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Reciprocal Processes 

Benton Jamison* 

Introduction 

The concept of a reciprocal process was first formulated by Bernstein in 1932 
[-1]. In 1961 Slepian exploited the reciprocal property of a particular Gaussian 
process to obtain explicitly a first passage time density for the process [13]. The 
real-valued reciprocal processes which are stationary and Gaussian are classified 
in [-8]. The first two sections of this paper are devoted to a systematic study of 
reciprocal processes whose time parameter is a finite closed interval. In the second 
section, we define the notion of a reciprocal transition probability function. The 
main result is that given any reciprocal transition probability function there is a 
probability space supporting a reciprocal process whose transitions are governed 
by the given transition function. In the third section we give a method of construct- 
ing reciprocal processes from Markov processes. Given a Markov process 
{ Yt, a__< t < b} with state space (S, S) whose transition function has with respect to 
some measure 2 on S an everywhere positive transition density q(s, x, t, y), 
a < s < t < b, x, y in S, we obtain a reciprocal process {Xt, a < t < b} by first tying 
down { Y~, a < t < b} at I1, = x and Yb = Y and then giving (x, y) an arbitrary proba- 
bility distribution on S x S. This method is a generalization of one due to 
Schr6dinger ([11, 12]) and discussed by Bernstein [1] (see also Miller's appendix 
on p. 202-223 of [10]). Since any Markov process is a reciprocal process, a question 
arises as to whether all of the processes which are constructed by this method are 
not only reciprocal but Markovian. We prove the following result: An endpoint 
distribution # gives rise to a Markov process {X~, a < t < b} if and only if there is a 
product measure rc on Z x Z  for which dp/dzr=q, where q(x, y)=q(a, x; b, y). 
For example, it is easy to see that if we reproduce the original process by taking 
for/~ the original joint distribution of Y, and Yb, it is of this form (as indeed it 
must be if the result is at all valid). Two questions arise. First, are there any other 
probability distributions on S x S which are of this form? (If not, the original 
process { Y~, a < t < b} is the only one of the derived processes {X~, a < t < b} which 
is Markov.) We show that under quite general conditions, the answer is yes: In 
fact, given any probability measures #1 and #2 on S there is a measure # having Pl 
and/~2 for marginals for which d#/drc =q for some product measure rc on S x S. 
Thus our construction yields a Markov process {X~,aNt<b} with prescribed 
distributions for X, and Xb. If#l and P2 are absolutely continuous with respect to 2, 
finding such a/~ amounts to solving a pair of nonlinear functional equations first 
derived by Schr6dinger ([,11] and [12]) in a completely different way based on 
considerations partly physical and partly probabilistic, which seem to have no 
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connection with the Markovian or non-markovian nature of the process so con- 
structed. The problem of the existence and uniqueness of solutions to Schr~Sdinger's 
functional equations was first treated systematically by Fortet [7]. Beurling [-2] 
has formulated and analyzed a more general problem which includes ours as a 
special case. He obtains not only existence but uniqueness of the solution in case S 
is locally compact, q is bounded and continuous, and ~ log q (x, y)#1 (dx)#2 (dy) 
is finite. We are able to remove this last condition. The uniqueness part of the result 
answers a second question which arises, namely, do perhaps all probability measures 
# on S x X satisfy d#/dn =q  for some product measure n on S x Z? If this were so, 
our construction would not yield any reciprocal processes which are not Markov. 
(We remark that Bernstein [1] seemed unaware that Schr6dinger's construction, 
with endpoint measures obtained via his functional equations, yields only Markov 
processes.) However, if we are given probability measures #1 and #z on S, exactly 
one of the processes {X~, a < t < b} with the distributions of Xa and Xb given by 
#1 and #2 respectively is Markov, all the rest being reciprocal but not Markov. 
(There are as many processes constructed with the distributions of X, and Xb SO 
prescribed as there are probability measures # in S x S with marginals #1 and #2-) 

The reciprocal processes constructed from Markov processes by the method of 
the third section have transition functions which are absolutely continuous with 
respect to the reference measure L In the last section we examine the question of 
whether the converse holds: that is, given a reciprocal process whose transition 
function is absolutely continuous with respect to 2, is there a Markov process 
from which it can be constructed by our method? Our answer is in the partial 
affirmative. 

There are a number of equations in this paper in which strict equality is indicat- 
ed, but which actually hold almost everywhere with respect to some measure. The 
necessity for such a qualification will in each case be clear from the context. 

w 

We begin by defining our basic notion. (S, S) is an arbitrary measurable space. 

Definition. Let {X,, a<<_t<b} be an (S, S)-valued stochastic process on the 
finite closed interval [a, b] with underlying probability space (f2, d ,  P). We say 
that {Xt, a N t < b }  is a reciprocal process if, for each a < s < t < b ,  

P(ABIXs ,  X t )= P(AIXz ,  X~) P (B [X  s, X,) 

whenever A belongs to the a-field generated by the random variables {X  r: a < r < s 
or t < r < b }  and B to the a-field generated by {Xr: s < r < t } .  

The following two lemmas are proved in [8]. 

Lemma 1.1. The process Xt ,  a <_ t < b is reciprocal if and only if 

E {f(X,)[ Xs . . . . . .  Xs, ,  Xt ,  Xv} = E  {f(X,)[Xt ,  Xv} (1.1) 

for each a < t < u < v < b, {s, , ... , s.} = [a, b] - (t, v). and bounded Borel-measurable f 
Lemma 1.2. l f  {Xt, a<= t<  b} is a Markov process, then it is a reciprocal process. 

The following lemma is referred to in the next section. 
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Lemma 1.3. Suppose { Xt, a <= t < b} is a reciprocal process, that a < s < t < u < v 
<= b, and that f and g are bounded Borel functions. Then 

E{f(X,)  E{g(X,)IX,,  Xv} [Xs, Xv} =E{g(X.)E{f (X, )]Xs ,  X,}[X,,  Xv}. (1.2) 

Proof Using the reciprocal property, we have 

E{f(Xt)  E {g (X,)IX,, Xv} [X~, Xv} 

= E { f (X,) E {g(X,)IXs, Xt, X~} IX~, Xo} 

= X,, Xv} JL,  Xo} 

= E {f(X,) g(X,)]Xs, X~} 

= E {E {f(X 0 g (X,)[ X,, X, ,  X~} [Xs, Xv} 

= E {g(X.) E {f(X,)lXs, X.,  IX s, 

= E {g (Xu) E {f(X,)[Xs, X,} [X~, X~}. 

Lemma 1.4. I f  {Xt, a <= t < b} is a reciprocal process, and either X ,  or X b is a.s. 
constant, then it is a Markov process. 

Proof First, suppose X b is constant a.s. Then, if a < tl, < " '  < t, < u < b, and i f f  
is bounded measurable, 

E { f  (X,)lX,1, . . . , X J  = E { f  (X,)[ Xt~ . . . .  , Xt,, Xb} 

=E{f(X,) lX~, ,Xb} 

= E { f ( X , ) l X J .  

Thus {X~, a < t <  b} is Markov. Since the Markov and reciprocal properties are 
both preserved under reversal of the time direction, the conclusion also holds if 
Xa is constant a.s. 

w 
We begin by defining axiomatically a class of reciprocal transition probability 

functions which are to reciprocal processes what transition probability functions 
are to Markov processes (for the latter, see [9], Section 38.2). First let I = [a, b] be 
a closed interval of real numbers. Let (S, 2;) be a measurable space. We use N to 
denote the set of all ordered sextuples (s, x, t, E, u, y) for which x and y are in S, 
a < s < t < u < b ,  and EeZ.  A real valued function P on ~ is called a reciprocal 
transition probability function if the following three conditions are satisfied: 

A 1. For  each x and y in S and a<s<t<u<=b,  the map 

E ~ P ( s , x , t , E , u , y ) ,  Ee2; 

defines a probability measure on 2;. 

