 

Proof We use (5.14) with ~r the set of all full intervals and n(A) the rank of 
the full interval A ~ J .  Let B ~ A ,  where A E J ,  and let B'=Tn(A)Be~. Then, 
using (5.3) and (4.8), 

#(B') ~ C2 (n') 

= C2 (A c~ T-"(A)B')/2 (A) 

= C2(B)/2(A) 
< C3#(B)/#(A). 

Hence the hypotheses of (5.14) are satisfied with q=  C 3. 

6. Markov Properties 

Cigler [3] and Smorodinsky [18] have studied the Markov properties of 
T~o=fl~o (rood one)where fl is of a particular form. Shiokawa [17] has used 
Cigler's methods to obtain similar results for his generalisation of the fl-trans- 
formation. (This generalisation will be discussed in w 8.) We generalise these 
results to T ~  where restrictions are placed on the images of the end points 
of the atoms of P. The method employed is based on that of Cigler [3]. The 
first two lemmas give equivalent statements of the conditions used and also a 
useful consequence of these conditions. 

(6.1) Lemma. In the following, for fixed i~I with ~i>0, (i) and (ii) are equivalent 
and both imply (iii): 

(i) Tmcq=O, Tkcq>O, l <_k<_m-1, 

(ii) cq =fro(X1 (~), X z (~i) . . . .  , Xm(ai)), c h 4= fk( X~ (a~), X2 (~) . . . .  , Xk(c~)), 
l<-k<-m-1,  

(iii) a i is the end-point of an interval of rank m and hence also the end-point of 
an interval of any.tank greater than m. 

Proof (i) and (ii) are equivalent from the fact that 

:h =fk(X1 (el), X2 (cq) . . . . .  Xk(Cq) + Tkcxi), k > 1. 

To show that (ii) implies (iii) we note that 

A (X 1 (~1), X2(~i) . . . . .  Xm(~ [fro(X1 (ch), X2(ai),--., Xm(~i) ), 

fro(X1 (O~i), X2 (O~i), "" ,  Xm(O~i) ~- 1). 
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But since aisA(Xt(ei),Xz(ai),. . . ,Xm(ai)), the left-hand endpoint of A(XI(ai), 
Xz(a,), . . . ,  Xm(e~)) is er X2(e~), ..., Xm(a,)). 

(6.2) Lemma. In the following, for fixed ieI  with 7i < 1, (i) and (ii) are equivalent 
and both imply (iii): 

(i) T"7i=0, TkTi>0, l < k < _ n - 1 ,  

(ii) ~ =f , (X  1 (7~), X2(7i), ..., Xn(Ti)), 7i ~=fk( X,  (7i), X2(7i), "", Xk(~i)), 
l < k < n - 1 ,  

(iii) 7i is the end-point of an interval of rank n and hence also the end-point of 
an interval of any rank greater than n. 

Proof The proof is identical to that of (6.1). 

Our aim is to prove 

(6.3) Theorem. Suppose for each i~I 

(a) Either ~i=0 (in which case we put mi=0) or for some 1 <mi< ~ Tmio;i=O 
and Tkei>O for l < k < m i - 1 ,  and 

(b) Either 7i=1 (in which case we put ni=0 ) or for some l <ni< ~ T"iyi=O 
and T k 7i > 0 for 1 < k < n i - 1 then,/f  m = sup (mi, ni) is finite, T is an m-step Markov 

isl 
chain with respect to P (a O-step Markov chain is a Bernoulli shift). 

Note that because of (6.1) and (6.2) conditions (a) and (b) of (6.3) are equivalent 
to assuming that each e~=~0 has finite f-expansion of length m~ and each yi~= 1 
has finite f-expansion of length n i. In order to prove (6.3) we need the following 
lemma. 

(6.4) Lemma. Under the assumptions of (6.3), /f 2(A (kl, k2,. . . ,  k,))>0 then for 
n=~_m~ 

(6.5) 2(A (k,, k2, . . . ,  k,))=(flklflk2.., ilk.-.,)-'  2(A (k,_m+~, k,_,,+z .. . .  , k,)) 

where for n =m the first term on the right hand side is equal to 1. 

