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Limit Theorems on the Self-Normalized Range 
for Weakly and Strongly Dependent Processes* 

Benoit B. Mandelbrot  

X(t) being a random function of time, with X* (t)= ~ X(s)ds, let 

R (d) = (sup - inf)o < u _< a {X* (u) - (u/d) X* (d)}, 

S2(d)=d -1 X2* (d) - d - 2  X * 2(d), 

Q(d)=R(d)/S(d). 

R is a range and Q a self-normalized range. For certain r.f. X(t), one can select 
the weight function A(d; Q), so that (in some sense) the d ~  limit of either 
Q (d)/A (d; Q) or Q (e ~ d)/A (e* d; Q) is nondegenerate; if so, A (d; Q) is the key factor 
in a new statistical technique, called R/S analysis. The theorems in this paper 
describe some aspects that have already been founded fully upon theorems (easy 
to prove but unexpected) concerning weak convergence of certain r.f., while the 
conjectures relate to other aspects of R/S analysis that still rely, at this stage, 
upon properties suggested by heuristics and by computer  simulation. For  iid 
processes satisfying E X  2 < ~:), or attracted to a stable process of exponent ~, it is 
shown that A = l /~  independently of a. For processes that are weakly dependent 
(e.g., Markov or autoregressive) one still has A = v/d. Conversely, whenever A = V ~, 
the r.f. X (t) will be said to have a finite R/S memory.  On the other hand, if X(t) 
are the finite increments of a proper fractional Brownian m o t i o n -  defined as the 
fractional integral of order H - 0 . 5 : ~ 0  of ordinary Brownian m o t i o n - o n e  has 
A = d n. This X(t) is strongly d e p e n d e n t -  rather than strongly m i x i n g - a n d  it can 
be said to have an infinite memory. Conversely, whenever A#]//d, the r.f. X(t) 
will be said to have an infinite R/S memory.  When A = d n L(d), with H ~ 0.5 and 
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L(d) a slowly varying function, H will be called the R/S exponent of long range 
dependence. The definitions are of practical usefulness because, for many natural 
records, Hurst has shown that H is clearly above 0.5. 

1. Introduction to R[S Analysis 

Let X (t) be an integrable function of real time t, functions of discrete time being 
interpolated as right continuous step functions of real t. Define, for every real t, 
X*(t)=~toX(u) du, and, for every real d>0,  to be called the lag, define 

R (d) = (sup - inf) o <, < d {X* (u) - (u/d) X* (d)}, 

S2(d)=d-l X2*(d)-d-2X*Z(d), Q(d)=R(d)/S(d). 1 

These functions are, respectively, a form of the range, a variance, and a form 
of self-normalized range, where self-normalization involves the sample variance 
and also the sample mean. In particular, Q is the same for the function X(t) and 
for all functions of the form a[X(t)+#]; thus, a and # need not be known to 
calculate Q. Also, the first d values of Q can be evaluated directly from the first d 
values of X(t). When X(t) is a r.f. of time, Q(d) is a r.f. old. 

To the best of my knowledge, the statistic Q was first used in the works of 
Harold Edwin Hurst [12-14]. He was an English physicist working in Cairo, who 
advanced the idea of the Aswan High Dam and, as possibly the greatest Nilologist 
of all time, was nicknamed Abu Nil, the Father of the Nile 2. Steiger [34] also 
defined R/S-independently of H u r s t - b u t  did not pursue the matter. In 1965, 
I became interested in Hurst's work; since 1968 [22-24, 26-29, 35], the d--* oe 
behavior of Q has been the object of intensive study, and has opened up the new 
field of R/S analysis. This is an extremely effective method of statistical estimation 
and testing directed towards distinguishing between r.f. that can be either weakly 
or strongly dependent. In practical statistics, this last possibility had not been 
faced, so that methods addressed expressly to the distinction in question are few 
if not nonexistent. 

1 A few elementary properties are as follows. Q is well determined except when S =0, which is the case 
iff all the X(u) (0<u=<d) are identical, so that R(d)=0 and Q takes the indeterminate form Q=0/0. 
In particular, this indeterminate form is always encountered when time is discrete and d = 1. When 
X(t) is random and is not a.s. constant, the probability of indeterminacy, defined as the probability 
of finding a string of d identical values of X(u), tends to 0 with lid. When time is continuous and Q 
is determined, 0 <__ Q < d/2. When time is discrete and Q is determined, its lower attainable limit is l when 
d is even, and d/(d- 1) when d is odd. Its upper limit is d/2 when d is even, and ~ / 2  when d is odd. 
The two limits coincide for d=2,  where Q---1. Roughly, 1 <=Q<d/2, meaning that logQ, as a function 
of logd, lies in an eighth of a plane with apex at d=2 ,  Q = 1. 
2 The numerator R was suggested to Hurst by an old method of preliminary design of water reservoirs, 
due to Rippl, and the denominator S was added as a natural normalizing factor, with no indication 
that its special v i r tues - to  be desc r ibed -had  been noticed. There is a coincidental similarity between 
this self-normalization and one used in [18]. The latter w o r k - w h i c h  is entirely independent of the 
present o n e - o n l y  attacks questions relative to independent X(t), and, by hard analysis, it achieves 
strong results; their counterpart lies beyond my present technical capability; luck i ly-  as we s h a l l -  it is 
not indispensable to the practical application. 
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In the practice of R/S analysis, in order to be able to utilize as fully as possible 
the information available in a sample, 3 one defines R(t, d) and S2(t, cl) for each 
"starting point" t, applying the above formulas to the translates X(t+s) of the 
original X(t), viewed as r.f. of s. When X(t) is a stationary r.f., then, for each fixed 
value of the lag, Q (t, d) is another stationary r.f. of t (dependent on d in distribution). 
In his first application of R/S (working with the Nile, then with other rivers and 
other empirical records) Hurst estimated EQ(d) by averaging the values of 
R(t,d)/S(t,d) for several t's. He found that, roughly speaking, EQ "fluctuates 
around" d n, with H "typically" about 0.74. The property of Nature that is embodied 
in this loose statement has come to be known as the "Hurst  phenomenon" (or, 
for reasons that will transpire momentarily, "paradox" or '~ puzzle"). The following 
is a sharper statement of it, one more readily open to precise analysis: there often 
exists an H+0.5  such that sample values of Q(t, d)/d n lie close to each other over 
the whole range where they can be estimated. One is therefore tempted to conclude 
that, if one could extend this sample indefinitely, Q/d n would neither tend to 0 
nor to ~ ;  rather, to a nondegenerate limit r.v. This is our reason for studying 
the r.v. Q (d)/d n for d ~ o% o r -  more general ly-  for studying the r.v. Q (d)/A (d; Q), 
in search of r.f. X(t) such that Q(d)/A(d; Q) has a nondegenerate limit when 
A ~ d n. A further sharpening reexamines the empirical evidence, using a statistical 
procedure I recommend whenever it is feasible, which consists in tracing the sample 
log Q(t, d) as a function of logd for several values of t. One finds that it is possible 
to choose H so that, for sufficiently large d, log Q - H logd looks increasingly like a 
stationary r.f. of log d. This finding suggests that Q (#d)/(# d) n, viewed as a function 
of the multiplier #, may perhaps have some nondegenerate d ~ oe limit that is a 
stationary r.f. of log #. Finally, rewriting the multiplier kt as e ~, we are led to 
conjecture that the r.f. Q (e ~ d)/(e ~ d) n has a non-degenerate limit that is a stationary 
r.f. of ~b. This is our reason for studying the r.f. Q(e~d)/A(ee'd; Q). 

