A New Method to Prove Strassen Type Laws of Invariance Principle. I

M. Csörgő and P. Révész

1. Summary

A new method is developed to produce strong laws of invariance principle without making use of the Skorohod representation. As an example, it will be proved that $\lim _{n \rightarrow \infty}\left(S_{n}-W(n)\right) / n^{1 / 6+\varepsilon}=0$ with probability 1 , for any $\varepsilon>0$, where $S_{n}=X_{1}+X_{2}+\cdots+X_{n},\left\{X_{i}\right\}$ is a sequence of i.i.d.r.v.'s with $P\left(X_{i}<t\right)=F(t)$, and $F(t)$ is a distribution function obeying (i), (ii) and $W(n)$ is a suitable Wiener-process. Strassen in [1], proved (under weaker conditions):

$$
S_{n}-W(n)=O(\sqrt[4]{n \log \log n} \sqrt{\log n})
$$

with probability one. He conjectured that if

$$
S_{n}-W(n)=o(\sqrt[4]{n \log \log n} \sqrt{\log n})
$$

then $F(x)=\phi(x)$ where $\phi($.$) is the unit normal distribution function. (See also$ [2], [6] and [7].) Our result above is a negative answer to this question.

2. Introduction

In this paper we prove the following.
Theorem. Let $F(x)$ be a continuous distribution function satisfying the following conditions:

$$
\begin{align*}
& \int_{-\infty}^{+\infty} x d F(x)=\int_{-\infty}^{+\infty} x^{3} d F(x)=0 \tag{i}\\
& \int_{-\infty}^{+\infty} x^{2} d F(x)=1, \int_{-\infty}^{+\infty} x^{8} d F(x)<\infty
\end{align*}
$$

(ii) $\limsup _{|t| \rightarrow \infty}|f(t)|<1$,
where $f(t)=\int_{-\infty}^{+\infty} e^{i t x} d F(x)$ is the characteristic function of $F(x)$.
Then there exists a probability space $\{\Omega, \mathscr{S}, P\}$, a sequence $\left\{X_{i}\right\}$ of i.i.d.r.v.'s and a Wiener process $W(t)$ (both of them are defined on Ω) such that

$$
P\left(X_{1}<t\right)=F(t)
$$

and

$$
\begin{equation*}
\frac{S_{n}-W(n)}{n^{\frac{1}{\varepsilon}+\varepsilon}} \rightarrow 0 \quad(n \rightarrow \infty) \tag{1}
\end{equation*}
$$

with probability 1 for any $\varepsilon>0$, where $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$.

In this connection Berkes has also remarked that if the first $k>3$ moments of $F(x)$ agree to the corresponding first k moments of $\phi(x)$ then, practically the same proof shows that the power $\frac{1}{6}+\varepsilon$ in (1) can be replaced by a smaller one.

In paragraph two some lemmas will be given while in three we prove the Theorem.

3. Lemmas

Lemma A ([3] p. 82, Theorem 25, or [4] p. 220). Suppose that the conditions of the Theorem are fulfilled and let X_{1}, X_{2}, \ldots be a sequence of i.i.d.r.v.'s with $P\left(X_{i}<t\right)=F(t)$ and

$$
P\left(\frac{X_{1}+X_{2}+\cdots X_{n}}{\sqrt{n}}<t\right)=F_{n}(t)
$$

Then

$$
\begin{aligned}
F_{n}(x)-\phi(x) & =\frac{e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}} \sum_{i=1}^{6} \frac{Q_{i}(x)}{n^{i / 2}}+o\left(\frac{1}{n^{3}}\right) \\
& =\frac{e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}}\left[\frac{Q_{2}(x)}{n}+\frac{Q_{3}(x)}{n^{\frac{3}{2}}}+\frac{Q_{4}(x)}{n^{2}}+\frac{Q_{5}(x)}{n^{\frac{3}{2}}}+\frac{Q_{6}(x)}{n^{3}}\right]+o\left(\frac{1}{n^{3}}\right)
\end{aligned}
$$

uniformly in x, where $Q_{i}(x)(i=1,2, \ldots 6)$ is a polynomial of degree $i+3$ with coefficients depending only on the first eight moments of $F(x)$ and $Q_{1}(x)=0$ (since $E X_{1}^{3}$ is assumed to be 0).