Proof We use mathematical induction. For n =m (6.5) is clearly true. Suppose 
(6.5) is true for n - 1 .  Then, in particular 

2(A (k z, k3, . .... k,))=(flk2flk~ ... flk._m) -~ 2(A (k,_,,+~, k,-m+2,-. . ,  k,)). 

Hence it remains to show 

(6.6) 2(A(k~,kz,  ..., kn))=fl~l,~(A(k2,k3, ...,kn) ) for n > m +  l. 

Suppose first of all that A (kl) is a full interval. Then T maps A (k~, k2 . . . . .  k,) 
linearly onto A (k2, k3 . . . . .  k,) and (6.6) is proved. 

Now suppose A(kx) is non-full. Then TA (k0=[c%, Yk,). But since ek, is the 
left-hand end-point of an interval of rank mk~ < m <  n--1 and 7k~ is the right- 
hand end-point of an interval of rank n k , < m < n - 1 ,  we must have 

A (k2, k 3 . . . . .  kn)c [~k~, Yk~) 

and since T maps A (kl, k2, . . . ,  kn) linearly onto A ( k 2 ,  k 3 ,  . . .  , kn) (6.6) is proved. 

Proof of (6.3). Recall that h, the density of #, has discontinuities only at the 
points T"~,  T"7~ , n >  1, ieI. Hence the assumptions of the theorem ensure that h 
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is constant on intervals of rank no less than m. Hence for n>0,  if J~(A(kl,k2, 
. . . ,  

].1 ( X  m +n +1 (0)) = k m +n + 1 1 X l  ((D) = k l ,  X 2 ((1)) = k 2 ,  . . .  , X m + n(O,)) = k m + n) 

=#(A (kl, k 2 . . . . .  k,, +,, km+,+ ~))/#(A (k, , k 2 . . . .  , k,,+,)) 

----)~(A (/r 1 , k 2 , . . . ,  kin+n, lCm+n+l))/)~(A(kl, k2,  . . . ,  kin+n)) 

=2(A (k,+~, k,+ z, ..., kin+n, k,n+n+ l) ) /~(  /I (k,+ l , k,+ 2 . . . .  , kin+n) ) 

by (6.5). Since the last term depends only on k,+, ,  k,+2 . . . . .  k,,+,, kin+,+1, we see 
that T is an m-step Markov chain. 

We showed in (5.15) that T e ~  is exact and hence T e ~  is mixing. Since a 
mixing m-step Markov chain is weak Bernoulli (the case m = 1 is demonstrated 
in [7], the case m > 2  follows similarly) we see that if the hypotheses of (6.3) are 
satisfied then T is weak Bernoulli. We shall show in the next section that T is 
weak Bernoulli for each TeLl .  

7. Ts'~q is Weak Bernoulli 

In the proof that T is weak Bernoulli we shall use the approximation of 
h(~o) by hm(cO ). Corresponding to hm(oO ) we define an approximation to # by 

#re(F) = y h,,(co)d2 (co), Feg~. 
F 

The first lemma provides a useful estimate involving the convergence of /4 ,  to #. 

(7.1) Lemma. Given e > 0  we can find M = M ( e )  such that for m> M 

#m(EnF) #(EnF)  <~ #(EraF) 
#m(FO #(E) #(F.) 

for any E , F ~ .  

Proof Define g(co, m)=, h(co)-hm(cO))/p(m) and note that O<a(co, m)< 1. Then 

#m(E~F) #(Er'~F) l= E!v (h(~~176 #(Er-~F) 
#~(E) #(E) ~ (h (o))-~ (o), m)p(m))d2(o)) #(E) 

E 

= #(EnF)-~Ip(m)2(EnF ) #(EnF) 
#(E)- p (m) (E) #(E) 

for some 0 < ei < 1, i = 1, 2, 

= c~2p(m)2(E)p(EnF)-~lP(m)2(ErnF)#(E)[ 
(# (E) - p (m) (E)) # (E) 

< 2p(m) #(E~F)  
= ( C - l - p ( m ) )  #(E) 

providing m is large enough for p (m)< C-a. The fact that p (m)~ 0 as m--* oo now 
yields the result. 

