A New Method to Prove Strassen Type Laws of Invariance Principle. II

M. Csörgő and P. Révész

1. Introduction

Let X_{1}, X_{2}, \ldots be a sequence of i.i.d.r.v.'s with

$$
P\left(X_{i}<t\right)= \begin{cases}0 & \text { if } t<0 \\ t & \text { if } 0 \leqq t \leqq 1 \\ 1 & \text { if } t>1\end{cases}
$$

and let $F_{n}(s)$ be the empirical distribution function based on the sample X_{1}, X_{2}, \ldots, X_{n}. The linear interpolation between $n F_{n}(s)$ and $(n+1) F_{n+1}(s)$ will be denoted by $t F_{t}(s)$ and put

$$
\hat{\xi}(s, t)=t\left(F_{t}(s)-s\right) \quad(0 \leqq t<\infty ; 0 \leqq s \leqq 1)
$$

A separable Gaussian process $K(s, t)$ defined on $[0,1] \times[0, \infty)$ will be called a Kiefer-process (of first order) if

$$
\begin{aligned}
E\left(K\left(s_{1}, t_{1}\right) K\left(s_{2}, t_{2}\right)\right) & =\min \left(t_{1}, t_{2}\right)\left[\min \left(s_{1}, s_{2}\right)-s_{1} s_{2}\right], \\
E(K(s, t)) & =0 .
\end{aligned}
$$

Let us mention that a Kiefer process can be generated by the Wiener process $W(s, t)$ of two variables as follows:

$$
W(s, t)-s W(1, t)=K(s, t) \quad(0 \leqq t<\infty, 0 \leqq s \leqq 1)
$$

where $W(s, t)$ has zero expectation and covariance function $\min \left(s_{1}, s_{2}\right) \min \left(t_{1}, t_{2}\right)$. In [2] the following is proved

Theorem A ([2]). One can define a probability space (Ω, \mathscr{S}, P) and processes $\tilde{\xi}(s, t)$ and $K(s, t)(o n \Omega)$ such that
(i) $\tilde{\xi}(s, t)$ has the same joint law as $\hat{\xi}(s, t)$,
(ii) $K(s, t)$ is a Kiefer process,
(iii) $\sup _{0 \leqq s \leqq 1}|\tilde{\xi}(s, t)-K(s, t)|=O\left(t^{\frac{1}{3}}(\log t)^{\frac{2}{2}}\right)(t \rightarrow \infty)$ with probability 1 .

From now on let X_{1}, X_{2}, \ldots be a sequence of i.i.d.r.v.'s uniformly distributed on the unit cube of the d-dimensional Euclidean space, i.e. the common density
function $f\left(s_{1}, s_{2}, \ldots, s_{d}\right)$ of X_{1}, X_{2}, \ldots is

$$
f\left(s_{1}, s_{2}, \ldots, s_{d}\right)= \begin{cases}1 & \text { if } 0 \leqq s_{i} \leqq 1 \quad(i=1,2, \ldots, d) \\ 0 & \text { otherwise }\end{cases}
$$

and let $F_{n}(s)=F_{n}\left(s_{1}, s_{2}, \ldots, s_{d}\right)$ be the empirical distribution function based on the sample $X_{1}, X_{2}, \ldots, X_{n}$. The linear interpolation between $n F_{n}(s)$ and $(n+1) F_{n}(s)$ will be denoted by $t F_{t}(s)$ and put

$$
\hat{\xi}\left(s_{1}, s_{2}, \ldots, s_{d} ; t\right)=\hat{\xi}(s, t)=t\left(F_{t}\left(s_{1}, s_{2}, \ldots, s_{d}\right)-s_{1} s_{2} \ldots s_{d}\right) .
$$

We give the following:
Definition. The separable Gaussian process

$$
K(s, t)=K\left(s_{1}, s_{2}, \ldots, s_{d} ; t\right) \quad\left(0 \leqq s_{i} \leqq 1 ; i=1,2, \ldots, d ; 0 \leqq t<\infty\right)
$$

will be called a Kiefer process (of d-th order) if

$$
\begin{gathered}
E\left(K\left(s_{11}, s_{12}, \ldots, s_{1 d} ; t_{1}\right) K\left(s_{21}, s_{22}, \ldots, s_{2 d} ; t_{2}\right)\right) \\
=\min \left(t_{1}, t_{2}\right)\left[\min \left(s_{11}, s_{21}\right) \min \left(s_{12}, s_{22}\right), \ldots, \min \left(s_{1 d}, s_{2 d}\right)\right. \\
\left.-s_{11} s_{12} \ldots s_{1 d} s_{21} s_{22} \ldots s_{2 d}\right] \\
E(K(s, t))=0 .
\end{gathered}
$$