Lemma 1. Under the conditions of the Theorem we have

$$
\Phi\left(x_{n}\right) \sim F_{n}\left(x_{n}\right) \quad \text { and } \quad 1-F_{n}\left(x_{n}\right) \sim 1-\phi\left(x_{n}\right)
$$

provided that $\left\{x_{n}\right\}$ is a sequence of real numbers for which $\left|x_{n}\right| \leqq c \sqrt{\log n}$, where $O<c<\sqrt{6}$ and the sign \sim means asymptotic equality.

Proof. This Lemma is a simple consequence of Lemma A (see also [5], Theorem 4).

Lemma 2. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences of real numbers for which

$$
\begin{aligned}
O<a_{n}<1, & O<b_{n}<1, \\
a_{n} \sim b_{n}, & 1-a_{n} \sim 1-b_{n} .
\end{aligned}
$$

Then

$$
\left(\phi^{-1}\left(a_{n}\right)\right)^{2}-\left(\phi^{-1}\left(b_{n}\right)\right)^{2} \rightarrow 0 \quad(n \rightarrow \infty)
$$

The proof of this statement can easily be seen via elementary calculations.
Lemma 3. Suppose that the conditions of the Theorem are fulfilled and put $f_{n}(t)=\phi^{-1}\left(F_{n}(t)\right)$. Then

$$
\begin{equation*}
\left|f_{n}(t)-t\right|=O\left(\frac{(\log n)^{\frac{5}{2}}}{n}\right) \tag{2}
\end{equation*}
$$

provided that

$$
|t| \leqq c \sqrt{\log n}
$$

where $O<c<\sqrt{6}$.

Proof. By Lagrange's mean value theorem we have

$$
\begin{aligned}
\left|f_{n}(t)-t\right| & =\left|\phi^{-1}\left(F_{n}(t)\right)-\phi^{-1}(\phi(t))\right| \\
& =\left.\left|F_{n}(t)-\phi(t)\right| \cdot \frac{d \phi^{-1}(y)}{d y}\right|_{y=\xi_{t}} \\
& =\left|F_{n}(t)-\phi(t)\right| \frac{1}{\phi^{\prime}\left(\phi^{-1}\left(\xi_{t}\right)\right)},
\end{aligned}
$$

where $\min \left(F_{n}(t), \phi(t)\right) \leqq \xi_{t} \leqq \max \left(F_{n}(t), \phi(t)\right)$. Hence, by Lemma $1, \xi_{t} \approx \phi(t)$ and $1-\xi_{t} \approx 1-\phi(t)$. By Lemma $2\left(\phi^{-1}\left(\xi_{t}\right)\right)^{2}-t^{2} \rightarrow 0$, i.e. by Lemma A

$$
\left|f_{n}(t)-t\right| \leqq\left[\frac{e^{-t^{2} / 2}}{\sqrt{2 \pi}}\left(\frac{C(\log n)^{\frac{5}{2}}}{n}\right)+o\left(\frac{1}{n^{3}}\right)\right] \frac{1}{\frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}}=O\left(\frac{(\log n)^{\frac{5}{2}}}{n}\right)
$$

which proves our Lemma.
Lemma 4. Let $y_{0}=0, y_{1}, y_{2}, \ldots$ be a sequence of independent r.v.'s with

$$
P\left(y_{i}<x\right)=\frac{1}{\sqrt{2 \pi \mathrm{~S}_{i}}} \int_{-\infty}^{x} e^{-u^{2} / 2 S_{i}} d u
$$

where $\left\{S_{i}\right\}$ is a sequence of positive numbers. Further put $t_{0}=0$, and

$$
t_{i}=\sum_{j=1}^{i} S_{j} \quad(i=1,2, \ldots)
$$

Finally let $W_{1}(t), W_{2}(t), \ldots$ be a sequence of mutually independent standard Wiener processes on the positive half line which are also independent of the sequence $\left\{y_{i}\right\}$.