A2.  For  each E ~ Z  and a < s < t < u < v < b ,  the map 

(x, y) -~ P(s, x, t, E, u, y) 
is 2; x Z-measurable. 

5* 
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A 3. For each a < s < t < u < v < b ,  CeZ ,  DeZ,  xeS ,  and yES, 

P(s, x, u, dr v, y) P(s, x, t, C, u, ~) 
D 

= ~P(s ,x , t ,  drl, v,y) P(t, rl, u ,D ,v ,y  ). 
C 

Intuitively, P(s, x, t, E, u, y) is the probability that a particle located at x at time s 
and at y at time u is in the set E at time t. To help keep this in mind, we write 
P(s, x; t, E; u, y) for P(s, x, t, E, u, y). The following are two consequences of 
A I -A 3. The first is obtained by setting C = A and D = S in A 3 and applying A 1, 
the second by setting C = S and D = A in A 3. 

For each a < s < t < u  <v<b,  AeY,, xeS,  and yES, 

A4. ~P(s ,x ; t ,  dq;v ,y)P( t ,  t l ; u , A ; v , y ) = P ( s , x ; u , A ; v , y  ) 

and 

A5. ~ P ( s , x ; u , d ~ ; v , y ) P ( s , x ; t , A ; u , ~ ) = P ( s , x ; t , A ; v , y ) .  

Let (2 be the set of all S-valued functions on [a, b]. For each te [a, b], we denote 
by X~ the function on O for which X,(o)=o( t ) ,  o~e (2. The smallest a-field ff on (2 
relative to which X, is f f - X  measurable for each te I-a, b] is denoted by J .  

Theorem 2.1. Assume that S is a a-compact Hausdorff space, with Z the a-field 
generated by the open sets. Let P(s, x; t, E; u, y) be a reciprocal transition probability 
function as defined above, and let # be a probability measure on Z x Z. Then there is a 
probability measure ~ on J such that, relative to the probability space (Y2, ~ P~), 
{ X,, a < t < b} is a reciprocal process for which 

(i) t". {XoeA, XbeB} = ~ ( A  x B), 

and 

(ii) for all a<=s<t <u<=b and A e Z ,  

A e Z ,  BeZ ,  

Pu(X, e AIXs, X,} = P(s, Xs; t, A; u, X,). 

There is only one such measure, and its finite-dimensional distributions are given as 
follows. Suppose a < tl < " .  < t, < b, A e Z, BE Z, and Eie X, i = 1, ..., n. Let 

A =  { X a e A  , X t I  e E 1 ,  . . .  , X t n e E n ,  X b e B  } . (2.1) 

Then P.(A) is equal to 

d#(x, y) ~ P(a, x; q,  dzl ; b, y) ... 
A x B  E1 

(2.2) 
P(tn-2,zn-  2, tn-x ,dz , -1;  b, Y) P( t , -1 , z , -1 ;  t ,E,; b, y). 

En- 1 

Proof. We begin by showing that if {Xt, a<= t<= b} is a reciprocal process on 
((2, J ,  P) relative to which (i) and (ii) hold (with "Pu" replaced by "P"),  then, if A is 
given by (2.1), P(A) is given by (2.2). (This will, of course, establish the uniqueness 
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asserted by the theorem.) To this end let a < tl < " .  < t, < b, and E ie N, i = 1, ..., n. 
I claim 

P{Xt2eE2 . . . .  ,X ,  eE ,  IXt,,Xb} 

= S P(q,  X,,; t2, dz2; b, Xb) ~ P(t2, x2; ta, dx3; b, Xb)... (2.3) 
E2 E3 

P(t,_ 2,x,_2; t , _ l , dx ,_ l  ; b, Xb) P( t ,_ l , x ,_ l  ; t , ,E,; b ,X  b. 
E'n- 1 

We prove (2.3) by induction on n. For n = 1, it reduces to (ii), which we are assuming. 
Note that (ii) also implies that 

E {f(Xt 1, Xb)]X,, Xb} =~ P(a, X,; q, dz; b, Xb) f (x ,  Xb) 

for any bounded ~ x Z-measurablefon S x S, and that there is such an f fo r  which 
the right hand side of (2.3) isf(X,1, Xb). Assuming that (2.3) holds as it stands, we 
have, if a < to < ta < . . .  < t, < b 

V { X ~ e E , , . . . ,  X,  eE ,  lX, o , Xb} 

=E{Ig~(X,~) P{Xt2eE 2 . . . . .  Xt eE,[Xto, Xt,, Xb} IX, o, Xb} 

= E  {IE,(L,)P{X,2eEz . . . .  , X,  eE,[X,, ,  Xb} ]Xto, Xb} 

=E {IE,(X,,) f (X, , ,  Xb)JXto, Xb} (2.4) 

= ~ P(to, Xto; q,  dzl ; b, Xb)f(X,, ,  Xb) 
E1 

= ~ P(to, X~o; q, z,; b, Xb) [. P(t,, X,,; t2, dzl; b, Xb)... 
Ea g z 

P( t , _ z ,X ,_  2; t ,_ l ,dX,_l  ; b, Xb) P( t ,_~,X,_ t  ; t ,E , ,b ,  Xb). 
E n -  1 

This shows that (2.3) holds for all n. Using (2.4) for to = a, the fact that 

P(A) = E { I A(X,) IB(Xb) P {Xt, e e l , . . .  , Xtne EnlXa, Xb} } ' 

and (i), we conclude that P(A) is equal to expression (2.2). 

Next, we construct P~. Rather than using a consistency argument to extend 
the set function defined by (2.2) to J ,  we proceed indirectly. Fix yeS.  For each 
a<_s < t <b, zeS,  and EeZ ,  set 

Qy(s, z; t, E)=P(s, z; t, E; b, y). 

Then, if a =< s < t < u < b, we have, using (A 4), 

Qy(s, z; t, dq) Q,(t, tl ; u, E)=~ n(s, z; t, dtl ; b, y) P(t, tl ; u, E; b, y) 

=P(s, z; u, E; b, y) 

= Q, (s, z; u, E). 

It follows that Qy (s, z; t, E) is a (Markov) transition probability function. Let f2 o 
be the set of all functions from [a, b) into S, and Jo the smallest or-field on Oo 
rendering measurable all the coordinate functions X,, a < t < b. Because of our 
assumptions on (S, 27) it follows ([4], p. 16) that given any probability measure 7 
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on S there is a measure 0r, r on Jo such that, relative to (f2o, Jo,  0y, r), {Xt, a < t < b} 
is a Markov process with ~ as initial measure and Qy(s, z; t, E) as transition proba- 
bility function ([9], p. 569). Now, (S x S, S x Z, #) is a probability space. Let X 
and Y be the random variables defined thereon by X(x, y)= x and Y(x, y)= y for 
all (x, y)eS x S. Let v be the conditional distribution of X given Y ([9], p. 359). 
Then v is defined on S x Z ,  v(y,.)  is a probability measure on S for each yeS 
and v(-, E) is E-measurable for each E~S. Using v(y, .) as the initial measure we 
define 0r on Jo as above. Checking first the case where A is a cylinder with finite- 
dimensional base, we see that 0r(A) is a S-measurable function ofy for each A e J0. 
Let t /be the distribution of I1; that is, t/(F)=#(S x F) for each F e S .  We define P, 
on or o x S by 

Pu(A x F ) =  Itl(dy)O,(A) AeJo,  FeZ.  (2.5) 
F 

It is observed on p. 359 of [9] that this indeed defines a measure on Jo x S. The 
measure P~ is not yet defined on J as promised. But the correspondence 
co~--~(O)o, o)(b)) between f2 and I2 o x S, where o) o is the restriction to [a, b) of cosg2, 
is one-to-one and J -  ~ x S bimeasurable, permitting us to identify the measur- 
able spaces (f2, J )  and (f2 o x S, J o  x S). Accordingly, (2.5) does define a probability 
measure on J .  

