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A New Method to Prove Strassen Type Laws 
of Invariance Principle. II 

M. Cs6rg~ and P. R6v6sz 

1. Introduction 

Let X1, X 2 . . . .  be a sequence of i.i.d.r.v.'s with 

i if t<O 
P(X~<t)= if O_<t_<l 

if t > l  

and let F.(s) be the empirical distribution function based on the sample X1, 
X2 . . . . .  X.. The linear interpolation between nF.(s) and (n+l)F.+l(s)  will be 
denoted by tFt(s ) and put 

~(s,t)=t(F,(s)-s)  (O=<t< oo; O=<s=<l). 

A separable Gaussian process K(s, t) defined on [0, 1] x [0, oo) will be called 
a Kiefer-process (of first order) if 

E(K(Sl,  tl) K(s2, t2))=min(tl ,  t2)[min (s I , s 2) - -S  1 S2], 

e (/< (s, t)) = 0. 

Let us mention that a Kiefer process can be generated by the Wiener process 
W(s, t) of two variables as follows: 

W ( s , t ) - s W ( 1 ,  t )=K(s , t )  ( 0 < t <  o% 0_-<s< 1), 

where W(s, t) has zero expectation and covariance function min(sl, s2) min(tx, t2). 

In [2] the following is proved 

Theorem A ([2]). One can define a probability space (f2, 5~, P) and processes 
~(s, t) and K(s, t) (on f2) such that 

(i) ~(s, t) has the same joint law as ~(s, t), 
(ii) K(s, t) is a Kiefer process, 

(iii) sup I~(s, t ) -  K(s, t)l =O(t~Oog t) ~) (t ~ oo) with probability 1. 
O_<s_<l 

From now on let X1, X2, ... be a sequence of i.i.d.r.v.'s uniformly distributed 
on the unit cube of the d-dimensional Euclidean space, i.e. the common density 
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function f ( s l ,  s 2 , . . .  , st) of X1, X z . . . .  is 

sd)=J' l  if 0 < s i < l  ( i = 1 , 2 , . . . , d )  
f ( s x ,  s2, 

' "[0 otherwise 

and let F,(s)= F,(sl ,  s 2 . . . .  , sd) be the empirical distribution function based on the 
sample X1, X 2 . . . .  , X,.  The linear interpolation between nF,(s) and (n+ 1)F.(s) 
will be denoted by tFt(s ) and put 

~($1, $2,.. .  , s d; t) = ~(s, i t )= t(Vt(s1, $2,. . .  , Sd)--'S 1 82.. .  Sd). 

We give the following: 

Definit ion.  The separable Gaussian process 

K ( s , t ) = K ( s x , S 2 , . . . , s a ; t  ) ( O < : s i < = l ; i - - 1 , 2 , . . . , d ; O < = t < o o )  

will be called a Kiefer process (of d-th order) if 

E(K(S l l ,  $12 . . . .  , Sld; tl) K($21, $22 . . . . .  s2d; t2)) 

= min (tl, t2) [min (s11, s 2t) min (s 12, s22),..., min (s la, s2 a) 

- -  $11 s12 ... StdS21 $22 ... S2d" ] 

e t)) = 0 .  

A Kiefer process (of d-th order) can be generated by the Wiener process 
W ( s  1, s 2, . . . ,  sd; t) of d +  1 variables as follows: 

W ( s t  , s2, . . . ,  st; t ) -  s t s2 ... s d W(1, 1 . . . .  ,1;  t) = K ( s  1, s2, . . . ,  sd; t), 

(O<=t < o% O<_si < l ;  i =  l , 2  . . . .  ,d ) ,  

where W(Sl ,  . . . ,  sd; t) has zero expectation and covariance function 

min(t t ,  tz) min (st1 , s2a ) min (s12 , s22).., min (sla , s2a ). 

Now we can formulate our 

Theorem. Suppose  that the r.v.'s X1,  X 2 . . . .  are def ined on a probabi l i ty  space 
((2, 5~, P) which is rich enough to def ine a sequence  Wl(s), W2(s), ... o f  independent  
14~ener processes  with zero expec ta t ion  and covariance func t ion  

min(stl ,  s20 min(s12, s22).., min (sin, s2a) 

and a sequence Ha, 112... o f  independent  r.v.' s such that 

n k 
(i) n (H, --- k) = ~ . ,  e -" ,  

(ii) the sequences  {X,}, {W,}, {H,} are also independent.  
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Then one can define a Kiefer process K(s, t) on f2 such that 

[ d+l ) 
sup IK(s,t)-~(s,t)l=O~t2(dT-2)(logt)2 ( t~oo)  

O<=si<=l 

(i = 1, 2, ..., d) 

with probability 1. 