Put

$$
\begin{gathered}
y_{0}+y_{1}+y_{2}+\cdots+y_{n}=Z_{n} \quad(n=0,1, \ldots), \\
B_{i}(t)=W_{i}(t)-\frac{t}{S_{i}} W_{i}\left(S_{i}\right) \quad\left(i=1,2, \ldots ; 0 \leqq t \leqq S_{i}\right) \\
\bar{B}_{i}(t)=B_{i}\left(t-t_{i-1}\right) \quad\left(i=1,2, \ldots ; t_{i} \leqq t \leqq t_{i+1}\right) \\
\xi(t)=\bar{B}_{i}(t)+Z_{i-1}+\frac{Z_{i}-Z_{i-1}}{S_{i}}\left(t-t_{i-1}\right) \\
\text { if } t_{i-1} \leqq t \leqq t_{i} \quad(i=1,2, \ldots) .
\end{gathered}
$$

Then $\xi(t)$ is a standard Wiener process.
Proof is trivial.

4. Proof of the Theorem

Let $\{\Omega, \mathscr{S}, P\}$ be a probability space which is rich enough to define a sequence $\left\{X_{n}\right\}$ of i.i.d.r.v.'s and a sequence $\left\{W_{n}(t)\right\}$ of independent Wiener processes on it such that $\left\{X_{n}\right\}$ and $\left\{W_{n}(t)\right\}$ are also independent and $P\left(X_{n}<t\right)=F(t)$. Further let $n_{k}=\left[k^{\alpha}\right]\left(\frac{3}{2}<\alpha<2 ; k=0,1,2, \ldots\right)$ and $n_{j}-n_{j-1}=m_{j} \approx \alpha j^{\alpha-1}(j=1,2, \ldots)$. Introduce 18*
the following notations:

$$
\begin{aligned}
& X_{n_{k}+1}+X_{n_{k}+2}+\cdots+X_{n_{k+1}}=y_{k+1}, \\
& X_{1}+X_{2}+\cdots+X_{n}=S_{n}, \\
& \frac{y_{k}}{\sqrt{m_{k}}}=Z_{k}, \quad P\left(Z_{k}<t\right)=F_{k}(t), \\
& f_{k}(t)=\phi^{-1}\left(F_{k}(t)\right), \quad f_{k}\left(Z_{k}\right)=R_{k}, \\
& \sum_{k=1}^{K} \sqrt{m_{k}} R_{k}=T_{n_{K}}, \quad R_{k}-Z_{k}=e_{k}
\end{aligned}
$$

and define the event $\mathscr{\mathscr { P }}$ as follows:

$$
\mathscr{\mathscr { F }}=\left\{\left|Z_{k}\right|>c \sqrt{\log m_{k}} \text { infinitely often }\right\},
$$

where $\sqrt{\frac{32}{7}}<c<\sqrt{6}$.
Clearly we have

$$
P\left(R_{k}<t\right)=\phi(t) \quad(k=1,2, \ldots)
$$

and by Lemma 1 and by the Borel-Cantelli lemma $P(\mathscr{F})=0$.
By Lemma 3

$$
\begin{equation*}
\left|e_{k}\right|=O\left(\frac{\left(\log m_{k}\right)^{\frac{s}{2}}}{m_{k}}\right) \tag{3}
\end{equation*}
$$

provided that $\left|Z_{k}\right| \leqq c \sqrt{\log m_{k}}$, i.e. (3) holds with probability 1 , except for finitely many k.