Next, we verify that ifA is as in (2.1), then P,(A) is given by (2.2). First, suppose 
t ha t f i s  a bounded Z x S-measurable function on S x S. Then the definitions of 
and v easily yield ~ v(dy)~ v(y, dx)f(x, y)=~fd#; consequently, 

y(dy) ~ v(y, dx)f(x, y)= ~ fd#  (2.6) 
B A A x B  

fo r  any AeS,  B~Z. Now let 

f(x, y)= ~ Qy(a, x; h, dzx)... ~ Qr(t._x, dx._l ; t., A.) 
E1 En-x 

and observe ([9], p. 569) that if 

then 
A = {e)~f20: X.(o))~A, Xtx(o)~E1 .... .  Xt.(o)~E, ,} ,  

Qr(A) = ~ v(y, dx) f(x, y). 
A 

(2.7) 

If A is given by (2.1), we identify A with A • B, so combining (2.5), (2.6) and (2.7) 
we see that P,(A) is indeed given by (2.2). It is evident from (2.2) that (i) holds. 

We next show that (ii) holds. Suppose a < t < u < v < b. It is easy to see from the 
form (2.2) of the finite dimensional distributions that 

~h(X,,Xv)dP,=~d#(x,y)P(a,x;t, dw;b,y)~P(t,w;v, dz;b,y)h(w,z) (2.8) 

for all bounded S x S-measurable functions h on S x S. Let BeE, CeS, DeS. Let 

h(w, z)=P(t, w; u, C; v, z) IB(w) Io(z), 
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and apply (2.8) to obtain 

P(t, Xt; u, C; v; X~) dPu 
{XteB,  XvED} 

=I dp(x, y) I P(a, x; t, dw; b, y) I P(t, w; v, dz; b, y) P(t, w; u, C; v, z). 
B D 

(2.9) 

By (A 3), however, 

~ P(t ,w;v,  dz;b, y) P(t ,w;u,  C;v,z)  
D 

= ~ P(t, w; u, dq; b, y) P(u, tl; v, D; b,y). 
c 

Substituting the right hand side of this last expression into the right hand side of 
(2.9), and referring to (2.2), we see that 

P(t, Xt; u, C; v, Xv)dPu=Pu{X, eB, X ,  eC, X~eD}. 
{XtEB, Xv~D} 

Since this holds for all B, D in Z it follows that 

P~{X.~ClX. x~} =PAt, x,; u, c;  v, xv). 

A similar argument shows that this last also holds if t = a  or v = b. Thus (ii) is 
proved. 

We complete the proof of the theorem by establishing the reciprocal property 
of {X, a < t < b} relative to (O, J ,  P,). Suppose that a < t, < . . .  < tl < t < u < v < 
v~ < ... <v,,<b, and that CeZ.  We will show that 

P, {Xue ClXa, X, . . . . .  , Xt, , Xt, X~, X~, . . . .  , X~.., Xb} =P(t, Xt; u, C; v, X~). 

To do this, we must show that 

e(t, Xt; u, C; v, X,) dP u = Pu(AA { X , e  C}), (2.10) 
AA 

whenever 

and 
A = {Xa6A , X t~Dn , . . .  , Xtl~D1, XteD } 

A = {XvEE , X v l ~ E  1 . . . . .  Xvm~Em, XbEB } 

with A, D . . . . . .  DI , D, E, El . . . . .  Em all in 2. 
To this end, let 

K(y, z)=  S P(v, y; Vl, dyl; b, z)...  
E2 

�9 .. ~ P(vm-2,Ym-z;Vm_l, dym_l;b,z) P(Vm_l,Ym_l;Vm, Em; b,z). 
Em 1 

It follows from (2.2) that i f f  is any bounded 2 x X-measurable function on S • S, 
then 

~f(X, ,X~)dP,= ~ dp(w,z) ~ P ( a , w ; t , d x , ; b , z ) . . .  
AA A x B  o .  (2.11) 

�9 .. ~P(tn, xn;tn_l,dXn_l;b,z) SP(t l ,Xl; t ,  dx;b,z)  F(x,z),  
D~ D 



72 B. Jamison 

where 
F(x, z)= [. P(t, x; v, dy; b, z)f(x, y) K(y, z). 

D 

In particular, iff(x, y)=P(t ,  x; u, C; v, y), the left hand side of (2.10) is equal to the 
right hand side of (2.11) with 

F(x, z)= ~ P(t, x; v, dy; b, z) P(t, x; u, C; v, y) K(x, z). (2.12) 
D 

Ba (A3), 

P(t, x; v, dy; b, z) P(t, x; u, C; v, y)= f P(t, x; u, dtl; b, z) P(u, tl; v, D; b, z), 
D C 

and it easily follows that 

P(t, x; v, dy; b, z) P(t, x; u, C; v, y) K(y, z) 
D (2.13) 

= S P(t ,x;u,  dtl;b,z) ~ P(u,q;v, dy;b,z) K(y,z). 
C D 

Substituting the right hand side of (2.13) for F(x, z) into the right hand side of 
(2.11), and referring to (2.2) again, we obtain (2.10). Thus {Xt, a<_<_t<=b} (as a 
process on (f2, J ,  Pu)) is reciprocal, and the proof of the theorem is complete. 

If {Xt, a < t < b} is a reciprocal process, and if we define P(s, x; t, E; u, y) to be 
a conditional distribution satisfying (ii) of the theorem with appropriate almost 
everywhere qualifications, A3 must hold (with similar qualifications), as is seen 
by setting f = I  c and g = I  D in Lemma 1.3. This shows that A3 is not too strong a 
condition to impose on reciprocal transition functions. 

w 
Suppose { Yt, a < t__< b} is a Markov process with Markov transition probability 

function Q (s, x, t, E), a < s < t < b, x e S, E e X.We assume that Q is given by a positive 
density relative to some a-finite measure 2 on X; that is, there is a strictly positive 
function q (s, x; t, y) defined for a < s < t < b and (x, y) ~ S • S, X-measurable in 
(x, y) for each s and t, and for which 

Q(s,x , t ,E)= Sq(s,x;t ,y)2(dy) a<_t<-b, xeS ,  E~Z. (3.1) 
E 

We define 
q(s, x; t, y) q(t, y; u, z) 

p ( s , x ; t , y ;u , z )=  - - ,  a < s < t < u < b , ( x , y , z ) e S x S •  (3.2) 
q(s, x; u, z) 

and 
P(s, x; t, E; u, y)= ~ p(s, x; t, z; u, y) )~(dz), 

/~ (3.3) 
a < s < t < u < b ,  ( x , y ) e S x S ,  E e S .  

It is easy to verify that P(s, x; t, E; u, y) is a reciprocal transition probability func- 
tion; we say that it is derived from q(s, x; t, y). We observe that P(s, ~; t, E; u, Y,) is 
a version of P(Y~eE] Y o, Y,). 

Let # be an arbitrary probability measure on S x X. By virtue of theorem 2.1, 
if S is a a-compact Hausdorff space with X its topological Borel sets there is a 
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unique measure Pu on the measurable space ((2, J )  of paths such that the coordinate 
functions {X~, a < t <  b} constitute a reciprocal process for which 

(i) 

and 

Pu (X.e A, X b e B  ) =#(A • B) A e X ,  B e Z ,  

(ii) Pu(X t~AIX ,  X , )=P(s ,  X s ; t , A ; u , X , ) ,  A~X ,  a<s<t<_u<_b. 