Hurst immediately perceived that the phenomenon he discovered is in con- 
tradiction with what might have been expected; it may therefore express some 
deep characteristic of the underlying records, and it may yield the long-sought 
conceptual device that would allow cyclic but non-periodic records to be handled 
properly. Indeed, Hurst (whose treatment was very rough) and soon afterwards 
Feller 1-8] (who was more rigorous, but not quite completely, since he took a 
weak convergence lemma for granted) showed that for the simplest r.f., namely 
the iid process with EX2< oo, the theory predicts that H should be equal to 
0 .5-cont rary  to evidence! Several would-be explanations were presented, but 
none was conclusive. Moran [30, 31] claims to have proven that H4:0.5 if the 
r.f. X (t) is far enough from being normal; however, many of the records in question 
are near-normal; in addition, Moran had misread the evidence, believing it to be 
relative to the d ~ co behavior of R itself rather than of R/S; this point, as we shall 
see, is a major one. Thus, the phenomenon long remained a puzzle (and a spur 
to hydrological model making)until a r.f. for which H4:0.5 was first exhibited in 

3 Note that several obvious alternatives are entirely acceptable, such as the statistics inspired by the 
Kolmogorov-Smirnov tests: sup0_<_.~dlX*(u)-(u/d)X*(d)[, SUpo~.__< d{X*(u)-(u/d)X*(d)} or 
infos,,<=d{X*(u)-(u/d)X*(d)}. All our theorems continue to hold, with only the obvious changes, 
if R(d) is replaced by any of these expressions. On the other hand, such variants as sup0=<u__< a IX*(s)l 
or suP0 ~._<_d X* (s) would not be acceptable. 
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my first paper on this topic [19]. The Hurst phenomenon was thus shown to be 
due to very long run dependence in the r.f. X(t). Later, in [29], computer simulation 
was used to demonstrate that, thanks to the normalizing denominator S, Hurst's 
ratio has independent interest in statistics and probability in the sense that the 
behavior of A(d; Q) for large d constitutes a powerful method for distinguishing 
between short-term (weak) and long-term (strong) dependence in r.f.; it makes no 
assumption about EX 2, and in fact is essentially insensitive to the distribution 
of X. Thus, the main virtue of this method lies in its robustness. Its statistical 
background is further developed in [23]. 

The purpose of the present paper is to describe the current mathematical 
foundation of this technique, and to solicit proof (or disproof) of various con- 
jectures which it uses. We shall first state a stronger form of one part of the result 
of [83. 

Notation. w-lim refers to weak convergence in function space; d-lim refers 
to weak convergence of a real valued r.v.; f-lim refers to convergence of all finite 
dimensional distributions for almost all values of the argument; as-lim is almost 
sure limit; l-lim is the limit of order I. The number given to a Theorem indicates 
the Section in which it occurs (thus, there is no Theorem 3). 

Prototype Theorem 1. I f  X(t) is iid in discrete time, with EX2 <o% then 
w-limd~o~ Q(e~d)/]//~ in C ] - ~ ,  oo[ is a non-degenerate stationary r.f. 7t((o). 
In particular, d-limd~oo Q(d)/V~ is a non-degenerate r.v. 7/(0). 

Theorem 1, which is near obvious, will be proven in Section 3; then, having 
examined the continuity of certain transformations, we shall derive counterparts 
concerning the behavior of appropriately normalized ratios Q (e 4'd)/A (e 4' d; Q) and 
Q (d)/A (d; Q) within increasingly broad classes of r.f. culminating in Theorem 5. 
The crucial finding is that different classes of r.f. involve different weights A(d; Q). 
However, the variety of possible A's is limited, as follows. 

Proposition 1. I f  f-limno ~ Q(e~ d)/A(d; Q) exists and is non-degenerate, A(d; Q) 
is of the form dn L(d), where L(d) is a slowly varying function. 

Proof Proposition 1 follows from Theorem 2 in Lamperti (1962). 

Definition. The parameter H, when defined, summarizes as much of the in- 
formation about X (t) as is reflected in Q. Therefore, this H will be called "exponent 
of R/S dependence" of X(t). 