Let

$$
e_{k}^{*}= \begin{cases}e_{k} & \text { if }\left|Z_{k}\right| \leqq c \sqrt{\log m_{k}} \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\alpha_{k}= \begin{cases}1 & \text { if }\left|Z_{k}\right|>c \sqrt{\log m_{k}} \\ 0 & \text { otherwise. }\end{cases}
$$

Then

$$
E\left(e_{k}^{*}\right)=E\left(\alpha_{k} e_{k}\right) \leqq\left(E\left(e_{k}^{8}\right)\right)^{\frac{1}{8}}\left(E\left(\alpha_{k}^{\frac{8}{8}}\right)\right)^{\frac{\beta}{z}}=O\left(-\frac{1}{\frac{7 c^{2}}{16}}\right),
$$

and, by the law of iterated logarithm,

$$
\begin{aligned}
\lim _{K \rightarrow \infty} \frac{\sum_{k=1}^{K} \sqrt{m_{k}} e_{k}}{K^{\frac{2-\alpha}{2}}(\log K)^{5}} & =\lim _{K \rightarrow \infty} \frac{\sum_{k=1}^{K} \sqrt{m_{k}} e_{k}^{*}}{K^{\frac{2-\alpha}{2}}(\log K)^{5}} \\
& =\lim _{K \rightarrow \infty} \frac{\sum_{k=1}^{K} \sqrt{m_{k}}\left(e_{k}^{*}-E e_{k}^{*}\right)}{\frac{2-\alpha}{n_{K}^{2 \alpha}}\left(\log n_{K}\right)^{5}}+\lim _{K \rightarrow \infty} \frac{\sum_{k=1}^{K} \sqrt{m_{k}} E e_{k}^{*}}{K^{\frac{2-\alpha}{2}}(\log K)^{5}}=0 ;
\end{aligned}
$$

hence

$$
\lim _{K \rightarrow \infty} \frac{S_{n_{K}}-T_{n_{K}}}{\frac{2-\alpha}{n_{K}^{2 \alpha}}\left(\log n_{K}\right)^{5}}=0
$$

By Lemma 4 there exists a Wiener process $\xi(t)$ such that

$$
T_{n_{K}}=\xi\left(n_{K}\right) \quad(K=1,2, \ldots)
$$

Then our statement follows from the following two simple relations:

$$
\begin{array}{r}
\lim _{k \rightarrow \infty} \frac{\sup _{n_{k} \leqq t<n_{k}+1}\left(\xi(t)-\xi\left(n_{k}\right)\right)}{m_{k}^{\frac{1}{2}+\varepsilon}}=0, \\
\lim _{k \rightarrow \infty} \frac{\sup _{n_{k} \leqq n<n_{k}+1}\left(S_{n}-S_{n_{k}}\right)}{m_{k}^{\frac{1}{2}+\varepsilon}}=0,
\end{array}
$$

on choosing $\alpha=\frac{3}{2}+\delta, \delta>0$.

References

1. Strassen, V.: Almost sure behaviour of sums of independent random variables and martingales. Proc. 5th Berkeley Sympos. Math. Statist. Probab. (1965), Vol. II (part 1), 315-343. Berkeley: Univ. of Calif. Press 1967
2. Kiefer, J.: On the deviations in the Skorohod-Strassen approximation scheme. Z. Wahrscheinlichkeitstheorie verw. Gebiete 13, 321-332 (1969)
3. Cramér, H.: Random variables and probability distributions. 2nd ed. Cambridge: Cambridge Univ. Press 1962
4. Gnedenko, B. V., Kolmogorov, A. N.: Limit distributions for sums of independent random variables. Cambridge: Addison-Wesley 1954
5. Rubin, H., Sethuraman, J.: Probabilities of moderate deviations. Sankhya Ser. A., 27, 325-346 (1965)
6. Breiman, L.: On the tail behaviour of sums of independent random variables. Z. Wahrscheinlichkeitstheorie verw. Gebiete 9, 20-25 (1967)
7. Borovkov, A.A.: On the speed of convergence in the invariance principle (in Russ). Teor. Verojatnost. i Primenen. 18, 217-234 (1973)
M. Csörgö

Department of Mathematics
Carleton Univ.
Colonel By Drive
Ottawa
Canada
P. Révész

Mathematical Institute
of the Hungarian Academy of Sciences
Reáltanoda u. 13-15,
Budapest V.
Hungary
(Received August 3, 1973; in revised form September 26, 1974)