A Kiefer process (of d-th order) can be generated by the Wiener process $W\left(s_{1}, s_{2}, \ldots, s_{d} ; t\right)$ of $d+1$ variables as follows:

$$
\begin{array}{r}
W\left(s_{1}, s_{2}, \ldots, s_{d} ; t\right)-s_{1} s_{2} \ldots s_{d} W \\
(1,1, \ldots, 1 ; t)=K\left(s_{1}, s_{2}, \ldots, s_{d} ; t\right), \\
\left(0 \leqq t<\infty, 0 \leqq s_{i} \leqq 1 ; i=1,2, \ldots, d\right),
\end{array}
$$

where $W\left(s_{1}, \ldots, s_{d} ; t\right)$ has zero expectation and covariance function

$$
\min \left(t_{1}, t_{2}\right) \min \left(s_{11}, s_{21}\right) \min \left(s_{12}, s_{22}\right) \ldots \min \left(s_{1 d}, s_{2 d}\right)
$$

Now we can formulate our
Theorem. Suppose that the r.v.'s X_{1}, X_{2}, \ldots are defined on a probability space (Ω, \mathscr{S}, P) which is rich enough to define a sequence $W_{1}(s), W_{2}(s), \ldots$ of independent Wiener processes with zero expectation and covariance function

$$
\min \left(s_{11}, s_{21}\right) \min \left(s_{12}, s_{22}\right) \ldots \min \left(s_{1 d}, s_{2 d}\right)
$$

and a sequence $\Pi_{1}, \Pi_{2} \ldots$ of independent r.v.'s such that
(i) $P\left(\Pi_{n}=k\right)=\frac{n^{k}}{k!} e^{-n}$,
(ii) the sequences $\left\{X_{n}\right\},\left\{W_{n}\right\},\left\{\Pi_{n}\right\}$ are also independent.

Then one can define a Kiefer process $K(s, t)$ on Ω such that

$$
\begin{aligned}
& \sup _{0 \leqq s_{i} \leqq 1}|K(s, t)-\hat{\xi}(s, t)|=O\left(t^{\frac{d+1}{t^{2(d+2)}}}(\log t)^{2}\right) \quad(t \rightarrow \infty) \\
& (i=1,2, \ldots, d)
\end{aligned}
$$

with probability 1.
A main tool of our proof will be Lemma 8 which is practically the same result as that of Brillinger ([3]). Hence one can say that our proof shows that Kiefer's result can be obtained as a consequence of a Brillinger type theorem.

For the sake of simplicity the proof of our Theorem will be prepared only in case $d=2$. The general case can be treated in a quite similar way.

2. Lemmas

Lemma 1. Let Π be a r.v. with distribution

$$
P(\Pi=k)=\frac{\lambda^{k}}{k!} e^{-\lambda} \quad(k=0,1,2, \ldots ; \lambda>1)
$$

Then for any constant $A>1$ there exists a polynomial $B(x)$ of second order (depending only on A) such that for any $x(|x| \leqq A \sqrt{\log \lambda})$ we have

$$
\begin{equation*}
F_{\lambda}(x)=P\left(\frac{\Pi-\lambda}{\sqrt{\lambda}} \leqq x\right)=\Phi(x)+\frac{\exp \left(-\frac{x^{2}}{2}\right)}{\sqrt{\lambda}} f(x, \lambda) \tag{1}
\end{equation*}
$$

where $|f(x, \lambda)| \leqq|B(x)|$.
Consequence. Suppose $\left|x_{\lambda}\right| \leqq A \sqrt{\log \lambda}$. Then

$$
F_{\lambda}\left(x_{\lambda}\right) \sim \Phi\left(x_{\lambda}\right) \quad \text { and } \quad 1-F_{\lambda}\left(x_{\lambda}\right) \sim 1-\Phi\left(x_{\lambda}\right) .
$$