The first class of main results about A(d; Q) is that H =  1/2 and A(d; Q)~l//d 
holds, independently of the distribution of X, as long as X is either iid or stationary 
with weak (short) dependence. This behavior differs greatly from that of R(d) 
itself, for which the proper weight A(d; R) is V~ when EX2< ~,  but otherwise 
depends on the distribution of X. The second class of results is that sufficiently 
strong (long) dependence can lead to A(d; Q) of the form dnL(d) with H~0.5.  
Again, the exponent H is not characteristic of the distribution of X, but of the 
intensity of long run dependence in X(t). This is the justification for normalizing 
R through division by S. 
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2. On the Use of Q in Practical Statistics 

In practice, the question arises, how well one can estimate EQ flom a sample 
of Q(t, d). When X(t) is iid, the r.v. Q(t+e, d) and Q(t, d) are independent when 
e>_d, which defines the r.f. Q(t, d) as d -dependen t  and proves that reliable 
estimation is possible. The following statements, if true, would show estimation 
to be reliable under wide assumptions. 

Conjecture 2. Q(t, d), viewed for fixed d as r.f. of t, is "typically" (under weak 
conditions to be specified) ergodic and short R/S dependent, the latter term mean- 
ing that when the Q function is computed for Y(t) = Q (t, d), the A (d, Q) function 
is ]/-d. 

Conjecture 2'. When w-limd~o~ Q(e~ Q) exists and is a stationary r.f. 
of qS, it is also, "typically", ergodic and short dependent. 

3. Proof of the Prototype Theorem 1 

We assume (without loss of generality) that EX=O. We note that X(t), as 
defined, belongs to the space D I-0, ~ [ of right continuous real valued functions 
on [0, ~ [  with limits on the left everywhere on 30, ~l-; this space is endowed with 
the Skorol~od topology, and in general is just like D [0, 1] (the matter has been 
settled in [11]). Also X* (t) is a continuous function in C [0, ~[- and the mapping 
from X to X* is continuous. From the assumptions, it follows by Donsker's 
theorem that w-limd~ ~ X*(df) /] /d-wi th  f a fraction between 0 and 1 - i s  the 
Brownian motion r.f. B(f), with B(0)=0, multiplied by ]//EX 2. By the ergodic 
theorem on X 2, it follows that the almost sure limit a s-limd~ ~ S(d) is ] / ~ = } / E X  2. 
In other words, Q (d) is only distinguished from R by a numerical factor. The fact 
that we are interested in Q ( fd ) / ] /~  rather than in Q (fd)/]/~ means it is important 
to work with D] 0, ~[- rather than with D [0, ~[-. Classically, applying the contin- 
uous mapping theorem in D] 0, ~ [, we find that Q (d)/]/~d and Q (e ~ d ) / ] ~  are con- 
tinuous functions of X*(fd)/lfd. Hence d-limd~ 00 Q(d)/~ and w-limd~ ~ Q(e~d)/]/'~-d 
exist. The former is the unadjusted range of the Brownian bridge; its distribution 
has been derived by Feller [8]. For the stationarity part of the theorem, we use a 
representation given in [-7] (see also [-3, p. 229]) B( f )=] f f J ( log f ) ,  with J a 
stationary r.f. (namely, the Gauss-Markov r.f.). Hence one has 

w-lim ao ~ Q (e 4~ d)/Ffe~) = (max-min)~ < o [ e~/2 j ((~ ~_ ~) _ e ~ j (~b)], 

which is independent of 7 in distribution. 

4. The General Case where X* Lies in the Brownian Domain of Attraction 

By taking the first conclusion of the proof of Section 3 as assumption, we obtain 
the following generalization of Theorem 1. 

Theorem 4. Let X 2 be ergodic and w-limd~ o~ X* ( f  d)/l/~ be Brownian motion. 
Then w-limd~ ~ Q(e~d)/]//~ is a non-degenerate stationary continuous r.f. ~(d?). 
In particular, d-limd~Q(d)/]/'d is a non-degenerate r.v. 71(0). Afortiori ,  
lima~ o~ log Q(d)/logd=0.5. 
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The ergodicity of X 2 need not follow from the postulated limit behavior of 
X*(fd)/l/], except in the iid case with EX2< ~ ;  in general, it must be assumed 
separately. 

Theorem 4 is easy to state but difficult to apply, except when it reduces to the 
Prototype Theorem 1. A number of other r.f. that satisfy Theorem 4 are described 
in [2]. When the r.f. X is Gaussian, with the covariance C(d), the necessary and 
sufficient condition for weak convergence of X* to Brownian motion is that 
0 < C0)/2 + ~ =  1 C(d) < 0% which expresses that the dependence between the X 
is weak (short). Ergodicity is also satisfied. Examples are the Markov or finite 
autoregressive r.f. When the r.f. is non Gaussian, the problem of the central limit 
theorem for dependent r.f. is well known to be complicated, and weak convergence 
of X* is even harder. At least it is harder in principle, since it seems that in all 
specific cases when the central limit theorem holds for X*, the conditions of 
Theorem 4 are satisfied. 

5. Case where {X*, X 2.} Lies in aGeneral Domain of Attraction 

Definition of H. Lemma 5. Suppose one can select the nonrandom functions 
A(d; X*) and B(d; X 2.) in such a way that the vector r.f. of coordinates 

X*(fd) X2*(fd) 
U(f, d)= V(f, d)= 

A(d; X*) S(d; X 2.) 

converges weakly (in Skoro~od topology) to a limit r.f. { U ( f  ~), V(f, oo)}, not 
identically equal to 0 or o% belonging to the space D. Then U (f, ~)  and V( f  ~)  are 
both self-similar, in the sense that there exist two constants H' and H" such that the 
distributions of U( f  g, ~)/gn, and V( f  g, ~)/gn" are independent of g. Moreover, 
A(d; X*)/dW=E(d) and B(d; X2*)/dW'=E'(d) are slowly varying functions, in 
the sense of Karamata. Thus, writing H-=I/2+H'-H"/2,  the function 
A (d; Q) = V~ A (d; X*)/]//B(d;X 2.) takes the form d ~ L(d), with L(d) slowly varying 
in the sense of Karamata. Finally one must have H <= 1. 