We call a the (joint) endpoint distribution of {X t, a _< t =< b}. The measures #a and #b 
defined by # , ( E ) = p ( E  • S) and #b(E)=#(S • E) are called the marginal endpoint 
distributions. We denotc the joint distribution of Xs and X t by #s,t for a =< s < t < b. 
Thus #a, b = #. The distribution of Xs is denoted by #~, a_< s _  b. If either #a or #b 
concentrates all its mass on a single point of S, {Xt, a < t < b} is not only reciprocal 
but Markovian by virtue of Lemma 1.4. In the following theorem we characterize 
for S metric all endpoint distributions # for which {Xt, a <  t=< b} is a Markov 
process�9 

Theorem 3.1. Let Q(s, x; t, E), a ~ s < t < b ,  x~S,  E ~ Z  be a Markov transition 
probability function. Assume that S is a a-compact metric space and that Z is the 
a-field of topological Borel sets C. (Then Z is generated by a countable class of  sets.) 
Suppose there is a a-finite measure 2 on Z and a function q(s, x; t, y), a < s < t < b ,  
(x, y )~S  • S which is strictly positive, Z • Z-measurable in (x, y), and for which (3.1) 
holds�9 Let P(s, x; t, E; u, y), a <_<_ s < t <= b, (x, y) ~ S • S, E E Z, be the reciprocal proba- 
bility function derived from q(s, x; t, y), let # be a probability measure on Z • Z, and 
let Xt , ( a <= t <= b} be the corresponding reciprocal process with endpoint distribution #. 
The following are equivalent: 

(a) {X  t, a < t < b} is a Markov process. 

(b) There are measures v, and v b on Z such that 

#(G) = ~ q(a, x; b, y) d(v, • Vb) (X, y), G~X x Z. 
G 

Proof  (b) ~ (a). Suppose (b) holds. Let a < tl < . . .  < t, < b, and Ei~ X, i = 1 . . . . .  n. 
For  each (Zl, . . . , z , )~S"  let 

a (zl . . . .  , z,) = q (tl, zl ; t2, Z2) . . . . .  q ( tn-  1, Z ,_  1 ; tn, Z.). 

L e t f be  any non-negative X-measurable function on S. Referring to (2.2), (3.2), and 
(3.3), we see, after some cancellations, that 

f (X , , )  dn  
{ X t l e E 1 ,  . . . ,  X t n e E n }  

= ~ q(a, x; q ,  z l)a(zl  . . . .  , z,) q(t,, z,; b, y) f (z , )  dT(x, z l , . . . ,  z , ,  y), 
SXElx ' " xEnxS 

where 7 is the product measure v, x 2" x Vb, 2" being the n-fold product of 2 with 
itself. This last expression can be written as 

q (a, x; tl, zl) or (zl . . . . .  z,) f ( z , )  
SxE lx . . . xE .  

�9 [~ q(t,,  z,; b, y) vb(dy)] d~(x, Zl, . . . ,  z,), 
S 



74 B. Jamison 

with ~ = v, • 2". Suppose f is defined by 

q(t, z; b, y) d(2 x vb) (z, y) 

f (w)=  ~• ~ q(t., w; b, y) vb(dy ) 
S 

where F e  Z. Substituting in the previous expression, we have 

I f(Xt.)  d g  = 5 q(a, x; tl, zl) a (zl . . . . .  z,) 
{ X t l e E 1  . . . . .  X t n e E n }  S x E1 x . . .  x En  

�9 [ ~ q(t, z; b, y) d(2 • Vb)(Z, y)] d~(x, zl . . . .  , z.) 
F x S  

q(a,x; tl,zOcz(z 1 . . . .  ,z.) 
SxElx  ...XEnXFXS 

�9 q(t, z; b, y) dp(x, z l , . . . ,  z,,  z, y), 

where p = v ,  •215 Vb. Again using (2.2), (3.2), and (3.3), we see that this last 
expression is equal to Pu(Xtf iE1, . . . ,  X t e E , ,  XteF). Since all this is independent 
of the choice of El, ..., E,, what we have shown is that 

e ( x t  e F I X , , ,  . . . ,  X,.) = T(X , , ) ,  

whence P(Xte F I X, , ,  . . . ,  X, .)  = P(Xte F I X, .) .  Similar calculations lead to the same 
conclusion if tl = a or t, = b or both. Thus (a) holds�9 

(a)=~(b). Suppose (a) holds. Then there is a Markov transition probability 
function Q(s, x; t,E), a < s < t < b ,  Eel; ,  for the Markov processes {Xt, a < t < b } ,  
and we may assume that ~) satisfies the Chapman-Kolmogorov equations in the 
following sense: for each E e l ;  and a < s < t < u < b ,  

(~(s, x; u, E)=  I Q(s, x; t, dy) O_.(t, y; b, E) (3.4) 

for #s-almost all xeS .  Then 

#(E x F)= I #,(dx) Q.(a, x; b, e) (3.5) 
E 

for E, F in I;. 

(i) For each a < s < t < b, Q(s, x; t , .) is equivalent to 2for #,-almost all x e S. 

To prove (i) it suffices to verify that 

O(s, Xs ; t ,V)=IQ(s ,  Xs;b, d y ) I p ( s , X , ; t , z ; b , y ) 2 ( d z  ) (3.6) 
v 

for each F e E  except for a P~-null set of co~O. For each cocO, however, both sides 
of (3.6) are, as functions of F, probability measures on X. Since I; is generated by a 
countable subfield, it suffices to show that, for each FEX, (3.6) holds P~-almost 
surely. It follows from the definition of P~ that 

Pu(XseE, X, eF)= ~ d# , . , (x ,y )~p(s ,x ; t , z ;b ,y )2(dz) .  (3�9 
E x S  F 

Also 
#s,b(A x B)= j #,(dx) Q(s, x; b, B), (3�9 

A 
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which implies that for any non-negative X x X-measurable f, 

If 

d#s, bf( x, Y)= I #~(dx) ~ Q(s, x; b, dy) f(x, y). 
E x S  E S 

f(x, y)= ~ p(s, x; t, z; b, y) 2 (dz), 
F 

we have, using (3.7), 

Pu(Xs~ E, X t ~ F)= ~ #s (dx) ~ Q(s, x; b, dy) ~ p (s, x; t, z ; b, y)2 (dz). 
E F 

Since this last equation holds for each E~Z, it follows that the right hand side of 
(3.6) is a version of Pu(X,~FIXs). But so is (~(s, Xs; t, F), whence (3.6) follows 
Pu-almost surely. This completes the proof of (i). 

(ii) For each a<s <b, Q(s, x; b,') is absolutely continuous with respect to #b 
for #s-almost all x~S. 

To prove (ii), pick t~(s, b) and observe that since #b(E) =~ #s(dx) O,(s, x; b, E) 
we have 

I~b(E) =~ #s(dx) ~ O.(s, x; t, dy) O(t, Y; b, E) (3.9) 

by virtue of(3.4). Let S '=  {x: Q(s, x; t, "),-~2}. The complement of S' is #s-null by (i). 
Let S" be the set ofx~S such that (3.4) holds for all E~Z. Since Z is generated by a 
countable field, the complement of S" is #z-null. Let So = S ' n  S". Suppose Xo e So, 
and #b(E)=0. Then Q(s, x; b, E ) = 0  for #z-almost all x~S, hence for some xl~So. 
Since (3.4) holds for X=Xl, {y: O.(t,y; b,E)>0} has O(s, xl; t, " )-measure zero, 
hence 2-measure zero, hence 0(s, Xo; t, .)-measure zero. Since (3.4) holds for 
x = Xo, ~)(s, Xo; b, E) = 0. Since E is arbitrary, Q(s, Xo; b,-) ~ 2. Since the complement 
of So =S'c~ S" is #s-null, this proves (ii). 

