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Weak Convergence to Fractional Brownian Motion 
and to the Rosenblatt Process* 

Murad S. Taqqu 

1. Introduction 

In this paper we determine the limit under weak convergence of certain 
normalized partial sums of stationary random variables that exhibit long run 
non-periodic dependence. The dependence structure of geophysical phenomena 
(Mandelbrot and Van Ness (1968)) motivated this research. Because of the rela- 
tively strong dependence, the limit process is never Brownian motion, nor is it 
necessarily Gaussian. 

Let {Xi, i=  1,2, ...} be a stationary Gaussian sequence with EXi=O and 
EX~ = 1. Let G(X~) have mean 0 and finite variance. We study the weak limit, 
as N ~  o% of the random functions 

1 lml zN(t)=Z-__E1 G(x,) 

where 0 < t < 1 and d 2 is asymptotically proportional to Var ~ =  1 G(X~). The weak 
convergence is understood to hold in ~([0, 1]), the space of all functions on 
[0, 1] whose discontinuities are at most of the first kind. 

In order for Zu(t) to converge weakly to a non-degenerate limit 2(0 which is 
continuous in probability, it is necessary that d~N2UL(N) as N--~ ~ for some 
constant H and some slowly varying function at infinity L (Lamperti (1962)). 
Here, the symbol ~ denotes asymptotic equivalence. 

The case of independent G(X~) is well known. In this instance H=�89  and 
ZN(t) converges weakly to Brownian motion (Donsker's theorem). Sun (1965) 
has shown that the random variable ZN(1) remains asymptotically normal when 
{X~} has an absolutely continuous spectrum, 

(EX1Xl+k)2<oo a n d  l i m  L EXiX j 
s ~  N i=l j k=O "= 

is finite. Notice that the random variables G(XO are allowed to be dependent but 
H is still equal to �89 

We shall focus on values of H satisfying � 8 9  We assume EX~Xi+k~ 
k -D L(k) as k-* oo for some slowly varying function L and some constant D >0. 

1 
H > �89 arises when D < - - ,  where m, the Hermite rank of G, is the index of the first 

m 
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non zero coefficient in the Hermite polynomials expansion of G (Xi) (see Section 3). 
Under these assumptions, ~'~~ 1 EG(Xi)G(X~.k)=oo and the sequence {G(Xi)} 
is so strongly dependent that the limit of ZN(t) may not be Gaussian. That limit, 
when it exists, is an a.s. continuous process depending essentially on m (Section 2). 
To determine this limiting process it is sufficient to study the convergence of the 
finite-dimensional distributions of ZN(t), when G(Xi)=H,,(Xi), where H,, denotes 
the Hermite polynomial of order m (Section 4). 

When ra= 1 (Section 5), ZN(t) converges weakly to the fractional Brownian 
D 

motion process BH(t) with parameter I < H =  1 - ~ - <  1. This limiting process is 

Gaussian with zero mean and E[B_ri(t2)-Bn(tl)[z=]t2-tl[ 21t. The process is 
defined for 0 < H < 1. It is Brownian motion when H =-11-. For a detailed treatment 
of Bu(t), see Mandelbrot and Van Ness (1968). 

When m = 2 (Section 6), ZN(t ) converges weakly to the non Gaussian "Rosen- 
blatt process". This fact extends a result obtained by Rosenblatt (1961). 

Partial results for m>3 are given in Taqqu (1972). The limiting moments of 
ZN(t) are determined there for all fixed rn > 3. They are finite and not those of a 
Gaussian process. Whether they characterize a unique process Z,,(t) is still an 
open problem. Of special interest would be the representation of (one of the 
possible) Z,,(t) in terms of Bn(t ) or of Brownian motion. For a suggestion, see 
Taqqu (1972). 

Weak convergence of ZN(t) has direct practical applications. It validates one 
of the uses of the statistic "R/S" introduced by Hurst and developed by Mandel- 
brot for investigating long run non-periodic statistical dependence of time series. 
The theory of R/S is described in Mandelbrot (1975). Applications arise in hydro- 
logy (Mandelbrot and Wallis (1968), (1969), Taqqu (1970)), in geophysics (Mandel- 
brot and McCamy (1970)), and in economics (Mandelbrot (1972)). 

