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A New Method to Prove Strassen Type Laws
of Invariance Principle. I

M. Cso6rg6 and P. Révész

1. Summary

A new method is developed to produce strong laws of invariance principle
without making use of the Skorohod representation. As an example, it will be
proved that lim(S,— W(n))/n'/***=0 with probability 1, for any £>0, where
S,=X,+X,+--+X,, {X;} is a sequence of iid.r.v’s with P(X;<?)=F(t), and
F(t) is a distribution function obeying (i), (ii) and W(n) is a suitable Wiener-process.
Strassen in [1], proved (under weaker conditions):

S, —Wi(n)= O()/nloglog n/logn)
with probability one. He conjectured that if
S,—W(n)=o(}/nloglogny/logn)

then F(x)=¢(x) where ¢(.) is the unit normal distribution function. (See also
[2], [6] and [7].) Our result above is a negative answer to this question.

2. Introduction
In this paper we prove the following.
Theorem. et F(x) be a continuous distribution function satisfying the following
conditions:

+fmxdF(x)= +j'oox3dF(x)==O,
o
| x*dF(x)=1, | x®dF(x)<co,

—

(i) limsup|f()]<]1,
lt|— o0

where f(t)={*% e"*dF(x) is the characteristic function of F(x).
Then there exists a probability space {Q, S, P}, a sequence {X;} of iid.r.uv’s
and a Wiener process W(t) (both of them are defined on Q) such that
P(X,<t)=F()
and
Sn - W(n)
_

ntre

0 (n—o0) 1)

with probability 1 for any £>0, where S,=X;+ X+ -+ X,,.
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In this connection Berkes has also remarked that if the first k>3 moments of
F(x) agree to the corresponding first kK moments of ¢(x) then, practically the same
proof shows that the power &+ ¢ in (1) can be replaced by a smaller one.

In paragraph two some lemmas will be given while in three we prove the
Theorem.

3. Lemmas

Lemma A ([3] p. 82, Theorem 25, or [4] p. 220). Suppose that the conditions of
the Theorem are fulfilled and let X,,X,,... be a sequence of iidruv’s with
P(X,<t)=F(t) and

p (Xl +X,+ X,

ﬂ <t)=F,,(t).

Then

x2

2 6
RW-o0="— 3 %040 ()

x2

_e_z[QAm+de

_,._
n n?

B V2=
uniformly in x, where Q,(x) (i=1,2, ... 6) is a polynomial of degree i+ 3 with coef-
ficients depending only on the first eight moments of F(x) and Q;(x)=0 (since EX}
is assumed to be 0).

04(x) + Qs(sx) + Q;gx)] ‘o (~1_)

n? n* n?

Lemma 1. Under the conditions of the Theorem we have
Plx,)~ Ex,) and 1—E(x,)~1—d(x,)
provided that {x,} is a sequence of real numbers for which |x,|<c/logn, where
O <c<Vy6 and the sign ~ means asymptotic equality.

Proof. This Lemma is a simple consequence of Lemma A (see also [5],
Theorem 4).

Lemma 2. Let {a,} and {b,} be two sequences of real numbers for which
O<a,<1, O0<b,<l,

a,~b,, 1—a,~1—b,.
Then
(¢~ @)’ — (0B >0 (n—> o).

The proof of this statement can easily be seen via elementary calculations.

Lemma 3. Suppose that the conditions of the Theorem are fulfilled and put

L,o=¢"1 (E(t)). Then (ogn)!
lﬁm—ﬂ=0(3§~) @

n

[t|Scylogn.

provided that

where O < c<]/€.
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Proof. By Lagrange’s mean value theorem we have
1L —t1=]¢ HE®)— o)
150 -pt0]- 20

y=4&

1
¢(d~"())

where min (1), (1)) < &, <max(E,(t), #(z)). Hence, by Lemma 1, {,~¢(t) and
1-¢~1—¢(t). By Lemma 2 (¢ ~'(£))*—1*—-0, ie. by Lemma A

sl (o )] o)
an

Lemma 4. Let y,=0, y;,V,, ... be a sequence of independent r.v.’s with

1 X
| e¥125: 4y

/278,

where {S;} is a sequence of positive numbers. Further put t,=0, and

=E(t) - ¢(2)]

which proves our Lemma.

P(y;<x)=

=Y, (=12..).
j=1

Finally let W,(t), W,(t), ... be a sequence of mutually independent standard Wiener
processes on the positive half line which are also independent of the sequence {y,}.

Put
Yoti+yo+-+y.=2Z, ((n=0,1,..),

t
B)=Wi—- Wi(S) (i=12..;0=1=8),

Ei(t)=Bi(t_ti—1) (l=17 2s —es tz—t<tl+1)
_ Z.—
$O=B)+Z; ;1 +—
if t,_ =ttt (i=1,2,...).

Then &(t) is a standard Wiener process.

Proof is trivial.

4. Proof of the Theorem

Let {Q, ¥, P} be a probability space which is rich enough to define a sequence
{X,} of iid.r.v’s and a sequence {W,(t)} of independent Wiener processes on it
such that {X,} and {W,(¢)} are also independent and P(X,<t)=F(f). Further let
me=[k] G<a<2;k=0,1,2,..) and n;—n;_,; =m;~o*"* (j=1,2,...). Introduce

18*
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the following notations:
X”k+1+Xnk+2+ +Xnk+l =Ve+1>
X1+X2+“'+Xn=Sn=

e _
Ve
Lt)=07 (RO®), flZ)=R;,

K
ZM&c:TnK’ Ry—Zy=e,
k=1

Zk> P(Zk<t)=I';c(t)=

and define the event & as follows:

F={|Z,|>c/log m infinitely often},
where /3 <c<V/6.

Clearly we have
PR, <t)=¢@) (k=1,2,..)

and by Lemma 1 and by the Borel-Cantelli lemma P(%)=0.
By Lemma 3

|ek|=0(

m,

provided that |Z,| < c})/logm, ie. (3) holds with probability 1, except for finitely
many k.

Let
« e 1f|Z|Zcylogm,
ek = .
0 otherwise,
and
1 if [Z]>c)logm,
ak = .
0 otherwise.
Then

PRI 1
Blet) = E(s, ) < () (Ee) =0 —7er ).

) m
and, by the law of iterated logarithm, k
K K
Z my € Z my ef
. k=1 . k=1
lim ————= lim ——;

2o} = K- =z 2
ek (log K)® K % (logK)®

K K
Y Vmlef —Eef) Y Vm Eef
k=12—a +I}im k=21_a :0;
ng® (log ne)’ K ? (logK)

= lim
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hence

S — T,

nKﬂ ng .
2o =0

ng® (logng)®

lim
Ko

By Lemma 4 there exists a Wiener process £(f) such that

nng(nK) (K=1,2,)

Then our statement follows from the following two simple relations:

sup  (&(0)—E&(my)

f M St<ngt _
khm pany: =0,
— mi
<Sup (Sn*Snk)
s BKSR<hi+1 _
khm o =0,
— o0 mk
on choosing a=3+4, §>0.
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