A main tool of our proof will be Lemma 8 which is practically the same result 
as that of Brillinger ([3]). Hence one can say that our proof shows that Kiefer's 
result can be obtained as a consequence of a Brillinger type theorem. 

For the sake of simplicity the proof of our Theorem will be prepared only in 
case d = 2. The general case can be treated in a quite similar way. 

2. Lemmas 

Lemma 1. Let 17 be a r.v. with distribution 

2 k 
P ( I I = k ) = ~ . e  -z  (k=0, 1,2, . . . ; 2 >  1). 

Then for any constant A > 1 there exists a polynomial B(x) of second order (depend- 
ing only on A) such that for any x ([xl__<A ~ )  we have 

Fa(x)= P ( H - 2  V7 __<x)=~(x)~ 

where If(x, 2)] < ]B(x)[. 

exp( ) 

Consequence. Suppose Ix~l ~ A 11//~. Then 

f ( x ,  2) (1) 

F~(xz)~el)(x;~) and 1 -F ,~(x ,O~l -~(x ; ) .  

Proof of Lemma 1. Put [2 + x lf2~] = v, then it is well-known 

f t v Ov v 
e-t  d t=exp -12v-v -o~ F a ( x ) =  ~ 5 ( ( l - t )  dr et) v 

( = exp - 

where 0 < 0~ < 1. 

(2) 

((1-t)e ')  vdt+ I ( (1- t)e ' )  ~dt , 

The first member of the right hand side clearly can be estimated by 

exp - ~  ~ S ( (1 - t )d )  ~dt=O ~ �9 
-oo 

(3) 



264 M. C s 6 r g 5  a n d  P. RSv6sz 

The second integral can be evaluated, making use of the simple formula 

(1 - t) e' = exp - ~- + g(t) where Ig(t) l < I tl 3 if I tl _-< 1, as follows 

1 - 2/v 
v 

_2 V,o  
1/v ( ,  ) ((1-t)e')Vdt= S exp - ~ v + g ( t ) v  dt 

2~ - - 2 A ~  

- - - 2 - + g  ds ] / ~  _ 2 A ~  Xp 

v--)i, 

- l / ~  -~I exp ~ - + g  ds+h(2) 

where h(2)=O ( ~ ) .  

Now a very simple calculation shows: 

(4) 

-~S exp ~ - + g  s ds=@(x)+exp - 1/~ (5) 

where iX (x, 2)1< 1I 2 (x) and II2 (x) is a polynomial of second order. (2), (3), (4) and 
(5) imply (1). 

Lemma 2. Let fa(t)-= cb-* (F~(t)). Then 

[ log 2 ] (2-~ oo) Ifa(t)-t l=O \ ]/~ / 

uniformly in t provided that It] < A 1]//~, where the capital 0 depends only on A. 

Proof is practically the same as that of Lemma 3 of [-1], so it will be omitted. 

points (+ ,  J )  (i = 0,1, 2 .... ,r; j=0,1,2 , . . . , r )  Consider the lattice o f  the 

unit square and let Aij=[ ir ' (i+1)) x [ jr , ( j+ 1) ) r  (i,j=0, 1, 2, ..., r - l ) .  Let 

aij be the number of the elements of the sample X1, X2, ..., X, lying in the square 
Aij. Further let H be a r.v. of Poisson distribution with parameter n, and independ- 
ent of the {Xi}. Finally let fl~j be the number of elements of the sample X1, X 2 .... ,X n 
lying in A~j. Introduce the notations 

{Zij - -  n / r  2 

Ca'  i<I  
j < J  

~3,j= y, ~*J-H/r2 
i <__i C a  
J~J  (1 ~I,  J<=r). 
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Now we can formulate our 

Lemma 3. We have 

(i) P I sup 19~[1j-~HI>= K(log n) ~ } =O ( 

if K is a big enough positive constant and r 2 =o(n), 
(ii) the r.v.'s flij are independent obeying the Poisson law of parameter n/r e. 

Proof Our second statement is well-known, so we have only to prove the first 
one. Introduce the notations: 

[~ -- flijl = Tij, 

In-HI 
r 2 

/~ 
7i j  

CIj = ]9.1ij - ~ijI  = i~,_._1 
j < J  

Then we have 

p C,j_>_ K(l~ P C I J  >_ K (1 n)- = k= n~- 

Since 

I I = k )  P(I I=k)  

= ~ ( ~ s  ~vlog. t + .,~m~x . (~H ~ ~,,og.~0.~ ._.__~) 
�9 1 _-o (~)+o (~) 

,~ su~ ~i~'~ su~ , ( ~ , ~ ~ 1 7 6  1 
~ i  < I , J < r  = n �88 ~ l <l,J<=r n'* 

we have our statement. 