Fix t~(a, b). Let 

7(x,z)=S Q(s,x;b, dy)p(s,x;t ,z;b,y) (s,z)~S• 

By virtue of the proof of (i) (see (3.6)), 7(x, ") is, for #s-almost all x, a density of 
Q(a, x; t, ") with respect to 2. Let v be the probability measure on X • Z determined 
by 

v(E • F)= ~ #,(dz) Q(t, z; b, V), E, FeZ.  
E 

We may infer from (ii) that v is absolutely continuous with respect to the product 
measure #~ • #b on Z x X. By an argument of Doob ([5], Chapt. VII, w 8) the 
Radon-Nikodym derivative dv/d(~t x #b) has a Z x Z-measurable version 6(z, y), 
so that 

v(E x F)= I #r(dz) S #b(dy) 6(z, y). 
E F 

Comparing the last two expressions for v(E x F), we see that for/~ralmost all 
z, 6(z, .) is a density of Q(t, z; b, .) with respect to #b. Because Q(s, x; t, E) is a transi- 
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tion function for the Markov process {X,, a < t < b}, we have 

P~ (X, ~ A, X t ~ B, X b ~ C)= ~ #a(dx) S ~.(dz) 2 (x, z) S 6 (z, y) #b (dy) (3.10) 
A B C 

for each A, B, C in S. Using Doob's argument again, we find a S x S-measurable 
function p(x, y) such that p (x,.) is the Radon-Nikodym derivative of Q(a, x; b, .) 
with respect to #b for #a-almost all xr By (3.5) and the definition of {X ,  a~  t< b} 
as the reciprocal process with endpoint distribution # and reciprocal transition 
function given by (3.2), we have 

P.(X.zA, X,~ B, Xb~ C) 
= ~ #a(dx) ~ #b(dY) p(x, y)~ p(a, x; t, z; b, y) 2(dz), 

A C B 

(3.11) 

for all A, B, C in Z. But (3.10) and (3.11) imply that for Pa • 2 • #b-almost all (x, z, y), 

p (x, y) p (a, x; t, z; b, y) = y (x, z) 6 (z, y). 

By Fubini's theorem there is a Zo such that for #a • #b-almost all (x, y), 

p (x, y) p (a, x; t, z o; b, y) = ? (x, Zo) 6 (z 0, y). 

Referring to (3.2), we see that for these (x, y), 

p(x, y)=f(x)  q(a, x; b, y) g(y), (3.12) 

where f and g are defined by 

y(x, Zo) 6(Zo, y) 
f (x )=  q(a, x; t, Zo)' g(Y) = q(t, z0; b, y)" 

From (3.12) and (3.5) we get 

#(A • B)= S #a(dx)f(x) ~ q(a, x; b, y) g(y) #b(dy) 
A B 

= ~ va(dx) ~ q(a, x; b, y) Vb(dy), 
A B 

where v , = f .  d#a, Vb =g" d#b. This shows that (a)=~ (b), which completes the proof 
of the theorem. 

Remark. Condition (b) on # is simply that there exists a product measure rc 
on S • S such that d#/drr=q, where q(x, y)=q(a, x; b, y). 

Consider the following problem. Suppose that (S, Z, 2) is a ~r-finite measure 
space, and that q(x, y) is an everywhere positive, S • E-measurable function on 
S • S for which ~ q(x, y) 2(dy) = 1 for each x~ S. Suppose #1 and #2 are probability 
measures on S. Is there a probability measure # on Z • S which has #1 and #2 
for marginals and which satisfies condition (b) of the theorem? That is, can we 
find measures Vl and v2 on S such that, if# is defined on S • S by 

#(ExF)=~vl (dx)~q(x ,y )v2(dy  ), E~S,  F ~ S  (3.13) 
E F 
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then 
la(E • S)=Iq(E) E e 2  

(3.14) 
#(S x F ) =  k/2(F) F e S  

both hold? Also, is p uniquely determined by (3.13) and (3.14)? Since p determines 
and is uniquely determined by the pair of measures Vx and vz, the problem we are 
posing is that of the existence and uniqueness of solutions vl and v2 for the functional 
equations 

pl (E)= ~vl(dx)q(x,y)v2(dy ) E e S ,  (3.15) 
E 

and 
/-/2 ( F ) =  ~ v2(dY ) q(x, y) v 1 (dx) F~.~.  (3.16) 

F 

Suppose that #i ~2, i=  1, 2. Let f = d#l/d2, g = d#2/d2. Since dl~/d(v 1 • v2) = q, 
d(v  I • v2)/d/~= i/q, from which it easily follows that vi~#~, i=  1, 2. Thus vi~2, 
i=  1, 2. Let ~ =dvl/d). and ~b =dv2/d2. Then (3.15) and (3.16) are equivalent to 

f(x) =0(x)  ~ q(x, y) (o(y) 2(dy) x e S ,  (3.17) 

g(Y) = O(Y) ~ q(x, y) O(x) 2(dx) ye  S. (3.18) 

These equations, with (S, S, 2) being the real line with Lebesgue measure, and with 

1 ~x- y)2 
2 ~ -  q(x, y)=  ~ e , (3.19) 

were derived by Schr6dinger ([11, 12]), who conjectured the existence and uni- 
queness (up to multiplicative constants) of the functions 4~ and 0 except perhaps 
when f o r  g are especially "ttickisch". In [1], S. Bernstein stated without proof 
that the pair of functional equations, with q given by (3.19), has a solution provided 
f and g are continuous. In [7], Fortet used the method of successive approximations 
to prove the existence and uniqueness of non-negative solutions (3.17) and (3.18) 
for a wide class of continuous functions q(x, y) including (3.19), but with (S, S, 2) 
still the real line. In [2], Beurling formulated a problem which (when his n = 2) is 
that of the existence and uniqueness of solutions v I and v2 to (3.15) and (3.16), 
except that S is a locally compact Hausdorff space, q is required to be continuous 
and the requirement that ~ q(x, y)2(dy)= 1 for all x is dropped, there being no 
underlying measure 2. It turns out that if 0 < a < q < b < o% then (3.15) and (3.16) 
have uniquely determined solutions Vx and v 2 (if q is a Markovian density relative 
to 2, this requires that 2 be finite, and so excludes the case for which 2 is Lebesgue 
measure on the real line). Relaxing the assumption that q be bounded away from 0, 
he proves existence and uniqueness of positive but not necessarily finite measures 
vl and •2 for which (3.15) and (3.16) hold if q > 0  and if in addition 

~ log q(x, y) #1 (dx) P2 (dy) 

is finite. Beurling shows that this last condition can be replaced by a weaker but 
more complicated one. His uniqueness proof, however, is valid without his condi- 
tion and we can extend his proof to yield existence as well. 
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Theorem 3.2. Suppose S is a a-compact metric space, that I~ 1 and #2 are proba- 
bility measures on its a-field S, of Borel sets, and that q is an everywhere continuous, 
strictly positive function on S x S. Then there is a unique pair #, 7z of measures on 
X • Z for which 

(a) p is a probability measure and n is a a-finite product measure. 

(b) #(E x S)=#1 (E), #(S x E) =#2 (E), E~Z ,  

d# 
(c) dn =q" 

Proof To say that S is a-compact means that there is an increasing sequence 
oo 

A1, A2 . . . .  of compact subsets of S for which S =  U A.. Let B . = A .  x An, and let 
n = l  

S n = s  c~An= { E ~ A . :  E eS}.  Then S.  x S.  is the class of Borel subsets of B.. 
On B n, q is bounded above and away from zero below. By theorem I of [2-1 there 
exists a finite product measure n" on N. x S.  and a measure #in) on s x S. such that 

(i) #:::(EAX?;)=#~(E)~E~X . 
. ( n 

(ii) d#(") dn" =q on /3,. 