Davydov (1970) has studied the polygonal line process obtained by con- 
necting with straight lines the points of discontinuity of 

ZN(t)- 2 ck_, ~k. 
k ~  --Qo 

Here {~k} is a sequence of independent, identically distributed random variables 
with 0 mean, and the Ck satisfy ~__oo ~ 2 c k < o0. When E I~kl2r< o0, r>2,  and the c k 
are such that 

Var ~. Ck_~k ~N2~L(N) as N---~oo, with r + - ~ < H < l ,  
i =  k =  - ~  

the polygonal line process induced by ZN(t) converges weakly to BH(t) as N--* oo. 
To prove that the process ZN(t ) itself converges weakly to B~(t), tranpose Davy- 
dov's argument to 9([0, 1]). Recently, Gisselquist (1973), extending results of 
Spitzer (1969), proved that the finite-dimensional distributions of some collision 
process converge to those of BH(t) with !<u<!4=,j =2. Note that the increments of 
Bn(t) are negatively correlated when 0< H<�89 are independent when H=�89 and 
are positively correlated when �89 < H < 1. In Section 5 we give an example of a 
sequence ZN(t ) converging to Bn(t) for 0 < H < �89 
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2. Sufficient Conditions for Weak Convergence 

The purpose of this section is to state sufficient conditions for a sequence 
ZN(t) of random functions of ~([0,  1]) to converge weakly as N-~  ~ to a process 
Z(t) endowed with the following properties H(H), for some 0<H=< 1. 

Properties H(H) of 2(0. 1. 5 ( 0 ) = 0  a.s. 

2.2(0_has strictly stationary increments, that is the random function Mh(t)= 
Z(t  + h ) -  Z(t), h >-_ O, is strictly stationary. 

3. 2(0  is semi-stable of order H, that is 

P {Z(c t 1) < x l ,  Z (c  t2) ~ x 2 . . . .  , Z (c  tp) ~ Xp} 

= P {c n 2(q) < X1, C fl Z(t2) < x2, ..., c n Z(t  v) < xv}. 

1 
4. E Z ( t ) = 0  and E 12(t)[~<~ for ?_<~-. 

5. Z(t) is separable and a.s. continuous. 

Remarks. Brownian motion starting at 0 is endowed with properties H(�89 
The concept of semi-stability was introduced by Lamperti (1962). Mandelbrot 
and Van Ness (1968) call it "self similarity" when it appears in conjunction with 
stationary increments, as it does here. 

Conventions. 1. A regularly varying function N o L(N) of the integer N with 
positive exponent p is assumed to possess a regularly varying extension x p L(x) 
defined for all x > 0, which is bounded on finite intervals. 

2. Empty sums are equal to 0. 
The main result of this section is 

Theorem 2.1. Suppose the sequence ZN(t), N =  1, 2,.. .  of random functions of 
@([0, 1]) satisfies 

(i) ZN(t)= N2SIN;IN) 

with 0 < H <  1, L slowly varying, and S N = ~ =  1 Yi for some strictly stationary 
sequence {Yi} with 0 mean and finite variance; 

(ii) ESg = O(N zn L(N)) as N--* oo; 

1 
(iii) ErSN[Za=O((ES~) ") as N-~oo  forsome a> 2 H ;  

(iv) the finite-dimensional distributions of ZN(t ) converge as N--+ oo. 

Then the sequence ZN(t ) converges weakly as N - *  oo to a process Z(t) endowed 
with the properties H(H) and whose_finite-dimensional distributions are the limit 
of those of ZN(t ). Furthermore, E IZ(t)l ~ < oo for 7 < 2 a. 

Remark. When �89 H < 1, the choice a = 1 satisfies condition (iii). 
The rest of this section is devoted to the proof of Theorem 2.1. We first prove 

the following lemma which extends a result of Davydov (1970). 
20* 
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Lemma 2.1. A sequence ZN(t), N = 1, 2,...  of 3([0,  1]) that satisfies condition (i), 
(ii) and (iii) of Theorem 2.1 is tight. 

1 
Proof Let 1 > t2 > t > h > 0, a > ~ -  and 

JN(a, t2, t, q ) =  E IZN(t2)- ZN(t)I a ]ZN(t ) -ZN(h)]". 

Using Schwarz inequality and the stationary of the Y~, 

1 2a]�89 ~ 2a~�89 JN(a, t2, t, tl)<=(NEnL(N))~(EIS[m2]_[N q J ~ ~'[m]-[md J �9 

Introduce the regularly varying function U(x)=xU~L~/2(x) and let ~N(t2, t l )= 
[N t2] - [N q]  

N 
By hypothesis (ii) and (iii) there is a positive constant K and an integer N1 

such that for N >  N1, 

Js(a, t2, t, q)<=K U(N ~N(t2, t)) C(X ~N(t, tl) ) 
U(N) U(N) 

Since the exponent H a is positive and U(x) is bounded in finite intervals, 

lim U(N OtN(t2, t)) = (t2 _ t) l f  a 
,++ + c ( x )  

holds uniformly on the interval O+m++ 1 (see de Haan (1970), p. 21). It follows 
that for some N2 > N~ and some positive constant C, 

JN(a, t2, t, q) < cZH~(t2-t)~a(t-q)ua< ( C t 2 -  C q)znL 

1 
Notice that the exponent H a  is greater than �89 because a > ~ - .  Then by 

Theorems 15.4 and 15.6 of Billingsley (1968) the random functions ZN(t), N = 1, 2,... 
of 3( [0 ,  13) are tight. []  