In (5.2) we expressed the invariant measure of a Borel set F as the Ces/tro 
limit of the sequence 2(T-"F) .  Our next result shows that ordinary convergence 
takes place and moreover this convergence is uniform over partitions. 



318 K . M .  W i l k i n s o n  

(7.2) Lemma. Let Q be a finite or countable partition of f2. Given e>0  we can 
find L = L(O such that for n> L 

]2(T-"F)-#(F)[  <~. 
FeQ 

Proof. Put L 1 =LI(O=M(a/2), where M is as in (7.1). Let E be a full interval 
of rank r, say, such that hE, is constant on E. Once chosen we keep the set E fixed. 
Let ~ be the a-algebra generated by U~~ T- ip .  Using Doob's Martingale 

oO ~ " Theorem ([2] p. 121) and the fact that by (5.15) 0m=l~m lS trivial we know that 

# (E l~ ) (o )  ~ #(E) a.e. 

as m ~ oe. Hence, by Egoroffs Theorem ([8] p. 88), for any e '> 0 we can find a 
set D with #(D)<g such that on ~2\D, #(E[~)(co) converges uniformly, i.e. we 
can find L2=Lz(a'  ) such that for m>Lz ,  

I#(E[o%)(co)-#(E)[ < g for toeD. 

Now, since hl,(o) is constant on E, by (4.8) 

#El (E c~ r . . . .  F)/#L, (E) = 2 (E c~ r . . . .  F)/2 (E) = 2 (T-"F)  

for all F e ~ .  Moreover, 
1 

#(E l ~ +,)(c~ (c~ �9 #(Ec~ r . . . .  F)/#(E) = #(E) r . . . .  V 

H e n c e ,  

12(T_,F)_#(F)I<= r #L,(Ec~T . . . .  F) #(Ec~r  . . . .  F) 
FsQE P~O #LI(E)  #(E) 

1 
+ ~ u ( ~  J ,  #(El~+.) (co)h(o)dX(@-#(F) .  

F~Q #t ) T- - F 

NOW, by the choice of La and (7.1), the first term on the right hand side is smaller 
than e/2. The second term is no larger than 

1 ~ ~ ]#(E]~+.)(~o)_#(E)lh(co)d2(e)) 
#(E) v~(2 T . . . .  F 

1 
- 2 I ]#(El~+.) (~  

1 
+ ~ -  ~Q T_~_!~ I#(EI~+")(O~)--#(E)I h(~176 

<= e'#(O \ D)/#(E) + #(D)/#(E) 
<-_ 2 ~'/# (E) 

for n > L  2. Hence, putting e' =e#(E)/4 and L =max  (L 1 , L2) yields the result. 

We now prove the main theorem of the paper. 

(7.3) Theorem. T e L  is weak Bernoulli. 

Proof. We need to show that for any e > 0, 
/ q+2n . n \ 

(7.4) D~ ~/ T - 'P ,  ~/ T - i P ) < e  
q=q+n i = 0  
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where q depends only on e and for any two partitions Q, R of (f2, N, It), D(Q, R) 
is defined by 

D(Q, R)=  ~ I#(AnB)-#(A)#(B)I .  
AeQ BER 

In order to establish (7.4) we shall use the approximation of # discussed in 
(7.1) and the approximation of intervals by unions of full intervals. 

Put e '=e/6 and put M=M(e'), where M is a defined in (7.1). This fixes our 
approximation of #. 

Using (5.13) we can find k=k(e', M) and h=h(e', M) such that for n>=h we 
can fill f2 to within a set of #-measure e' with full intervals of ranks between n 
and n+k on each of which hM((o) is constant. The set of these full intervals will 
be denoted by ~,, k. Clearly we only need to prove (7.4) for n_>-h. 

For each n>=h we approximate V~'=o T -iP by a partition Q, formed in the 
following way. If R is an atom of V~'=o T- iP  then the corresponding atom/~ of 
Q, is formed by taking the union of all the sets in ~,,k which are subsets of R. 
The remainder of f2 when an a tom/~  has been formed corresponding to each 
R e  V~'=o T-~P will also be an atom of Q,. This last atom, because of the nature 
of ~,,k, will have #-measure less than e'. 