Theorem 5. To the conditions of Lemma 5, add either that H < 1 or that H = 1 but 
L(d)~O, and add that U( f ,~)@fU(1 ,  ~). Then f-lima~Q(e4'd)/A(eOd; Q) in 
D] - ~ ,  ~ [  is a non-degenerate stationary r.fi 7t(~). In particular, d-lirnd~ ~ Q( d)/A( d ; Q) 
is a non-degenerate r.v. ~(0). Afortiori, lima~o logQ/logd=H. Also, H>=O. 

Conjecture 5. The f-lim in Theorem 5 can be replaced by a w-lim. 

Proof of Lemma 5. Note that the mapping from X to S is continuous in D[0, oo[. 
The self-similarity of U(d, ~) and V(f, oo) and the form of A and B were proven 
by Lamperti (1962), who uses, instead of our term "self-similar', the term "semi- 
stable'. The necessity of H___ 1 is proven by noting that H > 1 w o u l d -  for suffi- 
ciently large d - contradict X 2. > X* 2/d. 

Remark that if all the finite dimensional distributions of the vector r.f. 
[U(f,  d), V(f, d)] converge to those of the vector r.f. [U(f, oo, V(f, aD))], then the 
vector r.f. converges weakly iff each of its coordinate scalar r.f.'s converges weakly. 
This result is proposed in Exercise 6, p. 41, in Billingsley (1968). 

Note also that, if Theorem 4 holds, Lemma 5 follows as a Corollary, U(f, m) 
being Brownian motion and V( f  oo) being degenerate, in the sense that V(f, oo)/f 
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is a constant (the functional strong law is the same as the ordinary strong law). 
A second instance where V(f, oo)/fis a constant will be encountered in Theorem 11. 
In other cases, both U ( f  oo) and V( f  oo) count. 

Proof of Theorem 5. By elementary manipulation, 

R (e ~ d) = (max-min)o < f < exp(~) {X* (fd) - f e -  4~ X* (e 4' d)} 

= (max-min)o < I < exp(r { U(fe -4', e~d) - f e  -~ U(e ~, d)}/A (eed; X*), 

S 2 (e* d) = [X 2 * (e* d) - e - * d - 1 X * 2 (e ~ d)] d - i e -  * 

= {V(e 4", d) -  U(e*, d)[AZ(eed; Q)/(eed)]} B(eed; X*)(e~ -1 . 

Hence, Q(eOd) (max-min){U(fe-*, eOd)-fe -* U(e*, d)} 

A(ee)d; Q) 1/V(e ~ d) -  U(e*, d)[AZ(eOd; Q)/(e*d)] 

The second half of the denominator is asymptotically negligible because of the 
assumptions made about H and/or L(d). The indeterminate form 0/0 will have a 
probability tending to 0 with 1/d, because of the assumptions that U(f, oo) 4:fU(1, oo). 
Further, (R, S), which is a random element in D [0, oo [ x D [0, oo [, is a continuous 
function of X in D[0, oo[. Since any finite set of values of Q(eOd)/A(e*d; Q) is a 
continuous function of the vector r.f. [U(f, d), V(f, d)], it converges to a limit that 
is the corresponding function of [U( f  oo), V( f  oo)]. The stationarity of the limit 
results from self-similarity of [U(f, oo), V(f, oo)]; the required generalization of 
Doob's representation has been proved in [15, p. 64]. Finally, H > 0  is necessary 
to insure that Q > 1. 

Comment on Conjecture 5. The difficulty here is that we must allow for the 
possibility of S(eed) and V(f, oo) being discontinuous, in which case the continuous 
mapping theorem ceases to be applicable. Nevertheless, the conclusion in Con- 
jecture 5 seems correct. Thus, even though it has no practical importance, it is a 
challenge to the mathematician. If the conditions in Theorem 5 were made stronger, 
the proof could be carried out (for example, if one adds a condition suggested by 
Whitt: V(f, ~)  is a.s. continuous and for all a and b such that 0 < a < b <  1, one has 
Pr [inf,~I~ b V( f  oo)> 0} = 1.). But such conditions appear as both unnatural and 
unnecessary. An alternative is to use the first variant of Q described in Section 13, 
but for practical needs this would be too costly to be considered. 

6. Direct Relationship between Independence 
and the Exponent Value H = 1/2 

Theorem 6. I f  E X  2 : -  O0 and x is iid and lies in a stable (0 < c~ < 2) domain of 
attraction, f-limn~oo Q ( e O d ) / ~  is a non-degenerate stationary discontinuous 
r.f.  oft. 

Proof Assuming that X is lid with EX2= o% it follows from [331 that the 
conditions of Theorem 6 are necessary and sufficient for the validity of Lemma 5. 
By well-known limit theorems, A(d;X*)=dl/'E(d), with /Z determined by 
Pr[[X]>A(d;X*)] d ~ l  [10, pp. 314-315]. Also, B(d; X2*)=A2(d;X*)= 
d2/~[E(d)] 2, because E'(d) is determined by Pr[X2>B(d; X2*)] d ~ l .  Hence 
H = 1/2 and L(d) = 1. (We need not worry about the convergence of the X* bridge 
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to the stable bridge. This is fortunate, since the l a t t e r - though  t r u e - i s  hard to 
prove; see [16].) 

For the applications, the central feature of Theorem 6 is that, in contrast to 
A(d; X*), A(d; Q) is independent of e, also of the skewness parameter fl of X. 

Conjecture 6. (As Conjecture 5.) One can replace f-lim by wqim. 