Proof of Theorem 2.1. Convergence of the finite-dimensional distributions 
(condition (iv)) and tightness (preceding lemma) ensure weak convergence of 
ZN(t) to some limiting process Z(t). (Billingsley (1968), Theorem 15.1, p. 124). 
Choose a separable version. 2 ( 0 ) = 0  trivially since ZN(0)= 0. The increments of 
2 (0  must be strictly stationary because of the strict stationarity of the sequence 
{Y/}. Semi-stability follows from Lamperti (1962). 

w e  now investigate the asymptotic behavior of the moments of ZN(1). By 
1 

condition (ii) and (iii), there is an a > ~ -  such that 

E I S ~ l  o ((ES~) ~ 
E IZN(1)I 2 " -  (N2U L(N))a - (N2U r(N))a - O(1) 

as N--+ 0% and hence sup E [ZN(1)[ 2~ < oo. The sequence IZN(1)IL X = 1, 2,... with 
1 

7 < 2 a is uniformly integrable and E [Z(1)I ~ = ~olim E IZN(1)V < oe. Let ?o = a + 2--H- 
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1 
and note that ~ -<V0<2a .  It follows that 

E[2(t)[~=t~E[Z(1)[~<oe for 7 < 1 < 2 a .  

Moreover, EZ(t)=O because EZ~(1)=0. 
We now prove the a.s. continuity of Z(t). A sufficient condition for continuity 

is that for all 0 < f i ,  t2 < 1, 

E IZ(t2)- 2(q)l' =< [F(t2) - F(q)l ~ 

holds for some 7_->0, ~> 1, and some continuous, non decreasing function F(t) 
(Billingsley (1968) p. 97). The condition is satisfied with 7=70, a - = 7 o H > l  and 
F(t) = C t, C > 0, since by stationarity and semi-stability 

E [Z(t2)--Z(tl)[~~ --tl)~'~ [Z(1)]~'~ < o0. [ ]  

3. The Hermite Rank m 

Let {Xi} be a normalized stationary Gaussian sequence, and let r (k ) -  
EXi X~+k, k = 1, 2, . . . ,  be its correlation kernel. 

What conditions are to be imposed on a function G and on the sequence of 
correlations r(k) in order for Var (~N= 1 G(X~)) to be asymptotically proportional 
to N2nL(N) as N ~  o% for � 8 9  17 This section provide some answers. 

We first introduce the notion of Hermite rank. 
Let X denote an N(0, 1) random variable and define 

N=  {G: EG(X)=O, EGz(X)< o~}. 
~r is then a subset of 

x 2 

(we2  { 1 ~ G 2(x) exp - dx<oe . 

The Hermite polynomials x~ d q _ x~ 
2 Hq(x)=(-1) q e2 ~-~xq e 

( e -x~/2 ) 
(q = 0, 1, 2, ...) form a complete orthogonal system of functions in IL z IR 1, - -  . 

They satisfy EHt(X)Hq(X)=61~q!. For any G ~ ,  introduce 

J (q) = E~(X) I4~ ( X). 

~;=0- -'__JO@ H,(x)converges to G(x)inlL 2 (11t 1, e-X2/2l~ ) . The series 

Define m = rain (q: J(q) =I = O) 
4=0,1,2 .... 

and call this number the Hermite rank of G. m is always positive since J(0)= EG(X) 
~ 0 .  

For example, odd powers of X have Hermite rank 1. Even powers of X with 
their mean subtracted have Hermite rank 2. Usually, an odd G has Hermite rank 1 
and an even G with its mean subtracted has Hermite rank 2. The Hermite poly- 
nomial H,, has Hermite rank m. 
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We may now give a preliminary answer to the question stated in the beginning 
of this section. 

Proposition 3.1. Let Gef f  and suppose that for large k the sequence r(k) is non- 
negative and monotone decreasing. 

7hen, Var(~L1 G(Xi)) is regularly varying with exponent 2 H, � 8 9  as 
2 H - 2  

N ~ 0% if and only if r (k) is regularly varying with exponent - D . . . .  as k ~ c~, 
where m is the Hermite rank of G. m 

The proof follows straightforwardly from Lemma 3.1 and Theorem 3.1 below. 
Proposition 3.1 is inserted here to motivate the following definitions of the class 
of functions fqm and of the class of Gaussian stationary sequences (m)(D, L(')). 

Notice first that 0 < D < 1  when �89 H < 1. 
m 

Definition A. The class (#,,. 

Hence 
if,,= {G: Geff, G has Hermite rank m}. 

~=~9~wfglwf92w.. .  with f~ic~fgj=~b if i@j 

and where (~oo -= {G(x)-0}. 

Definition B. The class (m) (D, L(.)). 