Proof of Lemma 1. Put $[\lambda+x \sqrt{\lambda}]=v$, then it is well-known

$$
\begin{align*}
F_{\lambda}(x) & =\int_{\lambda}^{\infty} \frac{t^{v}}{v!} e^{-t} d t=\exp \left(-\frac{\theta_{v}}{12 v}\right) \sqrt{\frac{\nu}{2 \pi}} \int_{-\infty}^{1-\lambda / v}\left((1-t) e^{t}\right)^{v} d t \\
& =\exp \left(-\frac{\theta_{v}}{12 v}\right) \sqrt{\frac{v}{2 v}}\left[\int_{-\infty}^{-2 A \sqrt{\frac{\log \lambda}{\lambda}}}\left((1-t) e^{t}\right)^{v} d t+\int_{-2 A \sqrt{\frac{\log \lambda}{\lambda}}}^{1-\lambda / v}\left((1-t) e^{t}\right)^{v} d t\right] \tag{2}
\end{align*}
$$

where $0<\theta_{v}<1$.
The first member of the right hand side clearly can be estimated by

$$
\begin{equation*}
\exp \left(-\frac{\theta_{v}}{12 v}\right) \sqrt{\frac{v}{2 \pi}} \int_{-\infty}^{-2 A}\left((1-t) e^{t}\right)^{v} d t=O\left(\frac{1}{\lambda^{4 A^{2} / 3}}\right) \tag{3}
\end{equation*}
$$

The second integral can be evaluated, making use of the simple formula $(1-t) e^{t}=\exp \left(-\frac{t^{2}}{2}+g(t)\right)$ where $|g(t)| \leqq|t|^{3}$ if $|t| \leqq 1$, as follows

$$
\begin{align*}
& \sqrt{\frac{v}{2 \pi}} \int_{-2 A \sqrt{\frac{\log \lambda}{\lambda}}}^{1-\lambda / v}\left((1-t) e^{t}\right)^{v} d t=\sqrt{\frac{v}{2 \pi}} \int_{-2 A}^{1-\lambda / v} \sqrt{\frac{\log \lambda}{\lambda}} \exp \left(-\frac{t^{2}}{2} v+g(t) v\right) d t \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-2 A}^{\frac{v-\lambda}{\sqrt{v}}} \exp \left(-\frac{s^{2}}{2}+g\left(\frac{s}{\sqrt{v} \lambda}\right) v\right) d s \tag{4}\\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\frac{v-\lambda}{\sqrt{v}}} \exp \left(-\frac{s^{2}}{2}+g\left(\frac{s}{\sqrt{v}}\right) v\right) d s+h(\lambda)
\end{align*}
$$

where $h(\lambda)=O\left(\frac{1}{\lambda^{4 A^{2} / 3}}\right)$.
Now a very simple calculation shows:

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\frac{v-\lambda}{\sqrt{v}}} \exp \left(-\frac{s^{2}}{2}+g\left(\frac{s}{\sqrt{v}}\right) v\right) d s=\Phi(x)+\exp \left(-\frac{x^{2}}{2}\right) \frac{\chi(x, \lambda)}{\sqrt{\lambda}} \tag{5}
\end{equation*}
$$

where $|\chi(x, \lambda)| \leqq \Pi_{2}(x)$ and $\Pi_{2}(x)$ is a polynomial of second order. (2), (3), (4) and (5) imply (1).

Lemma 2. Let $f_{\lambda}(t)=\Phi^{-1}\left(F_{\lambda}(t)\right)$. Then

$$
\left|f_{\lambda}(t)-t\right|=O\left(\frac{\log \lambda}{\sqrt{\lambda}}\right) \quad(\lambda \rightarrow \infty)
$$

uniformly in t provided that $|t| \leqq A \sqrt{\log \lambda}$, where the capital O depends only on A.
Proof is practically the same as that of Lemma 3 of [1], so it will be omitted.
Consider the lattice points $\left(\frac{i}{r}, \frac{j}{r}\right)(i=0,1,2, \ldots, r ; j=0,1,2, \ldots, r)$ of the unit square and let $A_{i j}=\left[\frac{i}{r}, \frac{(i+1)}{r}\right) \times\left[\frac{j}{r}, \frac{(j+1)}{r}\right)(i, j=0,1,2, \ldots, r-1)$. Let $\alpha_{i j}$ be the number of the elements of the sample $X_{1}, X_{2}, \ldots, X_{n}$ lying in the square $A_{i j}$. Further let Π be a r.v. of Poisson distribution with parameter n, and independent of the $\left\{X_{i}\right\}$. Finally let $\beta_{i j}$ be the number of elements of the sample $X_{1}, X_{2}, \ldots, X_{I}$ lying in $A_{i j}$. Introduce the notations
$(1 \leqq I, J \leqq r)$.