Comment on Conjecture 6. The numerator and the denominator of Q are both 
discontinuous, their jumps occurring at the same moment and being dependent. 
This should be the key factor in the proof. 

The case at = 2. Proposition 6. I f  EX 2 -- ~ and X is iid and lies in the Gaussian 
domain of (necessarily not normal) attraction, w-limd~ oo Q (e~ d) / ] / /~  is the same 
r.f. as in Theorem 4. 

Proof The case ~ = 2 is based on Theorem 5 in a case where- l ike  in Theo- 
rem 4 - V ( f ,  ~ ) = f V ( 1 ,  ~ )  bu t - con t r a ry  to T h e o r e m 4 - t h e  convergence to 
this limit is weak, not strong. In other words, we need the (not quite familiar) form 
that the weak law of large numbers takes in the case of lid infinite variance r.v. 
Using the U and /~ notations in [10, p. 236 and pp. 314-315], the equations 
dA-2(d; X*) U[A(d; X*)J ~ 1 and dB -1 (d; X 2.)/~[B(d; X2*)] continue to yield 
B = A  2. By [33], w-lima~ | U(f,d)=B(t) and by [10, p. 236], 

Pr {1V(f, d)/( fd)-  1[ > e} --+ 0. 

Generalization of Theorem 6 to the Case "a = 0". The definitions of the stable 
r.v. and of their domains of attraction exclude the limit value ~ = 0. Also, Theorem 5 
assumes that the scaling factors A (d; X*) and B (d; X 2.) are nonrandom. We shall 
now allow them to be random, and shall show this may bring a bit of new generality 
to the study of Q, by allowing the set of values of the index ~ of the domains of 
attraction of Q(d)/I/d to be closed by adding a limit that can be viewed as corre- 
sponding to "a = 0". This limit is encountered when X > 0 and Pr([XI > x) itself is 
slowly varying (necessarily, non-increasing). Indeed, Darling [5] has shown that, 
in this case, the limit of order l, 1-1ima~ 0o X* (d)/maxl <, <_a X (u)= 1, from which 
it follows that 1-1ira a ~ oo R (d)/max 1 <,, __ a X (u) = 1 ; similarly, 

1-1ima~ co X2* (d)/maxl _<,_<d X 2  (U) = X 2 * (d) / [ l / /~xl  < u< i X  (u)] 2 = 1 

from which it follows that 1-1ima~S2(d)d/[max~,<aX(u)]=l.  In this case, 

1-1ima~ oo R2/Szd -- 1, which implies that A (d; Q)= lfd. To get closer to Theorems 5 
and 6, one can view maxl~,~dX(u ) both as A(d; X*) and as ~ X 2 * ) .  The 
resulting r.f. {U( f  d), V(f, d)} will converge weakly to {U(f, oo), V(f, oo)}, where 
U(f, oo)=V(,oo)=O for 0 < f < f  o and U(f, oo)=V(f, oo)=l for f o < / < l ,  fo 
being a r.v. uniformly distributed between 0 and 1. 

7. Conjectures Concerning the iid Case for Different Domains 
of Attraction of X* 

Contrary to [18], we are unable to characterize the limit in Theorem 6, and 
must be content with the following conjectures. They have been suggested in part 
by computer simulations, and their proof would justify current practice. For 
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example ,  con j ec tu r e  A, c o m b i n e d  wi th  con jec tu re  2, wou ld  show Q to be readi ly  
e s t ima ted  f rom samples .  

A) O < E { l i m d ~ d - ~  oo for every  h > 0 .  

B) F o r  every/~,  sup,~t0, zj Pr  { l imd.  ~ Q ( d ) / l f d >  x} is a n o n - d e g e n e r a t e  dis tr i -  
bu t ion .  

C) F o r  every /3, inf~t0,21Pr{lime~oo Q(d)/ l /d>x } is a n o t h e r  n o n - d e g e n e r a t e  
d i s t r i bu t ion .  

D) The  sup  in con jec tu re  B) is effectively a t t a ined ,  be ing  the d i s t r i b u t i o n  
c o r r e s p o n d i n g  to e = 2. 

E) The  inf  in con jec tu re  C) is effectively a t t a ined ,  be ing  the d i s t r i b u t i o n  
c o r r e s p o n d i n g  to some  ~ ~ [0, 2]. 

F) E[l imd~Q(d) /] /~] ,  cons ide red  as a f unc t i on  of ~, is (for every/~)  m o n o -  
ton ica l ly  dec reas ing  wi th  c~. Its l i m ~  o is 1 a n d  its l i m ~  2 is 1.2533. 

G) Var  [ l imd~ ~ Q(d)/lfd], cons ide red  as a f unc t i on  of e, is m o n o t o n i c a l l y  
dec reas ing  wi th  c~. (We k n o w  its l i m , ~  o is 0.) 

8. Conjectures Concerning the iid Case 
when X* Lies in No Domain of Attraction 

In  this case, Q(d)/]/~ has no  d-lim, a n d  a for t ior i  Q(ee~d)/l/er has no  w-l im 4. 

Never the less ,  I pos tu l a t e  the fo l lowing :  

H)  The  fact tha t  X is i id suffices to es tab l i sh  tha t  

s u p a -  0o Pr  { d -  o.s Q (t, d) < x} = Q2 (x) < sup~ Pr  {lima~ ~ Q (d)/] /~},  

i n fa .  oo Pr  { d -  o.s Q (t, d) < x} = Q1 (x) > inf~ Pr  { l imd.  0o Q (d)/]/~}.  

I) C o r o l l a r y  of  H :  W h e n  X is iid, t h e n  as - l imd~ ~ log Q/ log d =  1/2. 