Now let F~o~k , of rank n+j(F), say, O<=j(F)<k and let B =  T-"-qB ', where 
B'e " - i  V~=o T P and q is to be chosen later. Then (4.8) implies that 

It~t(F n B) = 2(F n T-"  -q B') _ 2 ( T_~ + j(v ) B'). 
m,(F) ,~(F) 

Hence 
( q+2n ) It(FnB) ktM(FnB) ] 

O Q,,, V r - i e  < ~ p ( F )  It(F) btM(F) i=q+n 
+ ~  ~ (F)12 (T -q+j(e) B ' ) - /z  (B')I + 2 g  

where the sums on the right hand side are over F e ~ , k  and BE\~ q+2nv,=q+n --T-iP 
(equivalently B'e  VT=o T- iP)  �9 Now the first term on the right hand side of the 
above inequality is smaller than e' by the choice of M and the second term is 
smaller than e' provided q is larger than L(e') + k where L is as defined in (7.3). Now 

D T- iP ,  V T - iP  = ~ l # ( e n B ) - I t ( e ) I t ( B ) l  
i=q+n i~O 

__<Z [it(R n B)-  It(k nB)l 

+ ~ I#(-R n B ) - # ( R )  It (B)I 

+ ~  [#(k) I t (B)-i t (R) It (B)I 
[ q+2n ) 

<D~Q., V T -~P 
i=q+n 

+ ~ lIt(R n B)-- #([~ n B)l 

+ ~  lit(R) #(B)-#(R)  It (B)I 

< 6 e ' = e  
22 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 31 
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by the choice of Q,. Each of the sums on the right hand side is over 
q + 2 n  n --  

Be ~/ T - i p  and Re V T - i p  
i = q + n  i=0  

(with the corresponding ~ ~ Q.). Hence the theorem is proved. 

8. An Example 

In this section we shall introduce an example of a transformation in 5 ~ which 
is a generalisation of the following transformations: 

(i) The fl-transformation, To=flo9 (modone), fl> 1, whose ergodic prop- 
erties have been studied in [1, 3, 12, 15, 16] and [18]. 

(ii) Shiokawa's generalisation of the fl-transformation [17]. 
(iii) Linear mod one transformations, To~ = fl o + ~ (mod one), fl > 1, 0 < ~ < 1, 

whose ergodic properties have been studied in [13] and [19]. 

In this example we take I={0,  1, 2, ..., N} and choose ai, bi , /el ,  as outlined 
in w For l < i < N - 1 ,  we set fli=l/b~,cq=O(and hence y~=l), for i = 0  we set 
~o = ~ (0 < ~ < 1) and flo = ( 1 -  oO/bo (hence 7o = 1) and for i=  N we set 

~N=0, fin < 1/bN 

(hence 7 = ?N < 1). Then, defining T by (2.1) we obtain 

(8.1) l~ , co6Pi, l<i<N,  
where Pi = [ai, ai+O. 

We obtain the/3-transformation by setting c~=0 and choosing 

bi=b, i=0 ,1  . . . . .  N - I ,  bN<b. 

Then we put /3~=/3= 1/b for each ieI. We obtain Shiokawa's generalisation of 
the /3-transformation just by setting ~=0  and we obtain linear mod one trans- 
formations by setting bi = b, 1 < i < N -  1, b o < b, bN < b and letting/3~ =/3 = lib for 
each i~I. 

The intervals P~ are clearly full for 1 < i < N -  1, Po is full if and only if c~ = 0 
and PN is full if and only if Y = 1. Hence we find that 

i ~=0, 7= 1, 
(8.2) 1= ~=0,  7<1 or ~>0,  ~=1, 

~>0,  7 < 1, 

and so Ta50provided f l = m i n f l i > l  except when both ~>0  and y < l  when we 
i a I  

must insist fl > 2. Wherever we discuss T as defined by (8.1) in the sequel we shall 
assume that the conditions for T~50 are satisfied. By (7.3) T as defined in (8.1) 
is weak Bernoulli. This has already been noted for the fl-transformation in [1] 
and [18] and for linear mod one transformations in [19]. In the last paper it was 
assumed that fi > 2 whereas as we have seen we only need to assume 13 > 1 if ? = 1. 