We extend #(n) and n n to all of S by setting them equal to 0 on sets EeX disjoint 
from Bn..nn remains a product measure and (ii) holds throughout S x S n"-almost 
surely. Let #I n) be the marginals of/~(n) as so extended. There is a sequence {nk} 
such that the restriction of #(n~) to Bm converges weakly for each m-- l ,  2 . . . . .  
It is easy to see that this implies the existence of a measure # on S x X whose 
restriction to rm x Xm is for each m the weak limit relative to C(B~ of the sequence 
formed by 'the restrictions of #t,~)to Sin. Then ~jgd#("k)-*~gd# for any con- 
tinuous g on S x S with support contained in one of the compact sets Bin. I claim 
that this convergence holds provided only that g is bounded and continuous on 
S x S. Since #(")(S)=#(n~(Bj =#(")(An x An) =#1 (An)_ -< 1 by (i), this certainly holds 
if we establish that # is a probability measure. It is clear from (ii), however, that the 
marginals/~!~) of #(n) converge weakly to #~, i=  1, 2. Since these are probability 
measures, the sequence {~(")} of probability measures is tight and the limit # of 
/~(n~) is a probability measure ([3], p. 30) with ~q, ~t 2 as marginals, which establishes 
(b) and half of (a). Now fix m and assume f e  C(S x S) has support in Bm. The 
restriction off /q to B,, belongs to C(Bm), so by (ii) 

~ f dl~n~= ~ (f/q) dl~(n~)-* ~ ( f  /q) d# (3.20) 

as n ~  oe. This shows that the restriction of n n~ to B m converges weakly to a limit 
n m as k--*oo. Again, it is easy to see that there is a measure n on S x S whose 
restriction to Bm is n,,, m = 1, 2, . . . .  It follows from (3.20) that dn/dp = 1/q, whence 
dp/dn = q. Since n = n m is finite on Bin, n is a-finite, n" is a product measure for 
each n, and an easy argument shows that each nm, hence n, must therefore be a 
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product measure. This shows the existence of measures n and / l  as described in 
the theorem. 

To establish that n and # are unique, assume that n' is a product measure and 
#' a probability measure for which (a) and (b) hold. Then 

#I(E)= ~ qdn= ~ qdn' (3.21) 
ExS ExS 

and 
/~2(e) = I qdn= I qdn' 

SxE SxE 

for each Ee 2;. Suppose n = v 1 x v2, n' = v[ x v~. Let hi (x) = ~ q(x, y) v 2 (dy), xe  S, 
h2 (y) = ~ q(x, y) Vx (dx), ye  S, and let h(x, y) = hi (x) h2 (y), (x, y) e S x S. Let kl, k2, 
and k be similarly defined but with v~ replacing vi, i=  1, 2. Let gl and g2 be bounded 
Z-measurable functions on S, and let g(x, y) = gl (x) g2 (Y), (x, y)e S x S. By virtue 
of (3.21), ~ gi d~ti =~ gi hi dni i = 1, 2. Multiplying corresponding sides of these two 
equations, we have 

ygd(#l xp2)=~ghdn.  

Since h is strictly positive, we can rewrite this as 

I g h-1 d(#1 x #2)=I gdg. (3.22) 

(Of course h-* denotes the reciprocal, not the inverse, of h.) Similarly 

gk -1 d(#i • = I  gdT~'. (3.23) 

The definition of 2; • 2; as the a-field generated by the field of finite disjoint unions 
of rectangles E • F with E, Fe2; ensures that (5) and (6) hold for all non-negative 
Z • 2;-measurable functions g. Let a, and 0- 2 be bounded Z-measurable functions 
on S, and let a (x, y )=  0-1 (x)+ 0.2 (Y), (x, y)~ S x S. Then 

0. d(#l x #2)=I o-1 d#l +I  0-2 d#2 

-- ~ 0.1 (x) q (x, y) v 1 (dx) v 2 (d y) + ~ 0.2 (Y) q(x, y) v 1 (dx) v 2 (dy) 

=I  0.qd(Vl • v2)=I 0.q h-1 d ~  • #2) 

by virtue of (3.21) and (3.22). Using v'i instead of vi, i=  1, 2, we obtain similarly 
0.d(u 1 x #2) =~ 0.qk -1 d(#l x #2)- We conclude that 

1 0.q h-I  d(Ul x #2)=~ 0.qk -1 d(#1 x #2). (3.24) 

Since 0. is bounded and since q dn is a probability measure, the common value of 
the two sides of (3.24) is finite by virtue of (3.22) and (3.23). Thus (3.24) yields 

y 0.q(h -1 - k  -1) d(& x #2)=0. 

In particular, this last equation holds if 

h i  1 (X) h21 (y) 
0.(x,Y)=h11(x)+k~a(x ) h21(y)+k2i(y), ( x , y )ESxS  (3.25) 
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from which we deduce 

q (h- 1 _ k-  1)2/r d (#  1 • = 0, (3.26) 

where r(x,y)  is the product of the denominators of the two fractions on the 
right hand side of (3.25). Since q >0, h = k  on the support of#l  x #2. It now follows 
from (3.22) and (3.23) that zc = 7z', and it follows from d#/d~z =d#'/&r' that # =#' .  
This completes the proof of the theorem. (The very elegant proof of uniqueness is 
due to Beurling; we have changed his notation to conform with ours, and re- 
arranged his proof to exhibit its independence from his condition (8.1) on p. 198 
of [2].) 

w  

If a reciprocal transition function P(s,x; t, . ;u,z)  is absolutely continuous 
relative to a a-finite measure 2 on Z, then there is a function p(s, x; t, y; u, z) for 
which 

P ( s , x ; t , E ; u , z ) = ~ p ( s , x ; t , y ; u , z ) 2 ( d y ) ,  a<=s<t<u<=b x , z ~ S , E ~ Z .  (4.1) 
E 

If P(s, x; t, ", u, z) is derived from a Markov transition density q(s, x; t, y) we have 
in fact 

p ( s , x ; t , y ; u , z ) -  q ( s , x ; t , y ) q ( t , y ; u , z ) ,  a<<_s<t<u<b, x ,y ,  z e S .  (4.2) 
q(s, x; u, z) 

Is any reciprocal transition density derived from a Markov transition density? 
More precisely, given that a function p(s, x; t, y; u, z) satisfies (4.1), does there 
exist a Markov transition density q(s, x; t, y) such that (4.2) holds? In this section 
we give partial answers to this question. First, to motivate our definition of reci- 
procal transition density, we list those properties of p(s, x; t, y; u, z) which follow 
by virtue of (4.1) and properties (A 1), (A 2) and (A 3) of P(s, x; t, "; u, z). As usual, 
a < s < t < u < b ,  x , y , z  are in S, and EeZ.  

(a 1) y ~ p(s, x; t, y; u, v) is s with 

p(s, x; t, y; u, v) > 0 2-almost all y 
and 

p(s, x; t, y; u, v) 2(My)= 1. 

(a2) (x, y) --, ~ p(s, x; t, y; u, z) 2(dy) is Z x Z measurable. 
E 

(a3) For each a < s < t < u < v < b ,  and each x ,w  in S, 

p(s, x; u, z; v, w)p(s, x; t, y; u, z)=p(s,  x; t, y; v, w)p(t,  y; u, z; v, w) 

for 2 x 2-almost all (y, z )eS  x S. 
This last property is an almost immediate consequence of (A3), which in turn 

is analogous to the Chapman-Komogorov equation satisfied by Markov transition 
functions. However, its consequence (a 3) for densities is not an integral equation 
as in the Markov case but a pointwise, nonintegrated equality which right away 
yields our first result. We require of our definition sharper versions of (a 1)-(a3). 
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As in Section 2, [a, b] is a non-degenerate closed interval, and (S, E) is a measurable 
space. We use 8 to denote the set of all ordered sextuples (s, x, t, z, u, y) for which 
x, y, and z are in S and a < s < t < u < b. Let 2 be a a-finite measure on S. A function 
p on g to the (positive) non-negative reals is called a (strictly positive) reciprocal 
transition probability 2-density if the following conditions are satisfied. 

(bl) For each a < s < t < u < b ,  the map ( s , y , z )~p ( s , x , t , y , u , z )  is S x E x S -  
measurable, and 

Sp(s , x , t , y ,u , z )2 (dz )=l  x , y  in S. 

(b2) For each a < s < t < u < b < b  and x , y , z ,w  in S, 

p(s , x ,u , z , v ,w)p(s , x , t , y ,u , z )=p(s , x , t , y , v ,w)p( t , y ,u , z , v ,w) .  