9. Generalization of the Scope of H = 0.5. 
Lack of Converse Relationship 

with Either Dependence or Weak Dependence 

In  b r o a d  terms,  Sec t ion  8 w o u l d  es tab l i sh  that ,  even if T h e o r e m  5 fails to apply ,  
the  r e l a t ion  A(d, Q)'~l/~ c o n t i n u e s  to hold,  wi th  a less d e m a n d i n g  i n t e r p r e t a t i o n  

4 For example, let X (0 be the symmetric iid r.f. with the following marginal distribution: For 1 __< x < 10, 
Pr(IXI > x) = x-~. For 103 < x < 10 6, Pr(IXI > x)/Pr(lXI > 10 3) = x - 5 .  For 103" < x < 10 3C"+l), where n 
is an even integer: Pr([X[>x)/Pr(lXl>lO3")=x -~. For 103"_<x<103("+1), where n is odd: 
Pr(X>x)/Pr(X> 103")=x -s. The behavor of X*(d) for this type of r.f. has been documented in an 
early paper by Paul L6vy. For values ofd up to 1000, X*(d) d -~ seems headed to converge to a Cauchy 
motion, but this tendency stops sometime after d exceeds 1000. Later, for values of d up to 10 6, 
X*(d) d -~ seems headed to converge to a Brownian motion, but this tendency also eventually stops. 
The ostensible rate of convergence A (d; X*) continues to flip thus with no end between the two different 
analytic forms, d 1 and d -~ The ostensible limit of X*/A(d; X*) also flips with no end. This X(t) 
is an example of r.f. for which there exists no A (d; Q) such that Q (d)/A (d; Q) has a good limit for d --* oo. 
Nevertheless, it appears that the r.v. Q(d)/A(d; Q) remains positive and finite for all d. This differs from 
the situation for X* insofar as A(d; Q)=d 0.5 throughout (which is a change in the direction of greater 
simplicity), and is very similar insofar as Q(d)d -~ first seems destined to tend to the limit corre- 
sponding to c~ = 1, then switches to the limit corresponding to c~ =2 and so continues flipping between 
different limits with no end. 
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of ~ ,  as long as X is iid (or is weakly dependent). The converse is, however, false, 
in the sense that when the conditions of Lemma 5 are denied, A(d, Q)=l /d  is 
compatible with very strong dependence. 

First Example. In [20, 21], I had introduced a martingale model of certain 
kinds of price variation, wherein successive increments are very strongly correlated. 
Also, Theorem 5 is inapplicable. The proper A(d, Q) for the Q of those price 
increments turns out, however, to be lfd. 

Second Example. Assume that X(t) = Y( t ) -  Y(t - 1), with Y(t) iid. For every t, 
X(t) and X(t+ 2) are independent, so, in a sense, X is "finitely dependent". On the 
other hand, X* (t)= Y(t)-  Y(O), so X* satisfies no non-trivial central limit theorem 
in which the limit is somehow "universal". Since the notion of weak (short-range) 
dependence implies that the limit is Gaussian or stable, one must view the present 
form of dependence as strong (long range). Note that, for large d, R(d)~ 
(max-min)o~,~Y(u). If ess.min Y (the essential minimum of Y) vanishes, then 
R(d)~maxo<,<aY(u ). Hence, asymptotically for large d, QZ/2d=RZ/2SZd is the 
ratio between the maximum and the sum for d r.v. X 2. Assume further that Y lies 
in the domain of normal attraction of a stable r.v. of exponent e < 2. The conditions 
of a well-known theorem of [5] are satisfied, and it follows that d - l imn~ Q2/2d, 
and hence d-limdo ~ Q (d)/]/d is non-degenerate. The same is true (the details have 
been worked out by W. Whitt) of w-limn~ oo Q ( eo d)/l/e~. The generalization when 
Pr (Y<0)>0  is easy. This shows it is possible that A(d, Q)=]/~ even when X is 
strongly dependent. 

This conclusion in no way contradicts Theorems 5, because in the present case 
the abscissa r.f. U(f,d) is Y(t)-Y(O). Hence, {U(f, oe),f__>0} is conditionally 
independent given Y(0), and thus not in D. Incidentally, the requirement that 
{ U (f, d), V(f, d)} converge weakly in D, rather than from the viewpoint of finite 
joint distributions, is shown to be more than a technicality. 

10. Some Roles of the Limit Exponent Value H = 1 with L(d) + 0 

As a first example, assume X(t) = G(t - to) where G is a Gaussian r.v. independent 
of t. In this case, X*(u)-(u/d)X*(d)=Gu(u-d)/2,  and so R(d)=IG] d2/8. Also 
82 (d) = G 2 d2/12. Hence, Q (d) = dA (d; Q) = dl/3/4. As a second example, let X (t) 
itself be a Brownian motion or a L6vy motion of exponent 0 < e < 2 (stable process) 
without drift (e.g., such that EX=0).  Now, Q(eOd)/e4'd is a stationary r.f. of ~b, 
dependent on e. When X(t) is Brownian motion with a drift, Q(d)/d behaves for 
small d as if the drift were absent, and for large d as if the Brownian motion were 
absent. 

Typically, A(d; Q)~d extends to other integrals of a stationary r.f. Conse- 
quently, if one's purpose is to distinguish between such an integral and a fractional 
noise (Section 11) with H nearly 1 (a stationary r.f.), R/S testing is useless. R/S 
estimation is possible but delicate: Finding that A(d; Q)~d means little, but can 
be interpreted by R/S analyzing X'(t), and higher derivatives if necessary, until 
one reaches H below 1. 
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11. Relationship between 0 < H < 112 or 112 < H < 1 and Strong Dependence. 
Case of Gaussian X* (t) Attracted to Fractional Brownian Motions 

Assume the limit r.f. V(f, ~ )  of Lemma 5 is uniformly constant, so that 
B(d; X2*)=d.  To have A(d; Q)+V ~, a necessary condition is that X*(dh)/V~ 
must not be attracted by Brownian motion, in particular X* (d)/1/~ must not have 
a Gaussian limit; such is the case when this last limit is degenerate. 