Note that if ~=0, 7=1, T is a Bernoulli shift. If ~=0, 7<1 and T " y = 0 ,  
TST>O, l < j < m - 1 ,  or if ~>0, 7=1 and Tm~=o, TS~>O, l < j < m - 1 ,  then T 
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is an m-step Markov shift. If e > 0 and ~ < i then T is an m-step Markov shift if 
Tko:=O, T i e > 0 ,  1 < j < k -  1, T ~ 7=0,  T~7>0, 1 < j < I -  1 and re=max  (k, I). 

A version of the density of the invariant measure for the fl-transformation 
was introduced in [3] and [12] and that for linear mod one transformations in 
[13]. In [17] Shiokawa gives a version of the density of the invariant measure for 
his generalisation of the fl-transformation. We give here a version of the density 
of the invariant measure for the class under consideration. 

(8.3) Theorem. Let T be as defined in (8.1) and/ f~=0,  y =  1, let 

h(~o) = 1, 
ifct =0, 7<  1, let 

1 o0 

h ( @ =  1 +-7-PN E=o B(y, n) Zto, r,~)(@, 

if a > O, ? =  1, let 
oo  

h(ro) = 1 + fif. ~ .~=a__ B(a, n) Z[r. ~, 1)(co), 

and if o~ > O, ? < 1, let 

Dt ~o DE 
(8.4) h ( m ) = l + - f f f  ~.=oB(%n)Z[O.T=,,(oo}+~-o.~oB(Oqn)ZtT...,,(o ) 

where D1, D2 are the solutions of 

DE 
(8.5) Dt -- 1 +~-Tf B(a), 

$ ,o 

and 

Then 

B(~)= f B(a, n), 
n = O  

#(F) = j" h(o) d2(@, 
F 

91  
D 2 = 1 + ~ f ,  B(~) 

B(7)= f B(~, n). 
n=O 

F e ~ ,  

defines a finite measure (not necessarily normalised) which is equivalent to 2 and 
invariant under T. 

Proof. We first note that since 

O<B(7)/flN< 1/(fl-- 1) and O<B(~)/flo < 1/(fl- 1) 

and since in the case ~ > 0, 7 < 1 we assume fl > 2, the solutions of (8.5) 

1 + B(cc)/flo 1 + B(7)/fl,,r 
D 1 -  l_B(7)B(cO/flofl N , D 2 -  l_B(~)B(ct)/flOflN 

are both positive and bounded. Hence 

1 <h(co)<D1 fl/(f l-  1) 

ensures the finiteness of # and the equivalence of # and 2 in this case. 

The equivalence of # and 2 in the other cases is immediate. We shall prove 
the invariance of # under T only in the case ~>0,  7<1,  the other cases being 
proved similarly. We use the relationship of Parry [13] already introduced in 
22* 
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(5.12). We first look at 
1 N - 1 

{, __2 ~ XEo, 
k = 0  = 

Now [Pk, 0<k<X.+l(7), 
[0, T"7)n Pk=~ [ax.+~(r), T"7), k=X,+l(7), 

[el), X,+~(7)<k<= N, 

where �9 represents the empty set. 
Hence 

N 1 1 1 
- -  - -  Z [ o ,  - -  ) ~ [ ~ ,  1 ) ( O ) )  Zt~176176 flk flx~+,(e) Tn+IT)(O))-~ flO 

k = O  

x,,+,<~) 1 1 + E 
Similarly 

u 1 1 1 
- - -  Ztr-*'~, ~)(~)+fl~-N Xto.,(c~ k=EO )~tr""')(f(w+k)))~re~(O~) flk fix.+,(.) 

u-1 1 1 
+ Y, 

k:x.+,<~ flk flx,,+~<.) 
Hence, with h as in (8.4), 

u 1 
Z h(f(m + k)) XTe~(C") 

k= 0 flk 

= ~ = o  ~ -  x~,~(co) + . .= B(~, n) 

{ f i x , @-  1 x"+'(" 1 1 } �9 Xto. ~-+,,>(~o) + ~ - o  xt.. ~>(~~ + Z (~) 1,= 1 fig fix. + ,(~) 

+ ,,~o B(a, n) flx,,-+~r Xtr"+'"l)(<~176176 
u-1 1 1 ) + y' ? k=X.+ ~(~,) flk fix.+,(.) 