The following is well-known: 

Lemma 4. Making use of the notations of Lemma3 let r=[n~](0<c~<�89 
G n (x, y) = 1/n(Fn (x, y ) -  x y) and let B (x, y) be a Brownian bridge with zero expec- 
tation and covariance function min(x 1, x2) min(y 1, Y 2 )  - -  Xl X2 Yl Y2" Then for any 
A > 0 there exists a B = B (A) > 0 such that 

logr ( 1 )  
P ,(suPi.j (xl,,1)~A,jSUp IB(x l , y l ) -B(x2 ,Y2) I>- -_B~- - )=O ~y- 

(xz,y2)~A U 

and 

P (sup sup IGn(xl, yl)-Gn(x2,Y2)l>=B logr )__O ( ~ - ) .  
\ i , j  (xl,Yl)~Aij ] F - ~  I 

(XE,Y2)~Aij 
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Our second.statement easily follows, for example, from Theorem 2 of [4]. As 
to our Brownian bridge on the unit square B (x, y), it can be generated by the Wiener 
process W(x, y) of two variables as follows: 

B ( x , y ) = W ( x , y ) - x y W O ,  1), (O<=x,y<l), 

where W(x, y) has zero expectation and covariance function min (xl, x2) min (y> Y2). 
Our next lemma can be easily proved using well-known technics of Gaussian 

processes. 

Lemma 5. Let K(sl,  s 2 ; t) be a Kiefer process. Then for any A > 0 there exists a 
B=B(A)>O such that 

P ~ sup [ K ( s , , s z ; t ) l > = B ] / / ~  <= TA 
(O_t_T 
o<=~,L <=l 

if  T is large enough. 

Lemma 6. Let r be an integer and let {f2, 5~, P} be a probability space. Suppose 
that on I2 there exist a double array {Ni2 } (i ,j= 1, 2, ..., r) of  independent r.v.'s of  
standard normal law and a double array Wo(sl, s2) (i,j = 1, 2 . . . .  , r) of  independent 
Wiener processes such that the arrays {Nq} and {Wij } are also independent. Then 
there exists a Wiener process W(sa, s2) (0<sa, s 2 =< 1) on f2 such that 

W(i/r,j/r) =--1 ~ N~p. (6) 
r ~__<i 

p<J 
Proof. Let 

Wi}l)(S>SE)=Wq(sa,s2)-sas2Wij(1,1)+sls2No, (O~sl, s2~ 1), 

W/}2) (s,, $2) = 1  W/~l)(r s1, rs2) , (0Ds1, s 2 ~ l/g), 

(3) S ,$2) ( i - - 1  ~ r l ) [ i - 1  i . j - 1  + )  
w~j (1 =w,} ~ s , - - - , S , - r  ' ~ - - < = s l < - - T  ' r <=s~<= , 

Wj(sl, s2)= Wl~(1/r, s2)+ W2~(2/r, s2)+.. .  + W/_Ij , s2 + Wij(sl, s2) 

if i - 1  i j - 1  j 
< s ~ < - - ,  <s2 < , 

r r r r (7) 

W(sl,s2)= WI(Sl, l / r )+  W2($1,2/r)+... + Wi_ 1 sl, T + Wi(sl, s2) 

( O<s'<l'i-l<s2<i]'' r - r !  

It is quite clear that W(sl, s2) of (7) is obeying condition (6). We only have to 
check that W(s,, s2) is really a Wiener process, and this is rather simple. The Wiener 
processes of this lemma are, of course, defined as the one generating B(x, y) of 
Lemma 4. 
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Lemma 7. Let 0 = t o < r I < t 2 <.. .  be a sequence of real numbers and let {Q, S r P} 
be a probability space. Suppose that there exist a sequence { Bi(sl , s2) } of independent 
Brownian bridges and a sequence {Ki(sl,s2; t)} of independent Kiefer processes 
(both of them defined on s such the sequences { Bi} and { Ki} are mutually independent. 
Then there exists a Kiefer process K(sl, s2, t) such that 

K(S 1, S2, ti)=]//~l B2(Sl, s2)+ t2]/~-t, B2(sl, s 2 ) + - - - + ~ B i ( s l ,  s2). (8) 

Proof. Let 

KII)(SI,S2; t)=Ki(Sl,S2; t - t i _ l )  t - t i - 1  Ki(sl,s2 ; t i - t i_ l )  
ti -- ti-1 

t-- ti_ 1 
-~ _ _  Bi(sl,s2) (ti_i<=t<=tl) 

and let ~ - ti-1 

K(sl, s 2 ; t)= ~ Sl(sl, s2)+ t ] /~2-  t 1 B2(sl, s2)+..- 
(9) 

+ ~ U i _ l ( s l , s 2 ) + K l l ) ( s l , s 2 ;  t) t i _ l ~ t ~ t  i. 