$$
\begin{aligned}
\mathfrak{A}_{I J} & =\sum_{\substack{i \leqq I \\
j \leqq J}} \frac{\alpha_{i j}-n / r^{2}}{\sqrt{n}} \\
\mathfrak{B}_{I J} & =\sum_{\substack{i \leqq I \\
j \leqq J}} \frac{\beta_{i j}-\Pi / r^{2}}{\sqrt{n}}
\end{aligned}
$$

Now we can formulate our
Lemma 3. We have

$$
\begin{equation*}
P\left\{\sup _{1 \leqq I, J \leqq r}\left|\mathfrak{A}_{I J}-\mathfrak{B}_{I J}\right| \geqq \frac{K(\log n)^{\frac{3}{4}}}{n^{\frac{1}{4}}}\right\}=O\left(\frac{1}{n^{2}}\right) \tag{i}
\end{equation*}
$$

if K is a big enough positive constant and $r^{2}=o(n)$,
(ii) the r.v.'s $\beta_{i j}$ are independent obeying the Poisson law of parameter n / r^{2}.

Proof. Our second statement is well-known, so we have only to prove the first one. Introduce the notations:

$$
\begin{gathered}
\left|\alpha_{i j}-\beta_{i j}\right|=\gamma_{i j}, \\
C_{I J}=\left|\mathfrak{A}_{I J}-\mathfrak{B}_{I J}\right|=\left|\sum_{\substack{i \leq I \\
j \leqq J}} \frac{\gamma_{i j}-\frac{|n-\Pi|}{r^{2}}}{\sqrt{n}}\right|
\end{gathered}
$$

Then we have

$$
\begin{aligned}
P\left(C_{I J}\right. & \left.\geqq \frac{K(\log n)^{\frac{3}{4}}}{n^{\frac{1}{4}}}\right)=\sum_{k=0}^{\infty} P\left(\left.C_{I J} \geqq \frac{K(\log n)^{\frac{3}{4}}}{n^{\frac{1}{4}}} \right\rvert\, \Pi=k\right) P(\Pi=k) \\
& \leqq \sum_{\left|\frac{k-n}{\sqrt{n}}\right| \geqq K} P(\Pi=k)+\sum_{\left|\frac{k-n}{\sqrt{n}}\right|<K \sqrt{\log n} n} P\left(\left.C_{I J} \geqq \frac{K(\log n)^{\frac{3}{4}}}{n^{\frac{1}{4}}} \right\rvert\, \Pi=k\right) \\
& \leqq P\left(\left|\frac{\Pi-n}{\sqrt{n}}\right| \geqq K \sqrt{\log n}\right)+\max _{|j| \geqq K \sqrt{n \log n}} P\left(\left.C_{I J} \geqq \frac{K(\log n)^{\frac{3}{4}}}{n^{\frac{1}{4}}} \right\rvert\, \Pi-n=j\right) \\
& =O\left(\frac{1}{n^{K^{2} / 2}}\right)+O^{\circ}\left(\frac{1}{n^{K / 2}}\right) .
\end{aligned}
$$

Since

$$
P\left\{\sup _{1 \leqq I, J \leqq r} C_{I J} \geqq \frac{K(\log n)^{\frac{3}{4}}}{n^{\frac{2}{4}}}\right\} \leqq r^{2} \sup _{1 \leqq I, J \leqq r} P\left(C_{I J} \geqq \frac{K(\log n)^{\frac{3}{4}}}{n^{\frac{1}{4}}}\right)
$$

we have our statement.
The following is well-known:
Lemma 4. Making use of the notations of Lemma 3 let $r=\left[n^{\alpha}\right]\left(0<\alpha<\frac{1}{2}\right)$, $G_{n}(x, y)=\sqrt{n}\left(F_{n}(x, y)-x y\right)$ and let $B(x, y)$ be a Brownian bridge with zero expectation and covariance function $\min \left(x_{1}, x_{2}\right) \min \left(y_{1}, y_{2}\right)-x_{1} x_{2} y_{1} y_{2}$. Then for any $A>0$ there exists a $B=B(A)>0$ such that