For any positive integer m, {Xi} e (m) (D, L(')) if r (k) ~ k-D L(k) as k ~ Do with 

0 < D < 1  and L slowly varying. 
m 

For example, 

1 
r(k)= l+]k]"  and r(k)=�89 -D} with D>0  

provide bona-fide correlation kernels satisfying r(k)~k-~ for some L. 
Notice that (m2)(D, L( . ) )c  (ml)(D, L(')) for m2 > ml. 
It is useful to introduce the following, less restrictive class of sequences {Xi}. 

Definition B'. The class (m)' (n, L(')). 

For any positive integer m, {Xi}e(m)'(H, L(')) if 

(i) lim r(k)=0, 
k ~ 0  

N N 

(ii) ~ ~ ( r ( i - j ) ) " ~ N ~ n L ( N )  as N--,oo, 
i = l  j = l  

N N 

(iii) ~ ~ Ir(i-j)["=O(N2n L(N)) as N ~ o o  
i~1  j = l  

with � 8 9  and L slowly varying. 
Notice that assumption (iii) is automatically satisfied when m is even. 
The following lemma relates definitions B and B'. 
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Lemma 3.1. 

(1 ) 
2 ' (1 -mO)(2-mD)  " 

Conversely, suppose that r(k) is monotone decreasing for large k. Then 

Proof. 

2 rm(i-j)=rm(O) + 2 0)+2 rm(k . 
i = 1  j = l  s = l  = 

Suppose {Xi} e (m)(D, L(')). Adapt Karamata's theorem (Feller (1971), p. 281) to get 

N n 2 

i=1 j=l ( - m D + l ) ( - m D + 2 ) ,  

as N ~ oo. Furthermore, 
N N N N 

~. ]r(i-j)l m~ E ~ : ( i - j )  
i=1 j=l i=1 j=1 

as N ~ o o  because ]r(k)l~r(k) as k--~oo and (1-mD)(2-mD)>O. 
Conversely, suppose {Xi} e(m)' (H, L(. )) and that r(k) is monotone decreasing 

for large k. Adapt the lemma in Feller (1971), p. 446, to get 

2 H ( 2 H - 1 )  kEn_2L(k ) as k--,oo. [] r m ( k )  2 

The adequacy of the class (m)'(H, L(. )) is apparent in the next theorem. 

Theorem 3.1. Let G~ffmfor some m> 1 
1. I f  {Xi}~(m)'(H , L(. )), then 

(~1 ) j2(m) N2nL(N)' N---~~176 �89 (3.1) Var G(XI) m ! 
i _  

where J (m) = EG(X) Hm(X ). 
2. I f  the sequence r(k) is non-negative for large k and converges as k-~ co, then 

(3.1) entails {Xi} ~(m)'(H, L(. )). 

Proof. Expand EG(Xi)G(Xj) as a power series in r(i-j). 

j2 ,  , 
EG(Xi) G(Xj):q~=m~l.  ) rq(i--j) 

where J(q)=EG(X)Hq(X). (See Rozanov (1967), p. 182.) Also introduce 

= ( x , )  - Hm G 
Then 

Var .~ G(Xi) = EG(X~) G(Xj) = $1 (N) + $2 (N) 
~=1 , = 1  j = l  
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where 

and 

SI(N)= j2(m ) ~ N . . 
m! i=i j~l r"(t-J) 

N N 

S2(N)= ~ ~ EG*(X,)G*(Xj). 
i = 1  j = l  

1. Suppose { X i } ~ ( m ) ' ( H  , L(.)). Then 

J2(m) N2n L(N) SI(N) m! 

follows from (ii) of definition B'. Hence, to establish (3.1) it is sufficient to prove 
that S2(N)=o(N2nL(N))- - as N ~  oo. 

N N N N ~ j2(q) 
~ IEG*(X3G*(Xj)I<= ~ ~ q! [r(i-j)lq 

i = 1  j = l  i = l  j = l  q = m + l  

N N 

< C ' ~  ~ [r(i-j)[ m+l 
i = 1  j = l  

where 
oo j2(q) 

c'= E =E(c*(x)) 2< o0. 
~=m+l q! 

Since ]r(i-j)[----}O as [i-jl----~oo ((i) of Definition B'), there exists for arbitrary 
e>0,  a number 6(e)>0 such that 

N N N N N N 

Y',lr(i-j)lm+~< ~ ~ l+e 2 Y, lr(i-j)l m 
i = 1  j = l  i = 1  j = l  i = 1  j = l  

[i-j[ <_~ 

,,~ C(e) N + e O(N 2" L(N)) 

as N-~  o% for some constant C depending on e ((iii) of Definition B'). Since 
H>�89  as N ~  oo, 

N N 

E =o(N2"L(N)). 
i = 1  j = l  

2. Suppose now that (3.1) holds. We first prove l imr(k)=0.  Suppose ab 
~ o o  

absurdum that l imr (k )=2>0 .  Then for e l>0,  small enough for 2 - g  1 to be 
k~oo 

positive, there is a 61 such that r ( k ) > 2 - e l  for all k>6. 