If(b 1) and (b2) are satisfied then the function P on ~ (see Section 2) defined by 

P(s, x, t, E, u, z) = S p(s, x, t, z, u, y) 2(dz) (4.3) 
E 

is a reciprocal transition probability function. We write p(s, x; t, y; u, z) for 
p (s, x, t, y, u, z). We pose but otherwise ignore the question of whether a density 
p(s, x; t, y; u, z) satisfying (a 1), (a2), and (a3) has a version satisfying (b 1) and (b 2). 

Theorem4.1. Let p(s,x; t,y; u,v) be a strictly positive reciprocal transition 
2-density on [a, b]. Then for each b'e(a, b) there is a Markov transition 2-density 
for which 

p (s , x ; t , y ;u ,v )=  q(s ,x ; t ,y )q( t ,y ;u ,z )  
q(s,x;u,z)  , a < s < t < u < b ' ,  x,y, z i n S .  

Proof In property (b2) set v=b', fix w~S and let q(s, x; t, y)=p(s, x; t, y; w, b'). 

There are processes defined on ( - o %  oe) which are reciprocal on an interval 
[a, b] but on no strictly larger super-interval (for example, the process discussed 
by Slepian in [12]). Thus we wish to replace b'<b by b itself. One would think it 
possible to concoct some simple limiting argument and let b '~  b. We are able to 
obtain the result only under some restrictions on p(s, x; t, y; u, z) and by rather 
involved reasoning. We first give an example to show that not all discrete-pa- 
rameter reciprocal processes are derived from Markov transition functions. Given 
X1, .. . ,  X, reciprocal, then X1 . . . .  , X,_ ~ is derived from a Markov transition func- 
tion, but there may be an "endpoint effect" ensuring that X1 . . . . .  X, is not so 
derived. Any process X1, X2, X3 is reciprocal for the same trivial sort of reason 
that any process X1,X2 is Markovian. Take S={0,1}, and let p(x[ylz)= 
P(X2=y[X  1 =x,  X2 =z), where x, y, and z range over {0, 1}. For our example of 
a reciprocal process not derived from a Markov process we choose p(xlylz ) so that 
there is no system of Markov transition functions q(i, x;j, y), 1 < i < j< 3, x, y in S 
for which 

q(1, x; 2,y) q(2, y; 3, z) 
p(x ly l z ) -  q(1, x;3, z) x ,y ,z=O,  1. (4.4) 

6 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 30 
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We determine p (xlyl z) by the condition that 

p(xlOIz)= x * z  x,z=0,1.  (4.5) 

Define F(x) to be the quotient of p(xlOlO)/p(xlOI 1) by p(xl 110)/p(x1111). Suppose 
(4.4) holds. Then p(xlYlz)=f(x,  y) g(y, z) h(x, z) for some functions f g, h, and 

F(x)=f(x'O)g(O'O)h(x'O)~'x f(x,  1)g(1, 1)h(x, 1) 
J t  , 0) g(0, 1) h(x, 1) f (x,  1) g(1, 0) h(x, O) 

which is independent of x. We see from (4.5), however, that F(0) = 1/4, F(1) = 1/3. 
Contradiction: (4.4) cannot hold, and p(xlYlz) is not derived from a Markov transi- 
tion function. 

We need the following lemma, which is of interest in its own right as a partial 
converse to the results of Section 3. 

Lemma 4.2. Let (S, d) be a a-compact metric space with X the a-field generated 
by the open sets of S, and let 2 be a a-finite measure on Z. Let p (s, x; t, y; u, z) be a 
reciprocal transition ),-density on [a, b]. Let # be a probability measure on S • X 
both of whose marginals are absolutely continuous with respect to 2 and have strictly 
positive densities. Let { Xt, a <__ t <= b} be the reciprocal process with transition function 
given by (4.3) and endpoint distribution #. I f  { X~, a < t ~ b} is M arkov, then p ~ 2 • 2, 
d#/d(2 x 2) has a strictly positive version, and there is a Markov transition density 
q(s, x; t, y) such that (4.2) holds for each a < s < t  < u < b  and 2 • ~ • A-almost all 
(x, y, z). 

Proof. Assume the hypotheses of the theorem. There are everywhere positive 
measurable functions f and g on S for which 

#(e  x S ) =  ~fd2, # ( S x E ) =  ~gd2, E e Z .  
E E 

Let x ~ #(.,  x) and x ~# (x , . )  be conditional distributions of # given the sub-a- 
fields {E x S: E e S }  and {S x E: E e S }  respectively. For each x, y in S, let 

r(s ,x , t ,y)=Sp(a,x ' ;s ,x;b,z)p(s ,x; t ,y;b,z)dl~(X' ,Z) ,  a < s < t < b ,  

r (a , x , t , y )= f (x )Sp (a , x ; t , y ;b , z )# (x ,  dz), a < t < b ,  (4.6) 

r(t, x, b, y) =g(y) ~ p(a, x'; t, x; b, y) #(dx', y), a < t<b.  

For each choice of (s, t) with a<s<t<__b other than (s, t)=(a, b), r(s, x; b, y) is 
the value at (x, y) of the joint density of (X~, Xt) with respect to 2 • 2. This can be 
checked using (2.2). For example, 

r(a, x, t, y) d(2 x 2) (x, y)=  ~ p(a, x; t, y; b, z) 2(dy) #(x, dz)f(x) 2(dx) 
E x F  E F 

= ~ P(a ,x ; t ,F ;b , z )d#(x , z )  
E x S  

= P~(X.e E, X, eF), 
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and the others are similar. Let 

p ( t , x ) = S r ( a , x ' , t , x ) 2 ( d x ' )  a < t < b ;  

then p (t, x) is the value at x of the conditional density of X t. For each x, y in S 
define 

r(a, x, t, y) 
q(a, x; t, y) a < t  <b,  

f (x)  

r(t, x, b, y) 
q(t, x; b, y) a < t  <b,  

p(t, x) 

r(s, x, t, y) 
q(s, x; t, y)= a < s  <t  <b.  

p (s, x) 

Then, for each (s, t) with a < s < t < b, except (s, t) = (a, b), q (s, x; t, y) is the value at y 
of the conditional density of X, given X~ = x. Were/~ assumed absolutely continuous 
with respect to 2 • 2, then dp/d(2 x 2) would be the joint density of Xa and Xb, and 
we could write down the corresponding conditional density. However, we are 
assuming only that # has 2-absolutely continuous marginals, and this by itself 
does not imply that ~ 4 2  • 2. This last is indeed true, because {X~, a <  t__< b} is 
Markovian. Fixing ts(a,  b), we have already established the existence of joint 
densities for (Xa, X~) and for (X~, Xb). It follows from the Chapman-Kolmogorov 
equation that Xa and X b have a joint density, in other words, that ~ <2  • The 
argument of Doob used in the proof of Theorem 3.1 shows that there is a version 
r(x, y) of this joint density which is Z x Z-measurable in (x, y), and then q(a, x; b, y) 
= r (x, y)/f(x) is the value at y of the conditional density of Xv given X, = x. The 
Chapman-Kolmogorov equation also shows that we may choose r(x, y), hence 
q (a, x; b, y), strictly positive. The conditional densities q (s, x; t, y) are now defined 
for all a < s < t < b and x, y in S. On the one hand, the value at y of the conditional 
density of X, given X~ = x  and X, =z  is given by p(s, x; t, y; u, z). On the other hand, 
the fact that {X~, a < t < b} is a Markov process with transition density q enables 
us to write this conditional density as the quotient ofp(s, x) q(s, x; t, y) q(t, y; b, z) 
by p(s, x) q(s, x, u, y). This establishes (4.2) and proves the lemma. 

Theorem 4.3. Assume the conditions on S, ~, and 2 given in the previous lemma. 
Suppose that p(s, x; t, y; u, z) is a strictly positive transition 2-density on [a, b] 
satisfying, the following conditions: 

(i) For each a < s < t < u < b, the map ( x, y, z) ~ p( s, x; t, y; u, z) is continuous on 
S • S x S and for each a < so < to < Uo < Vo < b is bounded uniformly in s~ [a, so] , 
u ~ [Vo, b], and x, y, z in S. 