$$
P\left(\sup _{i, j} \sup _{\substack{\left(x_{1}, y_{1}\right) \in A_{i j} \\\left(x_{2}, y_{2}\right) \in A_{i j}}}\left|B\left(x_{1}, y_{1}\right)-B\left(x_{2}, y_{2}\right)\right| \geqq B \frac{\log r}{\sqrt{r}}\right)=O\left(\frac{1}{r^{A}}\right)
$$

and

Our second statement easily follows, for example, from Theorem 2 of [4]. As to our Brownian bridge on the unit square $B(x, y)$, it can be generated by the Wiener process $W(x, y)$ of two variables as follows:

$$
B(x, y)=W(x, y)-x y W(1,1), \quad(0 \leqq x, y \leqq 1)
$$

where $W(x, y)$ has zero expectation and covariance function $\min \left(x_{1}, x_{2}\right) \min \left(y_{1}, y_{2}\right)$.
Our next lemma can be easily proved using well-known technics of Gaussian processes.

Lemma 5. Let $K\left(s_{1}, s_{2} ; t\right)$ be a Kiefer process. Then for any $A>0$ there exists a $B=B(A)>0$ such that

$$
P\left\{\sup _{\substack{0 \leqq t \leqq T \\ 0 \leqq s_{1}, s_{2} \leqq 1}}\left|K\left(s_{1}, s_{2} ; t\right)\right| \geqq B \sqrt{T \log T}\right\} \leqq \frac{1}{T^{A}}
$$

if T is large enough.
Lemma 6. Let r be an integer and let $\{\Omega, \mathscr{S}, P\}$ be a probability space. Suppose that on Ω there exist a double array $\left\{N_{i j}\right\}(i, j=1,2, \ldots, r)$ of independent r.v.'s of standard normal law and a double array $W_{i j}\left(s_{1}, s_{2}\right)(i, j=1,2, \ldots, r)$ of independent Wiener processes such that the arrays $\left\{N_{i j}\right\}$ and $\left\{W_{i j}\right\}$ are also independent. Then there exists a Wiener process $W\left(s_{1}, s_{2}\right)\left(0 \leqq s_{1}, s_{2} \leqq 1\right)$ on Ω such that

$$
\begin{equation*}
W(i / r, j / r)=\frac{1}{r} \sum_{\substack{\alpha \leq i \\ \beta \leqq j}} N_{\alpha \beta} . \tag{6}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
W_{i j}^{(1)}\left(s_{1}, s_{2}\right)= & W_{i j}\left(s_{1}, s_{2}\right)-s_{1} s_{2} W_{i j}(1,1)+s_{1} s_{2} N_{i j}, \quad\left(0 \leqq s_{1}, s_{2} \leqq 1\right), \\
W_{i j}^{(2)}\left(s_{1}, s_{2}\right)= & \frac{1}{r} W_{i j}^{(1)}\left(r s_{1}, r s_{2}\right), \quad\left(0 \leqq s_{1}, s_{2} \leqq 1 / r\right), \\
W_{i j}^{(3)}\left(s_{1}, s_{2}\right)= & W_{i j}^{(2)}\left(s_{1}-\frac{i-1}{r}, s_{2}-\frac{j-1}{r}\right),\left(\frac{i-1}{r} \leqq s_{1} \leqq \frac{i}{r} ; \frac{j-1}{r} \leqq s_{2} \leqq \frac{j}{r}\right), \\
W_{j}\left(s_{1}, s_{2}\right)= & W_{1 j}\left(1 / r, s_{2}\right)+W_{2 j}\left(2 / r, s_{2}\right)+\cdots+W_{i-1, j}\left(\frac{i-1}{r}, s_{2}\right)+W_{i j}\left(s_{1}, s_{2}\right) \\
& \text { if } \frac{i-1}{r} \leqq s_{1} \leqq \frac{i}{r}, \frac{j-1}{r} \leqq s_{2} \leqq \frac{j}{r}, \tag{7}\\
W\left(s_{1}, s_{2}\right)= & W_{1}\left(s_{1}, 1 / r\right)+W_{2}\left(s_{1}, 2 / r\right)+\cdots+W_{i-1}\left(s_{1}, \frac{i-1}{r}\right)+W_{i}\left(s_{1}, s_{2}\right) \\
& \left(0 \leqq s_{1} \leqq 1 ; \frac{i-1}{\mathrm{r}} \leqq s_{2} \leqq \frac{i}{\mathrm{r}}\right) .
\end{align*}
$$

It is quite clear that $W\left(s_{1}, s_{2}\right)$ of (7) is obeying condition (6). We only have to check that $W\left(s_{1}, s_{2}\right)$ is really a Wiener process, and this is rather simple. The Wiener processes of this lemma are, of course, defined as the one generating $B(x, y)$ of Lemma 4.