Var 
\ i = 1  i=1 j=l q=m q" 

N 

l i -J l  >~I 



Weak Convergence to Fractional Brownian Motion and to the Rosenblatt Process 295 

The first term on the right hand side is O(N). The second term however is greater 

than 00 2 j2(m) (2-el)m2 2 1 
(2-  el)q> m! 

i=1 j = l  q= - i=1 j = l  
li-Jl >~1 li-Jl >~1 

> Cl(ea)O(N2)+ C'I(eO0(N) 

where C~ and C] are positive constants depending on el. This contradicts (3.1), 
since H < 1. 

It remains to prove that 
N N 

~ rm(i-j)~N2HL(N). 
i=1 j = l  

(Condition (iii) of Definition B' follows straightforwardly.) For any e2 > 0, there 
is a 6 2 >0  such that 0<  r(k)<e2 for all k>  6 2. A derivation similar to part l of 
this proof yields 

[S2(N)I<=Cz(e2)O(N)+~2SI(N ), as N - + ~  

for some positive constant C2 depending on e z. But by (3.1), 

j2(m) N2HL(N) as N ~ ,  S 1 (N) + S 2 ( N )  m! 

with H>�89 Therefore, as N---~, S2(N)=o(SI(N)), and 

N N m! 
Z ~, rm(i--J) = SI(N)~N2UL(N)" [] 
i=1 j=~ J2(m) 

The proof of the first part of Theorem 3.2 provides 

Corollary 3.1. Suppose G e f~  and { X i } e(m)'(H, L(. )). Then the sequence 

G*(Xl) = G(X,) - - ~  Hm(Xi), i= 1, 2 .... 
satisfies mf. 

N N 
~ IEa*(xi)a*(xj)l=o(N2UZ(N)) as N ~ .  

i=1 j=l 

4. The Reduction Theorem 

We now suppose G~(~ m for some m >1 and {X~} ~(m)'(H, L(. )) (alternatively, 
{Xi}E(m)(D, L(. ))), and study the weak convergence of 

1 tm] 
(4.1) Zu(t ) =-d--S ~= 1G(X,) 

as N---~ ~ ,  where d 2 is asymptotically proportional to V a r ( ~ =  1 G(Xi)). In fact, 
according to Theorem 3.1, d z may be chosen asymptotic to NZHL(N) for all 
G~f#m. A typical member of ~m is the Hermite polynomial Hm. When G(Xi)= 
Hm(XO, we use the special notation 

1 [Nt] 

(4.2) ZN' m(t) = ~ r  Z nm(Si)"  
Ni=l  
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The following lemma indicates that ZN(t) and 2 ZN, m(t ) have the same 
limit in distribution. m ~ 

Lemma4.1. Let GEN m and {Xi}e(m)'(n,L(.)). Define ZN, m(t ) as in (4.2), 
ZN(t ) as in (4.1), and let d~N2HL(N)  as N--~oo. 

I f  the limit in distribution of (ZN, re(q), ZN, re(t2) .... , ZN, m(tp)) exists (we denote 
it (Zm(q), Zm(t2),-", Zm(tp))), then 

( ~ t )  J(m) J(m) ~m(t.)). (ZN(q),ZN(t2),...,ZN(tp)) ~ . 2m(tl),~T-.t Z,,(t2),..., m ~  

(9 denotes convergence in distribution). 

Proof. Let al, a2 ... .  , % be p arbitrary real numbers. The lemma's hypothesis 
is equivalent to 

WN, m(p)= - ~ a.ZN, m(t.) ~ Win(p)__ J(m) a.~m(t.)" 
u = l  m !  u = l  

Similarly, the lemma's conclusion is equivalent to 

WN(P)-- 2 a . Z N ( t . ) ~  W(P) =- J(m) au2m(t.)" 
m T " U = I  Since . = 1 

WN(p) = WN, m(P)+ 

it is sufficient to prove that 
~ _  N 1 [Ntul 

(4.3) WN(p)-- WN, m(p)= ~, a. ~ Z G*(X,) 
�9 u = l  MN i = 1  

converges to zero in probability as N ~ o o  (Billingsley (1968), Th. 4.1), where 
G*(Xi) is defined as in Corollary 3.1. But 

E (WN(p)_~J(m) WN, m(p)f 

~ =  v=l~' la"avl ~-N iF1 i=I~IEG*(Xi)G*(XJ)[=~ 

(Corollary 3.1). Convergence in probability of (4.3) follows from Tchebycheff 
inequality. [] 

The only contribution to the limit of ZN(t ) is then due to the first non zero term 

expansion of G(X~), i= 1, 2 .. . . .  namely ~ Hm(Xi), i= 1, 2 . . . . .  in the Hermite 
H t ' .  