1 1 u-1  1 

+ B(y,n)Xto, T.r)(o.))+ DxB(?) Xt.,1)(co) 
. flNflo 

_~1 ~ ~ ~ ~ cx-+'(') 1 1 } 
+ 

B ( y ' n ) (  k=l flk flx.§ 

D 2 oo 
+ floo n--~l B(e, n) Xtr-~, ,)(co) + Dz B(~x) flofl,, Xto. , (~ )  

+D2 ~ B(e,n) I ~'~1 1 1 .}. 
/~o , , = o  l~,=x.+,<:> flk flx.+,(~) 
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Now 

= 7 -  

and 
( N-1 1 1 ) 

n=0 {k=Xn+l(oO flk rxn+,(c t )  

= + 

. : o  k = 1 fiX,, + 1 (a) 

_ 2 B ( o 0 _  or 1. 

Hence 
~" 1 
Z h(f(co+k))ZTp~(co) fik 

k=O 

_}_D1 ~ " 
fiN .~x B(?, n) XlO, T"~)(CO) 

D2 oo 
"{-fl0 rt=~lB(~' n) ZET-~,I)(CO) 

=h(co) 

using (8.5) and the fact that the constant term is equal to 

~ 1 1 + ~ { D  1 D2 } 1 - ~ J D D I B ( ? ) } = I  
1 flk fiN -- /~O B(~ k,o L - ~ -  ? ~ )  2 fin 

as required. 
Note that in the proof of (8.3) in the case ~ > 0, y < 1, we only needed the assump- 

tion fl > 2 in order to prove that # is equivalent to 2. In fact the proof that # is 
invariant with respect to T depends only on the existence of a solution of Eqs. (8.5). 
A solution always exists with D~ and D a positive if f l> 2. However a solution 
may exist for 1 < fl < 2, with possibly one or both of D1, D2 negative (for instance 
if fi~=fl, O<i<N, r # 2 ,  the solution is D, =D2=(f l  - 1)/(r-2)  which is negative 
for 1 < fl < 2), which still gives a measure # which is invariant with respect to T. 
The question then arises as to whether this measure # is equivalent to 2. The 
following lemma, which was proved for the special ease To =rico + ~ (mod one) 
in [13], gives a partial answer to this question. 

(8.6) Lemma. Suppose there is a solution to Eqs. (8.5) and define h(co) as in (8.4). 
I f  h(co)~:-O and T is strongly ergodic, then 

#(F)= ~ h(co)d2(co) F 6 ~ ,  
f 

defines a finite measure which is equivalent to 2. 
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Proof As h(co)~0 there are three cases to consider: 

(i) h (co) > 0, 2-a.e., 
(ii) h(co)<0, 2-a.e., and 

(iii) h(co) assumes both positive and negative values on sets of positive 
Lebesgue measure. 

Case (ii) reduces to case (i) if we replace h by - h .  Hence we only have to 
consider cases (i) and (iii). In each of these two cases there is a point COoer2 such 
that h (coo)> 0. We shall first show that h is right continuous at each point of f2 
and hence in particular at coo. Hence if E={coeO: h(co)<0}, 2(E)<l .  The 
remainder of the proof will show that T - 1 E c E  (2-a.e.) and hence, since T is 
assumed to be strongly ergodic, 2(E)=0, proving the lemma. 

Define for m > 1, 
D1 m 

h.(co) = 1 + .=2om ,  )Xto, 

m 

Then 

]h(co)-hm(co)[~ IDI[ 2 - ~ - ~  1 ]D21 ~ ~, 

= 6(m), say. 

Given e>0, choose M so large that 6(M)<e/2 and for any cosf2, let col be the 
smallest member of the set {1, Tke, Tk?, l<_k<_M} which is strictly greater 
than co. Then, for co_< co' < col, 

I h (co) - h (co') I <lh  (co) - hM(co) I + I hM(co) -- hM(co') I + I hM(co') -- h (co') I < e 

by the choice of M and the fact that hM is constant on [co, coO. Hence h is right 
continuous. 