Definition. The "fractional Brownian mot ion"  (fBm) of exponent H (0 < H < 1) 
is the r.f. BH(t ) in C and hence in D, such that BH(0)=0 and 

EBH(t' ) Bu(t" ) =(1/2)[[t'l 2u --It '-- t"12H + ] t"12u] �9 

In particular, EB2(t) t 2/t The term "fBm" = . was coined by Mandelbrot and 
Van Ness [25], because B u is a "fractional integral" of the Brownian motion B(t), 
in the sense of Holmgrem, Riemann, Liouville and Weyl; but the function Bu(t ) 
is a very natural one, and had been briefly used by a number of other authors. The 
case H = 0.5 is degenerate, in the sense that Bo. s (t) is ordinary Brownian motion. 
The cases H4:0.5 are therefore referred to as "properly fractional"; the main 
characteristic of their increments is that they are not strongly mixing in the sense 
of Rosenblatt [32], but rather strongly dependent. The intensity of long dependence 
is measured by the single parameter H, to be called "exponent of dependence". 
If the sign of the dependence is measured by that of the correlation C(d) between 
B H(t) - B H ( t -  1) and B H (t + d ) -  B H (t + d -  1) where d is large, then one can say that 
the sign of dependence is the same as that of H - 0 . 5 .  Indeed, 

E { EBdt ) -  BH(t-- 1)2 l-B~(t + d) -  B~(t+ d -  1)] } = (1/2)1-1d + 112u- 2 Idl]H.+ - Id-  112% 

The limit of B H (t) for H ~ 1 is a r.f. with fully correlated Gaussian increments, i.e., 
the r.f. G (t - to); this limit is in the space D. The limit for H ~ 0 is X* (t) = G ( t ) -  G(0); 
it lies outside of D. 

Theorem 11. One class of  r.f. such that A(d; Q.)=dn L(d) is the class of  functions 
for which X 2 is ergodic and w-lime~ ~ X* ( f  d)/d ~ L(d) = Bn (t). 

Proof This is an immediate corollary of Theorem 5. Observe that the distri- 
bution of limd~ooQ(e~ is, contrary to A(d) itself, independent of L(d). 

Lemma 11. When X (t) = B n (t) - B H (t - 1), w-limd~ oo X* ( f  d)/d n = B~ (t). 

Clearly, any generalization of Lemma 11 leads to an immediate generalization 
of Theorem 11. 

The first generalization applies to Gaussian processes such that their covariance 
shares enough of the behavior of the covariance C(d) of B~l(t)-Bn(t--1).  Taqqu 
[35] has shown that w-limd~o~X*(fd)/dUL(d)=Bn(f) when X is a stationary 
Gaussian r.f. whose covariance C(d) has the property that the function 
C(d)d-2n+2=L2(d) varies slowly for d--, o e, and, in the case 0 < H < 0 . 5 ,  also 
satisfies lira t~ ~ C (0) + 2 ~ts = 1 C (s) = 0. 

A second generalization relies upon the fact that B H (t) - B  H ( t -  1) can be written 
as a moving average. Davydov [6] has proved that w-limd~o~X*(fd)/dnL(d) - 
Bu( f )  for all r.f. of the form X(t) = y'.~ -o~ K ( t - s )  Y(s), where the Y(s) are lid with 
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EY=O and EIyI2h<oo(h>2), and where not only ~_~K(s- t )<oo,  but 
EX*2(t)=t2nL2(t), where 1/(h+2)<H<=l and L(t) is a slowly varying function. 

Another generalization consists in starting with the Gaussian X=Bn(t ) -  
Bn(t-  1) and then studying the nonlinear function Z(X). The case Z(X)= X 2 was 
used briefly as a counterexample in [32]. The most general function Z was studied 
by Taqqu [35], who has related A(d; Q) to the "Hermite rank" of Z, defined as 
the order of the first nonvanishing term in the development of Z(X) in Hermite 
polynomials. When H>0.5,  A(d; Q) can be the same for Z(X) as for X itself, 
meaning that the intensity of long-run dependence, as measured by H, can be 
invariant by the transformation from X to Z(X). The necessary and sufficient 
condition on Z(X) is, simply, that its Hermite rank must be one, whereas a trans- 
formation of higher rank can decrease the value of H. This means that X is not 
characterized by one exponent of dependence, rather by a spectrum of exponents 
including the original H as a maximum. (As a result, the experimental situation is 
likely to be confused: a function Z (X) of rank 3 (say), if disturbed slightly, is likely 
to become a fonction of rank 1, with the result that the analytic form of A(d; Q) 
will seem to change with d.) When H < 0.5, on the contrary, one finds, save for ex- 
ceptional Z(X), that A (d; Q) = 1/~. In other words, the preservation of the long-run 
dependence expressed by H < 1/2 hinges very sensitively on the form of Z. 

12. Generalization of the Scope of H 4= 0.5, and Relationship 
between the Sign of H -  0.5 and the Sign of Strong Dependence 

The following conjecture is fundamental to the claim of R/S analysis, that Q 
picks up the rule of long-run dependence in X(0 irrespectively of the marginal 
distribution. 

Conjecture 12. It is conjectured that Theorem 5, with A (d; Q)= d n independent 
of ~, also applies to the fractional integral of order H -  0.5 of L6vy's stable process 
of exponent ~. In particular (conjectural lemma) B(d, X 2.) =d ~/2 independently 
of H. The range of admissible H depends on ~, and an elaboration of this conjecture 
would take us too far away. 

In a different vein, it may happen that Theorem 5 fails to hold, but, in some 
weakened sense, Q (d)/A (d; Q) should continue to have a limit, with A (d; Q) = dnL(d) 
and L(d) slowly varying, or at least that one has a.s. limd~ ~ logQ(t, d)/logd=H. 
In either case, it is tempting to say that long run dependence of X (t) is "regular" 
and to take H - 0 . 5  as measure of its intensity. However, we know from Section 9 
that H = 0.5 is quite compatible with very strong dependence. To illuminate the 
issue, it is good to push the second example of Section 9, namely X(t) = Y( t -  1) 
with Y(t) iid. 