Combining the statements of Lemma 4.1 and Theorem 2.1, we obtain 

Reduction Theorem 4.1. Let G ~ ~r some m > 1 and suppose {Xi} ~ (m)' (H, L(.)). 
Define ZN, m(t) as in (4.2) and ZN(t) as in (4.1), choosing d2,,~ N2H L(N), as N--* oo. 

I f  as N--~ o% the finite-dimensional distributions of ZN, re(t) converge, then ZN(t ) 

converges weakly in 9([0, 1]) to some process ~ Zm(t) endowed with the pro- 
I I ~  '. 
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perties H(H) listed in Section 2. The finite-dimensional distributions of Zm(t ) are the 
limit of those of ZN, re(t). 

Corollary 4.1. The reduction theorem holds as well when {Xi}s(m)(D,L(.)) 
and d2~ N-mD+ 2 L~(N), as N-~ oo. 

Proof of Corollary. By Lemma 3.1, (m)(D, L(.))c(m)'(H, L~(.)) where 2 H =  
- m D  + 2 and L 1 (x)~ CLm(x) as x--~ oo for some positive constant C. []  

We may now limit our attention to functions G(Xi)= Hm(Xi) and concentrate 
on the convergence of the finite-dimensional distributions of ZN, m(t ). 

5. T h e  Case  m = 1 

It is easy to evaluate the limiting finite-dimensional distributions of ZN, 1(0 
because H~(X)=X. The limiting process Z~(t) turns out to be proportional to 
Bn(t), the fractional Brownian motion process with parameter H. 

Definition. BH(t ), defined for 0 < H < 1, is a Gaussian process endowed with the 
properties II(H). In particular, EBH(t)=O and EB2n(t)= t 2H. 

BH(t) is Brownian motion when H=�89 Mandelbrot and Van Ness (1968) 
provide a representation of Bn(t) as a weighted integral of Brownian motion. 
The existence of BH(t) follows also from Theorem 2.1 and the following lemma 
(valid for 0 < H <  1): 

L e m m a  5.1. Let {Xi} be a stationary Gaussian sequence with mean 0 and 
correlations r( i - j )  = EX i X j. Assume 

N N 
(5.1) ~ ~, r(i-j),,~KN2H L(N) 

i = 1  j = l  

as N ~ oc, with 0 < H < 1, L slowly varying, and K, a positive constant. 
Then 

with d ~ N 2 H  L(N), converges weakly as N---~ oo to ] / ~  Bn(t). 

Proof Since X 1 , . . . , X  N are jointly Gaussiau so are ZN, l(tl),...,ZN, l(tp). 
Let CN(tl, tj)=EZN, I(ti)ZN, I(tj) and C(t~,tj)=lim CN(h, tj). As N--.oo, the 

characteristic function of (ZN. 1 (tl), ..., ZN, 1 (tp)) converges to that of 

(2~(q), ...,21(tv) ) where 21(q),. . . ,21(t v) 

are jointly Gaussian with mean 0 and covariance matrix ((C(ti, t j))), i,j= 1,..., p. 

Let 
[Ntd 

S[Nti] : 2 Xu" 
u : l  

1 1 
-1- ES[NtA --  gSl[Ntd - [Ntjll} " CN(ti, tj)= N2HL(N ) 2 {ES~Ntd 2 2 
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By hypothesis, tm,l [Ntil 

Es? .j= Z roo KN ' L(VNtd)tP 
u = l  v = l  

as N--~ o% so that 
= K 2 { t  i + t j  ilti--tj[ }. Hence C ( t  i ,  t j )  1 2H 2H 2H 

(ZN(tl) .... , ZN(t,) ) ~ (]/FK Bn(t,), ... , I l K  Bn(t,)) 

since B u ( q ) , . . . ,  Bn(tp) are jointly Gaussian with mean 0 and covariance matrix 

We now check tightness. Since SN is Gaussian, ES~ k is proportional to (ES~) k 
1 

for all k >  1 > ~ - .  The sequence {ZN(t)} is then tight (Lemma 2.1). Therefore, 

as N - +  oe, ZN(t ) converges weakly to ] / ~ B u ( t )  (Billingsley (1968), Th. 15.1). [] 

Remark. Condition (5.1) of the preceding lemma is satisfied for � 8 9  
when r(k) ,,~ k 2 H - Z L(k) (see Lemma 3.1); and for 0 < H < �89 when r(k) ~ - k z n - 2 L(k) 
as k--+oo with r (0)+2~~ r(k)=0 (adapt Feller (1971), p. 281 and apply the 
proof of Lemma 3.1). 

We now restrict H to the interval (�89 1) and state the main result of this section 
as a straightforward consequence of the preceding lemma and the reduction 
Theorem 4.1. 