Now condition (8) clearly holds and it is easy to see that K(si, s2; t) (defined 
by (9)) is a Kiefer process. Here the Brownian bridges {Bi(sl, s2) } are defined as 
that of Lemma 4. 

Lemma 8. Suppose that the conditions of the Theorem hold. Then for each n 
one can construct a Brownian bridge B (s l, s2)= B,(sl, s2) such that 

P 0=<sl,s2<lsup [en(s l ,s2)-B(sl ,s2)  [ (logn) ~ >_-C = 0  (10) 

where G,(x, y)=]fn(Fn(x, y ) - x y ) ,  and C is large enough. 

Remark. We get the d-dimensional version of this lemma if we replace n ~ 
by .~(d+l) 

~ (d+ 1)" 

Proof Let 1 r = n  ~ and define the process B(x, y) as follows: let 

( n/r2 

where f~ resp. fiij were defined in Lemmas 2. resp. 3. Then by Lemma 5 there 
exists a Wiener process W(x, y) such that 

0__<~__<j 

and let B(x, y)= W(x, y ) - x y  W(1, 1). 

We have to show that B obeys (10). 
In fact by Lemma 2 

Ni x flij--n/r2 ( logn 
= 0  \ n i l e !  ( i , j=l ,  2, . . . ,r)  

provided that ](ill j -  n/r2)/ n]/~l <= A 1]/~n. 

In the &dimensional case r = n  ~/d+l. 
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Since  tsupl "-~ t ,,s n]/~ > A 1]/q~ < l/n 2 

if A is large enough, we have 

{sup 
if C is large enough. 

Let 
~ij = N i j  - 

and 

Then 
(i) the r.v.'s ~* are independent, 

(ii) ,E~*I=O ( 1 ) ;  

hence 

and also 

flit- n~ rE ~ log n ] - ~  > t ~ ;  ~1/n2 

f l i j  - -  F//F2 
]//~2 

log n 
if I%1_-< C - -  

l f  n/r 2 
otherwise. 

P~sup ~(e*-E(e*)) l/~ >Ar l ~ } < l / n  2, 
I i,s i=i rlogn 

j__<J 

P Isup ~ t e * !  ,,s r 1-~n-g n =At  Vn > 1]f~)<l/n 2 
j<-J 

if A is large enough, which, by (11), implies: 

P~sup( i,s Iz==I ~e~jl > Ar2~n-(l~ = 0 (-~-2)' 
j<J 

i.e. " supl  r ~ - ~  . , - ~  > A ~ - ( l o g n )  ~ = 0 ( ~ ) .  
j < J  j < J  

Especially if I = J = r we have 

H-n r 1 

(12) and (13) together imply 

P{s~plB(1, J)-~lj>=2A-~n(logn)~}=O(@~- ) . 

Now making use of Lemmas 3 and 4 one has Lemma 8. 

(11) 

(12) 

(13) 
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3. Proof of the Theorem 

Consider the sequence 0 =  n o < n I < n 2 < . . .  of integers where nk=k 4 and let 
rig--rig_ 1 = mk. Denote by Hk(X, y) the empirical distribution function based on 
the sample 

X,~_1+1 .. . .  , X,k and let ]f~k{Hk(X,y)--xy}=tZlk(X,y); 

further let Bk(X , y) be a Brownian bridge for which 

P suplBk(X,y)--IrIk(X,y)l (10~k) ~- > C  = 0  . 
l x ,  y 

By Lemma 7 there exists a Kiefer process K(sl, s2, t) for which 

i 

K ( s 1 ,  s 2 ; r / i ) =  2 ] / / ~ i  B j ( sx ,  s2)" 
j = l  

It will be shown that this Kiefer process is obeying statement of our Theorem. 
Since 

Z y): y)- 
k=l  

one can get by Lemma 8: 

P tsuPlnK(F,,,(x, y)_xy)_K(x,  y; nK)[> (A lOgKk~, \~) t x,r ~m~(lOgmk, 3) ~=0 (-~T) 

hence our Theorem follows from Lemma 5 and the Borel-Cantelli theorem. 

Acknowledgements. The authors are indebted to G. TusnS.di for his valuable remarks; especially 
the idea to use the Poisson law (see Lemma 3) is due to him. A similar idea is used by M. J. Wichura ([5]). 
The fundamental idea of the first part of this paper ([1]) is very closely related to a paper of P. BS.rtfai ([6]). 
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