Now define the linear operator U on ~1 (f2, ~ ,  ;0 by 

U~(co)= Z ;~Te~(co)~(f(k +co))l f ' (k+co) l. 
k e l  

Note that by Parry's relationship [13] a necessary and sufficient condition for 
to be the density of a measure invariant with respect to T is that ~ is a fixed point 
under U (i.e. U~=~,  2-a.e.). Moreover U is 5e~ norm-preserving since 

Uz(co)d2(co)= 

for any z e ~l(t?, N, 2). 
Now let 

~ ZTP,,(co)'c(f(k+co))lf'(k+co)ld~(co) 
k~|  

= ~ ~ ZTP~,(CO) ~ ( f  (k + co))lf'(k + co) ld2 (co) 
k~|  

= Z I,(co)d, (co) 
ke l  Pk 

=  (co)d (co) 

h(co)=h + (co)-h-(co), 
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where 
h + (03) = max (0, h (co)) and h - (co) = - rain (0, h go)). 

We also put z + =  Uh +. Then, since Uh=h,  v+(co)>h+(co), coeQ. However, 
since U is norm-preserving, 

z + (~o) d2 (o~) = ~ h + (o~)d2 (co). 

Hence, z+(co)=h+(~o) 2-a.e., i.e. Uh + =h  + 2-a.e. and so 

#+(F)=  ~ h+(co)d2(co), F e ~ ,  
F 

defines a measure which is invariant with respect to T. Since E = {co: h + (co)= 0}, 

~h+(w)d2(oJ) = ~ h+(~o)d2(oJ)=0. 
E T - 1 E  

Hence T-~E c E (2-a.e.), which completes the proof. 

9. Concluding Remarks 

The proof of (7.3) depended essentially on the facts that there is an invariant 
measure for T which is equivalent to 2 and that there are sufficiently many full 
intervals to approximate any sub-interval of ~2 arbitrarily closely by full intervals. 
The following special cases of Tco=fl~o+e (rood one)demonstrate that these 
conditions are not always satisfied for 1 <fl__<2 and also that these conditions 
are not necessary to ensure that T is weak Bernoulli. The first example was 
discussed in [13]. 

(9.1) Example. Let fl be the positive solution of f l2=f l+  i and let ~=(3- f l ) /2 .  
Then To) = flco + c~ (mod one) is not strongly ergodic since T-1 [(fl_ 1)/2, (3 - fl)/2) 
=[1/f l  2, 1/fl) and ( f l -1 ) /2<  1/f12<l/fl<(3-fl)/2. Hence (8.6) is not applicable. 
In fact, since Ta=fi/2, TZa=O, Tac~=~ . . . . .  etc. and T7=(2-f l ) /2 ,  T27=0,  
T37=c~ . . . . .  etc. where 7 = f l + a - 2 = ( f l - 1 ) / 2 ,  the density of the invariant 
(probability) measure given by (8.4) is 

[1/(7-4fl) ,  o~e [0, l/2f12)w[fl/2, 1), 
h(m)=~ l/(3 f l -4) ,  ~oe [1/2fl 2, ( f l -  1) /2)~[(3-  fl)/2, ill2), 

[ 0, ~o e [ ( f l -  1)/2, (3 - fl)/2) 

and hence k~(F)= ~vh(co)d2(co), F e N ,  defines a measure with respect to which 2 
is not absolutely continuous. 

Now the non-empty rank two intervals are 

d(O, 1)=[0,  1/2fl4), 

A (0, 2)= [1/2fl 4, 1/2fl2), 

/1(1, 0)= D/2/~ ~, 1/2/~), 
/1 (1, 1)= [1/2fl, (3 - fl)/2), 

A (1, 2)= [ ( 3 -  fl)/2, ill2), 

/1 (2, 0)= Eft~2, 3/2 fl), 

/1(2, 1)=[3/2fl, 1). 
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Hence we see that the set on which h(o))=0 is A(1, 1) and so regarding (1, 1) as 
a state with zero probability the techniques of w 6 may be used to see that To) 
= ,8 co + a (mod one) where ,8 and e are as defined above is a 2-step Markov shift 
whose associated 1-step Markov shift has state space a=(0,  1), b=(0,  2), c=(1, 0), 
d=(1,  2), e=(2,0),  f=(2 ,1 ) .  Moreover the rank three intervals with non-zero 
/~-measure are 