Lemma 7. Let $0=t_{0}<t_{1}<t_{2}<\ldots$ be a sequence of real numbers and let $\{\Omega, \mathscr{S}, P\}$ be a probability space. Suppose that there exist a sequence $\left\{B_{i}\left(s_{1}, s_{2}\right)\right\}$ of independent Brownian bridges and a sequence $\left\{K_{i}\left(s_{1}, s_{2} ; t\right)\right\}$ of independent Kiefer processes (both of them defined on Ω) such the sequences $\left\{B_{i}\right\}$ and $\left\{K_{i}\right\}$ are mutually independent. Then there exists a Kiefer process $K\left(s_{1}, s_{2}, t\right)$ such that

$$
\begin{equation*}
K\left(s_{1}, s_{2}, t_{i}\right)=\sqrt{t_{1}} B_{2}\left(s_{1}, s_{2}\right)+\sqrt{t_{2}-t_{1}} B_{2}\left(s_{1}, s_{2}\right)+\cdots+\sqrt{t_{i}-t_{i-1}} B_{i}\left(s_{1}, s_{2}\right) \tag{8}
\end{equation*}
$$

Proof. Let
and let

$$
\begin{aligned}
K_{i}^{(1)}\left(s_{1}, s_{2} ; t\right)= & K_{i}\left(s_{1}, s_{2} ; t-t_{i-1}\right)-\frac{t-t_{i-1}}{t_{i}-t_{i-1}} K_{i}\left(s_{1}, s_{2} ; t_{i}-t_{i-1}\right) \\
& +\frac{t-t_{i-1}}{\sqrt{t_{i}-t_{i-1}}} B_{i}\left(s_{1}, s_{2}\right) \quad\left(t_{i-1} \leqq t \leqq t_{i}\right)
\end{aligned}
$$

$$
\begin{align*}
K\left(s_{1}, s_{2} ; t\right)= & \sqrt{t_{1}} B_{1}\left(s_{1}, s_{2}\right)+\sqrt{t_{2}-t_{1}} B_{2}\left(s_{1}, s_{2}\right)+\cdots \\
& +\sqrt{t_{i-1}-t_{i-2}} B_{i-1}\left(s_{1}, s_{2}\right)+K_{i}^{(1)}\left(s_{1}, s_{2} ; t\right) \quad t_{i-1} \leqq t \leqq t_{i} \tag{9}
\end{align*}
$$

Now condition (8) clearly holds and it is easy to see that $K\left(s_{1}, s_{2} ; t\right)$ (defined by (9)) is a Kiefer process. Here the Brownian bridges $\left\{B_{i}\left(s_{1}, s_{2}\right)\right\}$ are defined as that of Lemma 4.

Lemma 8. Suppose that the conditions of the Theorem hold. Then for each n one can construct a Brownian bridge $B\left(s_{1}, s_{2}\right)=B_{n}\left(s_{1}, s_{2}\right)$ such that

$$
\begin{equation*}
P\left\{\sup _{0 \leqq s_{1}, s_{2} \leqq 1}\left|G_{n}\left(s_{1}, s_{2}\right)-B\left(s_{1}, s_{2}\right)\right| \cdot \frac{n^{\frac{1}{8}}}{(\log n)^{\frac{3}{2}}} \geqq C\right\}=O\left(\frac{1}{n^{2}}\right) \tag{10}
\end{equation*}
$$

where $G_{n}(x, y)=\sqrt{n}\left(F_{n}(x, y)-x y\right)$, and C is large enough.
Remark. We get the d-dimensional version of this lemma if we replace $n^{\frac{1}{6}}$ by $n^{\frac{1}{2}(d+1)}(d+1)$.