Theorem 5.1. Suppose GeCgl and {X i}e (1 ) ' (H ,L( . ) ) .  Then 

1 t~] 
z (t) =T-  L a(x3 

t~N i=1 

with d 2 ~ N 2n L(N), converges weakly as N--+ oo to a(1)Bn(t) where J(1)= E X  G( X). 

Corollary 5.1. The same result holds if {Xi}e(1)(D, L(.)) and 

2 
d 2 N 2 - 0 L ( N  ) 

as N - ~  oo. (1 - D)(2-  D) 

6. The Case m = 2 

The limiting finite-dimensional distributions of ZN, z (t) are more complicated 
than those of ZN, I(t ) because H 2 ( X ) = X  2 -  1. We shall restrict ourselves here to 
{Xi}6(2)(D, L(.)). Let us introduce the following notations. 

If t (p)=(q, t :  . . . .  , t ,)  with 0_-<t l_-<t 2_-<---=<t"_-<1 and p=>l and if s (p)= 
(sl, s2, ..., s,) where sl, s2, ..., sp are non-negative integers, then (a (k)) ~-~ (t (p), s~")), 
that is, a (k) = (al, a20 ..., ak) where k = s 1 + Sg +.- .  + sp and where the first s 1 param- 
eters a i are equal to q,  the next s z parameters ai are equal to t z, ..., the last sp 
parameters a i are equal to t, .  

The main result of this section is 

Theorem 6.1. For any Gsf~2 and {Xi}~(2)(D, L(.)), 

1 t~l 
ZN(t)=~Tff ,~ G(X') 
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J(22 ) - 

with dN~N~-~ converges weakly as N ~ o o  to a process Z2(t) where 

J(2)=EX2G(X).  Ze(t) has the properties H(H) with H = I - D ,  and the charac- 
teristic function of the random vector (Z2(h), Zz(t2), ..., Z2(tv)) admits the following 
representation valid for small values of lull, [u2 l, ..., l uvl: 

r u~,  . . .  , u~) 

(6.1) =exp  t 1 ~ (2i)k ~ P! @u~:... u~ So(atk))} 
~ k = 2  k ~ ....... .>=o SI!S2!'"Sp ! 

Sl + " "  + S p  = k  

where a(k) ~-+(t (p), S(P)), and 

al a2 ak 

So(a(~)= S d~, ~ d~  ... S d ~ l x ~ - ~ 1 - ~  -~ 
0 0 0 

�9 . . Ixk_l  - - x k l - ~ l x k - - x l l  -~  

The theorem follows from the reduction Theorem 4.1 and the following proposi- 
tion that generalizes a result from Rosenblatt (1961). 

Proposition 6.1. Let {Xi}~(2)(D, L(-)) and 

1 [N~tl 2 
( <  - 1) 

with d N ~ N  1 -~  as N-*  o0. 
Then, the finite-dimensional distributions of ZN, z(t) converge, and the limiting 

characteristic function of (ZN, 2 (q), ZN, 2 (t2) . . . . .  Zlv, 2 (tp)) admits the representation 
(6.1) for small values of its arguments. 

Proof Let Ul, u2, ..., up be p > 1 arbitrary real numbers and let 

t p l u % '  } r u2 . . . .  , up)=E exp i 2 u, ~ - -  2 (X~ - 1) . 
t /= i  aN j=l 

Let z be a complex variable. We prove first that ~N(Z)--C~N(UlZ, U2Z, ...,UpZ) 
converges as N ~ o o  to ~(z)==-O(UlZ, u2z, ..., upz) in some neighborhood of the 
origin. We then show that ~(z) is analytic around the origin. 

For any l=  1, .... p, let DN(h) be the N x N diagonal matrix whose [Nh] 
first diagonal elements are equal to 1 and the others to 0. DN(1) is then the N x N 
identity matrix. Introduce also 

P 

l = l  

where u (;)= (Ul . . . .  , %) and t(P)-= (q, ..., tJ. Then 

(o) �9 N(Zl=~N (Z) ~+)(Z) 
where 
and ~(n ~ (z) = exp { - i z d~ 1 Tr D N (u (p), t(P))} 

q0~+)(z) = (2 n) -N/2 IRN[ -6~ d N x exp { - �89  x' [R~ 1 -  2 i z d~ 1 Dn(u iv), t(P))] x} 
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where R N is the covariance matrix of X =(X1, Xz .. . .  , XN) and where a prime 
denotes a transpose. The integration is over the real N-dimensional space IR N. 