A (0, I, 2)= [0, i/2,84), 

A (0, 2, O)= [1/2,84, 1/,8*), 

A (0, 2, 1)= [1/fl 4, 1/2,82), 

A (1, O, 1)=[1/2,82, 1/f13), 

A(1, O, 2)=[1/,8 3, 1/2,8), 

A (i, 2, 0) = i-(3 - ,8)/2, 2/,82), 
A (I, 2, 1)= [2/,8 ~, ,8/2), 

(2, 0, I ) =  [,8/2, (3 -,8)/,8), 
A (2, O, 2)=  [(3 -,8)/,8, 3/2,8), 
A (2, i, 0 )=  [3/2,8, I). 

Hence the one-step Markov shift associated with T has stationary distribution 
Pa ~- Pb/,8 = Pc = P d  = P e / f l  ~" P f  = 1/2 ,84 (7 - -  4 ,8) and transition matrix rc given by 

t 0 0 1 0 i , 8 1  0 0 0 0 1 / , 8 1 2  1/0~2 1/,8 0 0 0 
re= 0 0 0 1 / , 8 1 / , 8 2 1  " 

\1 /0 ,821/ ,800 1 0 0  00 00 / 

Since rc 5 is a matrix with all entries non-zero we see that the one-step Markov 
shift associated with T is mixing and so T is weak Bernoulli. 

(9.2) Example. If we choose fl > 1 and 0 < e < 1 such that fl + c~ < 2, then there 
are no full intervals of rank one and consequently no full intervals of any rank. 
In particular let ,8 again be the positive solution of ,82 =,8 + 1 and let c~ = 1/2 f12. 
Then To~=1/2=(1-o0/ ,8  , T2~=0,  T30~=0~, T 4 e = l / 2  . . . .  , etc. and T y = l / 2 ,  
T2y=0,  T3])=~, T4y= 1/2, ..., etc., where y = , 8 + c t - 1  =,8/2. Hence the density 
of the invariant (probability) measure given by (8.4) is 

h(m)=[,8z/(,82+ i), co~ [0, i/2,82)u [fl/2, i), 
I ,83/(,82 + i), co~[ I /2f l  2, fl/2), 

which defines a measure equivalent to 2. Moreover T is a 2-step Markov shift 
whose associated one-step Markov shift has state space a=(0,0),  b=(0,  1), 



Ergodic Properties of a Class of Piecewise Linear Transformations 327 

c=(1, 0), d=(1, 1) and stationary distribution 

Pa = # ( A  (0, 0 ) ) = # ( [ 0 ,  1/2 flz))= 1/2(/~ 2 + 1), 

Pb = # (A (0, 1)) = # ([1/2//2, 1/2)) =//2/2 (//2 + 1), 

Pc = # (A (1, 0)) = # ([1/2,///2)) =//2/2 (f12 + 1), 

Pa =#(A (1, 1))= #([///2, 1))= 1/2 (//2 + 1). 

Since the non-empty rank three intervals are 

A(0, 0, 1)=[0, 1/2//2), 

A (0, 1, 0)= [1/2//2, 1///2), 
A (0, 1, 1)= [1///2, 1/2), 

A (1, 0, 0)= [1/2, 1///), 

A (1, 0, 1)= [1/fl, fl/2), 
A (1, 1, 0)= [///2, 1), 

the one-step Markov shift associated with T has transition matrix n given by 

Q 1 0 0 2 t  
0 1/// 1/fl 

n= l ~ Z 1///0 O1 00/" 

Since n 4 is a matrix with all entries non-zero, Tis weak Bernoulli. 
Since we have examples of piecewise linear transformations which do not 

satisfy condition (2.2) but which are nevertheless weak Bernoulli with respect to 
the time-one partition we must ask whether the class A ~ may be widened to define 
a class which includes these transformations. Because of the remarks preceding 
(9.1) it is clear that techniques quite different from those used in (7.3) would have 
to be used to show that such a class was weak Bernoulli. In particular, is T o  = 
//co+e (mod one)weak Bernoulli for 1 <//_<_2,//+e not integral? 
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