Proof. Let ${ }^{1} r=n^{\frac{1}{3}}$ and define the process $B(x, y)$ as follows: let

$$
N_{i j}=f_{n i r^{2}}\left(\frac{\beta_{i j}-n / r^{2}}{\sqrt{n / r^{2}}}\right)
$$

where f_{n} resp. $\beta_{i j}$ were defined in Lemmas 2. resp. 3. Then by Lemma 5 there exists a Wiener process $W(x, y)$ such that

$$
W\left(\frac{i}{r}, \frac{j}{r}\right)=\frac{1}{r} \sum_{\substack{0 \leqq \alpha \leqq i \\ 0 \leqq \beta \leqq j}} N_{\alpha \beta}
$$

and let $B(x, y)=W(x, y)-x y W(1,1)$.
We have to show that B obeys (10).
In fact by Lemma 2

$$
\left|N_{i j}-\frac{\beta_{i j}-n / r^{2}}{\sqrt{n / r^{2}}}\right|=O\left(\frac{\log n}{\sqrt{n / r^{2}}}\right) \quad(i, j=1,2, \ldots, r)
$$

provided that $\left|\left(\beta_{i j}-n / r^{2}\right) / \sqrt{n / r^{2}}\right| \leqq A \sqrt{\log n}$.

[^0]Since

$$
P\left\{\sup _{i, j}\left|\frac{\beta_{i j}-n / r^{2}}{\sqrt{n / r^{2}}}\right|>A \sqrt{\log n}\right\} \leqq 1 / n^{2}
$$

if A is large enough, we have

$$
\begin{equation*}
P\left\{\sup _{i, j}\left|N_{i j}-\frac{\beta_{i j}-n / r^{2}}{\sqrt{n / r^{2}}}\right|>C \frac{\log n}{\sqrt{n / r^{2}}}\right\} \leqq 1 / n^{2} \tag{11}
\end{equation*}
$$

if C is large enough.
Let

$$
\varepsilon_{i j}=N_{i j}-\frac{\beta_{i j}-n / r^{2}}{\sqrt{n / r^{2}}}
$$

and

$$
\varepsilon_{i j}^{*}= \begin{cases}\varepsilon_{i j} & \text { if }\left|\varepsilon_{i j}\right| \leqq C \frac{\log n}{\sqrt{n / r^{2}}} \\ 0 & \text { otherwise }\end{cases}
$$

Then
(i) the r.v.'s $\varepsilon_{i j}^{*}$ are independent,
(ii) $\left|E \varepsilon_{i j}^{*}\right|=O\left(\frac{1}{n}\right)$;
hence
and also

$$
P\left\{\sup _{I, J}\left|\sum_{\substack{i \leqq I \\ j \leqq J}}\left(\varepsilon_{i j}^{*}-E\left(\varepsilon_{i j}^{*}\right)\right)\right| \frac{\sqrt{n}}{r \log n} \geqq \operatorname{Ar} \sqrt{\log r}\right\} \leqq 1 / n^{2}
$$

$$
P\left\{\sup _{I, J}\left|\sum_{\substack{i \leqq I \\ j \leqq J}} e_{i j}^{*}\right| \frac{\sqrt{n}}{r \log n} \geqq \operatorname{Ar} \sqrt{\log r}\right\} \leqq 1 / n^{2}
$$

if A is large enough, which, by (11), implies:

$$
P\left\{\sup _{I, J}\left|\sum_{\substack{i \leq I \\ j \leqq J}} \varepsilon_{i j}\right| \geqq \mathrm{Ar}^{2} \frac{1}{\sqrt{n}}(\log n)^{\frac{3}{2}}\right\}=O\left(\frac{1}{n^{2}}\right)
$$

i.e.

$$
\begin{equation*}
P\left\{\sup _{I, J}\left|\frac{1}{r} \sum_{\substack{i \leqq I \\ j \leqq J}} N_{i j}-\sum_{\substack{i \leqq I \\ j \leqq J}} \frac{\beta_{i j}-n / r^{2}}{\sqrt{n}}\right| \geqq A \frac{r}{\sqrt{n}}(\log n)^{\frac{3}{2}}\right\}=O\left(\frac{1}{n^{2}}\right) . \tag{12}
\end{equation*}
$$

Especially if $I=J=r$ we have

$$
\begin{equation*}
P\left\{\left|W(1,1)-\frac{\Pi-n}{\sqrt{n}}\right| \geqq A \frac{r}{\sqrt{n}}(\log n)^{\frac{3}{2}}\right\}=O\left(\frac{1}{n^{2}}\right) \tag{13}
\end{equation*}
$$

(12) and (13) together imply

$$
P\left\{\sup _{I, J}\left|B\left(\frac{I}{r}, \frac{J}{r}\right)-\mathfrak{B}_{I J}\right| \geqq 2 A \frac{r}{\sqrt{n}}(\log n)^{\frac{3}{2}}\right\}=O\left(\frac{1}{n^{2}}\right) .
$$

Now making use of Lemmas 3 and 4 one has Lemma 8.