�9 ~+) (z) = IRNI -~ IR~ ~ - 2 i z d~ 1 D s (u tp), t(P))] -�89 

= IDN(1) --2 i z d~ 1 DN(U (p), t (p)) RN1-�89 

Let 2,,N, n = 1, 2 . . . .  , N be the N eigenvalues of the matrix DN(U tp), t ~p)) RN. Then 

N 

�9 ~+) (z) = 17I (I - 2  i z d~71 2.,N) -*~ 
n = l  

where log stands for the principal determination of the logarithm. However, 

N 

~ 2,, N = Tr D N (u (p), t ~p)) RN = Tr DN (u ~p), t (p)) 
n = l  

since R N has the elements 1 in its diagonal. Hence 

�9 ~ (z) -- ~o~ (z) ~ +  ~ (~) 

= e x p  z 

Now restrict z to the neighborhood Izl <~, where ~>0 is small enough for 

N ~ ~(2izd~,2. ,N)k 
[ - -2  i Z d~71 .~.,N-- log(l-- 2 i Z d~71 )'.,N)] = 

n = l  k = 2  n = l  k 

to hold for all N >__ 1. 
Such an e > 0  exists because 

N 

d~l .~, =-d~ul Tr(DN(U(P,, t(p)) RN)2 

Tr u I DN(1 ) R N 
t = l  

/ p  \z 1 N N 

< It=, ~ lut[) ~ i = ~ ,  ,=~1"= Ir(i-j)12 

( ~  )2 1 
---' , ,= l l u t l ,  ( 1 - 2  D) (1 -  D) 

as N ~ c ~  (refer to the proof of Lemma 3.1). 
Hence, for I zl < ~, 

�9 N(z)=exp �89 (2iz)k dN-k 2,,Nk . 
k = 2  k 

But 
N 

Z 2.,N = Tr(DN( u(p', t{")) Ru), 
n = l  
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and hence 
N 

2k, N = Tr (DN (u (v), t (p)) RN) k 
n = l  

= Tr ul DN (tt) RN 
l=l 

P 
= ~. , P ! u~ . . . .  @p Tr I-[ (DN (tl) RN)sL 

Sl ..... sp>O S 1 . . . .  Sp! l = l  
st +'"+sp=k 

At this point we use the notation a(k)~-~(t (p), S (p)) introduced at the beginning of this 
section. Let pl, N(i,j), i , j= 1 .. . .  , N be the elements of the matrix DN(al) R N. Then 
pZ, N(i,j)=r([i--j[) if i<= [N al] and pi, N(i,j)=O if [Nazi <i<_N. Hence 

p 
d~ k Tr I~ (DN(tl) RN) ~ 

1=1 
k 

= d~ k Tr [ I  DN (al) RN 
/ = 1  

N 

=dN k ~ Pl.N(i~, i2) P2,N(i2, i3)... Pk-l.N(ik-,, ik) Pk, N(ik, is) 
il, i2 ... iN = 1 
[Nat] [Na2] [Nak] 

= d ;  r(li -i21)r(li2-  l).., r(li,_l -ikl) r(li - i, I). 
i t = l  12=1 jk=l 

This last expression converges as N--> oo to SD(a(g)). 
Hence lim ~N(z)=~(z) for [z[ <e. 

N ~  co 

We now prove that ~(z) is analytic for [z[<e' where 0<g=<e. 

[ 2  1' First, note that So (a (k)) < C k for C = L1 - 2 D ] " To see this replace all t's in 

SD(a (k)) by 1, use Schwarz inequality to break the chain ofintegrands, and make the 
change of variables y~=x,-x~+t, i=1,  ..., k - 1 ,  to obtain 

SD(a(k') '~ [Y[-2D d y ~  ~-~1 " " - 2  ~ d y l  "" d Y k - l  [Yl "" [ Y k - I [ - 2 D  = ck" 

Hence 

I~(z)l<exp ~ 2 T  2CIzl~luz l  
k / = 1  / 1  

which converges for small enough ]z]. 

An analytic continuation argument (see Lukacs (1970), th. 7.1.1) ensures that 
�9 (z) agrees with a unique characteristic function for all real values of z. []  

Remark. When p =  1 and t - l ,  q~ becomes 

(6.2) ~b(u) = exp {�89 2 (2 i U)kk SD(a(k)) t 

where now a (k) is the k-th dimensional vector (1, 1, ..., 1). The expression (6.2) first 
appears in Rosenblatt  (1961). It is therefore suggested that Z2(t) be called the 
"Rosenblatt  process". 
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05(u) is expressed in (6.2) as the expansion of a characteristic function in terms 
of its cumulants xk. Here tq = 0 (because the mean is 0) and ~:k = ( k -  1)! 2 k -1 So(a (k)) 
for k--- 2, 3 . . . . .  05 (u) could equivalently have been expressed in terms of moments. 
This suggests that the Propositon 6.1 can be proved by a method of moments. 
This is done in Taqqu (1972). Note that 05 (u) differs from the characteristic function 
of the chi-square distribution by SD(a(k))~-1. 

It would be interesting to find a representation of Z2 (t) in terms of a double 
integral of Brownian motion or in terms of fractional Brownian motion. A detailed 
study of the distribution of (22 (tx) . . . .  , Z2 (tp)) should yield important information. 

Acknowledgment. I wish to thank Professor Murray Rosenblatt for his useful remarks. 
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