First, let [Y(t)[ be bounded. Then l i m a ~ R ( d ) = e s s m a x  Y(t)-ess min Y(t), 
which is finite. So is lima~ 0o S. Hence 1 < limd~ oo (R/S) < 0% and in particular H = 0 
with L(d)= 1. This example is in conformity with the notion that for X(t) the de- 
pendence is negative and as extreme as can be. So is the case when Y is Gaussian. 
Then, for large d, R(d) is well known [-4] to behave like 1 / i~d .  Since S(t,d) is 
practically nonrandom, H = 0 with L(d)= l t ~  d. 

Next, let Y > I ,  and Pr(Y>y)=y --~ with e>2.  Here, Exz=2Ey2<oo and 
therefore S 2 ---, 2 Vat X, so it is a numerical factor of no consequence. On the other 



Limit Theorems on the Self-Normalized Range for Dependent Processes 283 

hand, it is clear that, for large d, R (d)~ max o <, < d X (u). Using the theory of maxima 
of iid, one finds that for d ~ o% R (d)/d 1/~ converges to the Fr6chet r.v. of exponent 
e, ~,,  which is defined as being such that P r ( ~ , < x ) - - e x p ( - x - ~ ) .  As a result, 
Q(d)/d 1/~ converges towards a Fr6chet r.v., and A(d,Q)=dl/L Thus, although 
intuitively the dependence in X has the same strength for all e, the behavior of 
Q (d)/A (d, Q) mimics a strength dependent upon ~. 

13. Some Transforms of the Cumulated Centered Deviations Other than Q 

The variants of Q to be discussed have different purposes. The reason for 
looking at the first is technical: it a v o i d s -  at a p r i c e - t h e  gap in Theorem 5 that 
has led to Conjecture 5. The reasons for looking at the others were esthetic: The 
first proves disappointing, the second indifferent, and the third is probably an 
improvement over Q. 

The Whitt Transform. Define Q(d):R(d)/rS(d), with S2(d)=d-a~S2(u)du. 
There is no longer a need for a counterpart to Conjecture 5, because the counter- 
part of Theorem 5, with A (d, 0) = A (d, Q) and V(f  oo) replaced by f -1 ~r V(u, oo) du, 
can be strengthened from f-lira to w-lira. Indeed, division on D(0, oo) x D(0, oo) 
will have become a continuous function because Whitt's conditions (as stated in 
the comments on Conjecture 5) are satisfied. In practice, the continuity of the 
denominator S is paid for dearly. In Q(d), the jumps in R(d) are to a large extent 
counterbalanced by the simultaneous jumps in S(d), but they cannot be counter- 
balanced by the nonexisting jumps of S(d). Hence the behavior of 0(d) is likely 
to look very wild in comparison with the behavior of Q (d), as exemplified in the 
simulations found in [23]. 

The R/Sp Transform. It is defined as 

Qp(d) = R(d)/Sp(d), 
where 

(d) = d - '  =1 IX (u) - d -1  X * (d) l p. 

Thus R/Sp generalizes R/S2, which is its special case R/S. The case R/Sp with 
p + 2 has no known virtue that is not shared by R/S, but may serve to make the 
virtues of R/S glow more brightly. It suffices to make the comparison when X 
is iid. When X is Gaussian, or more generally has finite absolute moments of every 
order, h, then, as d ~ o o ,  S~(d) a.s. converges to a nonrandom positive finite 
constant. The statistics R, R/S or R/Sp are then identical, except for numerical 
factors. Next, when X(t) are iid with Pr(X>x)=x -~, it is easy to see that 
A(d;Qp)=lfd if "either ~>max(2 ,  p) or a<min (2 ,  p)," and that, otherwise, 
A(d; Qp) depends upon both e and p. In other words, the most robust value of p 
is p=2 .  

The R/R, Transform. The definition of the ratio R/S suffers from a lack of 
symmetry, in the sense that its numerator and denominator are obtained by 
different operations. A first symmetric alternative to R/S is obtained by taking 
as denominator, instead of S, some permutation-invariant range linked to X. For  
example, the range of X**, obtained by reordering X(1). . .  X(d) at random, is 
permutation invariant in distribution, and MR., defined as its mean value over 
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all permutations, is permutation invariant. Either can be used as denominator. 
They have not been studied fully, but it seems that R/R, and R/MR, would, by 
and large, serve the same purpose as R/S. 

The S,/S Transform. This is a variant of R/S in which the numerator is also 
evaluated as a moment rather than a range. Though it too was originally designed 
for the sake of symmetry, it happens in addition to have a broader range of appli- 
cability than R/S. Indeed, replace R by the square root of 

d s2  d -1 [X*(u)-(u/a)X*(a)] 2 , =  

=d-l X*E*(d)-Zd-Z X*(d)[uX*(d)]* +d- 3uE* X*(d) 

=d -1 x*z*(d)- 2(d + 1) d-z X*Z(d) + 2d-z X*(d) X**(d) 
+d-3uZ*X*(d). 

In general, the behavior of S,/S is indistinguishable from that of R/S. However, 
in the example where X(t )=  Y(t)-Y(t-1), with the Y(t) iid, the S,/S behavior 
is prevented from mimicking independence. 

14. Conclusion 

Statistical expressions tend to become more complicated with increase of the 
range of possibilities between which one has to discriminate. Thus far, nearly all 
statistical techniques relative to r.f. have assumed dependence to be weak. Now, 
Hurst's phenomenon (as I interpret it) forces us to face the possibility of strong 
dependence; most conveniently, the statistic Q turns out to be an excellent tool 
to study the new possiblities. 
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