3. Proof of the Theorem

Consider the sequence $0=n_{0}<n_{1}<n_{2}<\cdots$ of integers where $n_{k}=k^{4}$ and let $n_{k}-n_{k-1}=m_{k}$. Denote by $H_{k}(x, y)$ the empirical distribution function based on the sample

$$
X_{n_{k-1}+1}, \ldots, X_{n_{k}} \text { and let } \sqrt{m_{k}}\left\{H_{k}(x, y)-x y\right\}=\tilde{H}_{k}(x, y) ;
$$

further let $B_{k}(x, y)$ be a Brownian bridge for which

$$
P\left\{\sup _{x, y}\left|B_{k}(x, y)-\tilde{H}_{k}(x, y)\right| \frac{m_{k}^{\frac{1}{2}}}{\left(\log m_{k}\right)^{\frac{3}{2}}} \geqq C\right\}=O\left(\frac{1}{m_{k}^{2}}\right) .
$$

By Lemma 7 there exists a Kiefer process $K\left(s_{1}, s_{2}, t\right)$ for which

$$
K\left(s_{1}, s_{2} ; n_{i}\right)=\sum_{j=1}^{i} \sqrt{m_{j}} B_{j}\left(s_{1}, s_{2}\right) .
$$

It will be shown that this Kiefer process is obeying statement of our Theorem. Since

$$
\sum_{k=1}^{K} \sqrt{m_{k}} H_{k}(x, y)=n_{K}\left(F_{n_{K}}(x, y)-x y\right)
$$

one can get by Lemma 8:

$$
P\left\{\sup _{x, y}\left|n_{K}\left(F_{n_{K}}(x, y)-x y\right)-K\left(x, y ; n_{K}\right)\right| \geqq\left(A \log K \sum_{k=1}^{K} m_{k}^{\frac{2}{2}}\left(\log m_{k}\right)^{3}\right)^{\frac{1}{2}}\right\}=O\left(\frac{1}{K^{2}}\right)
$$

hence our Theorem follows from Lemma 5 and the Borel-Cantelli theorem.
Acknowledgements. The authors are indebted to G. Tusnádi for his valuable remarks; especially the idea to use the Poisson law (see Lemma 3) is due to him. A similar idea is used by M. J. Wichura ([5]). The fundamental idea of the first part of this paper ([1]) is very closely related to a paper of P. Bártfai ([6]).

References

1. Csörgő, M., Révész, P.: A new method to prove Strassen type laws of invariance principle, I. Z. Wahrscheinlichkeitstheorie verw. Geb. 31, 255-259 (1975)
2. Kiefer, J.: Skorohod Embedding of Multivariate R.V.'s and the Sample D.F.Z. Wahrscheinlichkeitstheorie verw. Gebiete 24, 1-35 (1972)
3. Brillinger, D. R.: An Asymptotic representation of the sample $d f$. Bull. Amer. Math. Soc. 75, 545-547 (1969)
4. Révész, P.: Testing of density functions. Period. Math. Hungar. 1, 35-44 (1971)
5. Wichura, M.J.: Some Strassen-type laws of the iterated logarithm for multiparameter stochastic processes with independent increments. Ann. Probability, 1, 272-296 (1973)
6. Bártfai, P.: Über die Entfernung der Irrfahrtswege. Studia Sci. Math. Hungar. 5, 41-49 (1970)
M. Csörgő

Department of Mathematics
Carleton University
Colonel By Drive
Ottawa
Canada

P. Révész

Mathematical Institute of the Hungarian Academy of Sciences
Reáltanoda u. 13-15
Budapest V.
Hungary

[^0]: ${ }^{1}$ In the d-dimensional case $r=n^{1 / d+1}$.