(ii) For each t~(a, b) and x, y , z  in S, 

lim p(a', x; t, y; b', z) =p(a, x; t, y; b, z) 
a'~a,b'~b 

the limit approach being uniform for (s, y, z) in any compact subset ofS x S x S. 

6* 
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(iii) There is a tl > 0 such that for  each 6 > 0 and Xo, Zo in S, and compact K 

l i m l m a x l  ~ P(S ,X; t , y ;b ,  zo)2(dy)=O,  
u~O U R(y, h) 

lim 1 max2 ~ p(a, Xo; s, y; t, x) 2(dy)=O, 
u~O U R(y, 6) 

where max1 is taken over a < s < _ a + r  h s < t  < s + u  and x e K ,  max 2 is taken over 
b - t l < s < b ,  t - u < s < t ,  and x e K ,  while R(y, 6) is the complement of  the sphere of  
radius 6 centered at y. 

Then there is a M a r  kov transition 2-density q ( s, x; t, y ), a < s < t < b, x, y in S, 
such that (4.2) holds for  2 x 2 x 2-alinost all (x, y, z) in S x S • S, and all (x, y, z) i f  
s > a  and u < b .  

Proof  Assume the hypotheses of the theorem. Let f and g be strictly positive 
/-measurable functions on S with ~ f d 2 = ~  g d 2 =  1. Let a .$a  < b , $  b. By virtue of 
the lemma,there is a Markov transition density q, (s, x; t, y), a. < s < t < b, such that 
(4.2) holds. By (ii), we may assume that q.(s, x; t, y; t, z) is continuous in (x, y, z) for 
each a, < s < t < u < b,. By theorem 3.2, for each n there is a measure/2, on I • ! 
whose marginals are given by the 2-densities f and g such that the reciprocal 
process { Xt,  a, < t<  b,} with transition density p(s, x; t, y; b, z) and endpoint 
measure/2, is Markov. Since the marginals of/2, do not depend on n, {/2,} has a 
weakly convergent subsequence. Let/2 be its limit. The marginals of/2 are given by 
the densities f and g. We may assume without loss of generality that {/2,} itself 
converges. Consider now the process {X, a < t < b} determined by the reciprocal 
transition density p(s, x; t, y; u, t) and the endpoint measure/2. 

(a) {Xt, a < t < b} is markov .  

To prove (a), let a < Sl < ' "  < Sk < t < b. Choose n large enough so that a. < sl, 
b, < t. Let 

n(x, Xl, . . . ,  x k, y, z) =p(a, x; s 1 , Xl ; b, z) p(sa , xi ; s2, x2; b, z) . . . .  

. . . .  p ( S k ,  Xk; t, y; b, z), 

cr(x, xa, ..., Xk, Z) = p(a, x; s 1 , x i ; b, z) p(s i, Xl ; s2, x2; b, z) . . . .  

. . . .  p (Sk_ l ,  Xk_l ;  Sk, Xk; b, z) 

for x, xl, ..., Xk, y, Z in S, and let n. and a,  be defined in exactly the same way, but 
with a. and b, replacing a and b respectively. (Xs . . . . .  , X~ k, Xt) has a joint 2-density, 
and the value at y of the conditional density of Xt given Xs, = xl . . . . .  X~k = Xk is 
easily seen to be equal to 

re(x, xl, ..., Xk, y, Z) d/2(x, z) 
(4.7) 

~ ( x l ,  x l ,  . . . ,  xk, z) d/2(x z) " 

It follows from conditions (i) and (ii) that for fixed xi . . . . .  Xk and y {n.(x, x 1 . . . . .  

Xk, y, Z)} is bounded uniformly in x, y and z and converges to n(x, x I . . . .  , x k, y, z) 
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uniformly for (x, y, z) in compact subsets of S x S x S. Therefore (4.7) is equal to 

lim S r~,(x, xl , ..., Xk, y, Z) d#,(x, z) 
lim ~ an(x , xl ,  ..., Xk, z) d#n(x, z) =lim ~ ten(x, xl,  ..., x~, y, z) d#.(x, z) 

n 

The expression whose limit is being taken is the value at y of the corresponding 
conditional density relative to the process {Xt, a.<= t< b} with transition density 
p( s, x; t, y; u, z), a n <= s < t < u < b,, and endpoint measure #n, This process is Markov, 
so the conditional density in question is independent of x l , . . . ,  Xk_~. The same 
must be true of the limit (4.7). Since k and a < sl < . . .  < Sk < t < b are arbitrary, this 
proves (a). 

(b) Almost all paths of  { X ,  a< t <_ b} are continuous on [a, a +ti] and [b- t i ,  b]. 

First, fix Xo and Zo in S, and consider the reciprocal process {Xt, a__< t < b} with 
transition density p(s, x; t, y," b, z) and endpoint measure equal to the point mass 
6(xo,yo). Then {Xt, a<=t<b} is a Markov process with transition q-density 
p(s, x; t, y; b, zo), as is therefore {X, a<_t<_a+tl}. The first condition of (iii) is 
guarantees that this latter process has continuous paths by virtue of the corollary 
to Theorem 6.6 of I-6]. {Xt, a < t =< b} with time reversed is also a Markov process, 
with transition density p (t, x; s, y) = p(a, x o; s, y; t, x) for a =< s < t =< b, x, y e S. The 
second condition of (iii) guarantees that { X ,  b - t i N  t<b} has continuous paths. 
Thus {Xt, aN t__< b} has the desired continuity if the endpoint measure is a point 
mass, and it follows immediately that the same is true for any endpoint measure, 
in particular for the endpoint measure #. This proves (b). 

(c) {Xt, a < t < b} is a Markov process. 

First we show that {X, a ____ t < b} is a Markov process. For each a__< c < d < b 
let Jtc, dl be the a-field generated by {Xt: c<_t<_b}. We need to show that 
E{h(X,,)l~o, tl}=E{h(Xc)lXt} for any a<t<t '<_b and bounded S-measurable 
function h. Since {Xt, a<__t<b } is a Markov process by (a), we know that 
E{h(Xt,)]~} =E{h(Xc)IX~}, where & is the smallest ~r-field containing all the 
a-fields ~df"+~,t]' n = 1, 2, .... Let Z be a bounded random variable measurable 

with respect to do, let k be a bounded continuous function on S and let Y= k(X,) Z. 

Then 

~ Yh(Xr)=~ k(X~) Zh(Xt,)=~ l imk ( ,+_~)Zh(Xc)=lim ~ k(X+~) Zh(Xt,), 

the last two equalities holding by virtue of the continuity of k, the continuity 
(by (b)) at a of the paths of {X, a < t < b} and the bounded convergence theorem. 
But k(X+_~) Z is measurable with respect to do for any n = 1, 2, ..., so 

k(X+~) Z h (Xr) = ~ k(X +~) ZE {h(Xc) JXt}. 

Letting n-* o% and using again continuity and the bounded convergence theorem, 
we have ~ Yh(Xc)=S YE{h(Xc)IX~}. This is true for any Y of the form k(X,)Z,  
with k continuous and Z bounded and do-measurable. But bounded ~ , ,  trmeasur- 
able functions can be approximated by linear combinations of such Y's, so the 
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last equality holds for arbitrary bounded Jta.tl measurable Y. It follows that 
E{h(Xt,)l~o,,l} =E{h(Xc)[X, } .  Reversal of the direction of time and use of the 
continuity of the paths of {X ,  a < t < b} at b show that {Xt, a < t < b} is Markovian, 
establishing (c). 

Since {X,, a <  t <  b} is a Markov process, and since the marginals f and g of 
the endpoint measure # are strictly positive, Lemma 4.2 applies to yield a Markov 
transition function g(s, x; t, y) for which (4.2) holds for 2 x 2 • 2-almost all (x, y, z) 
in S x S • S. If s > a and u < b, the joint density r(s, x; t, y) of (X~, X,) is continuous 
in (x, y) by virtue of assumption (i), (4.6), and the bounded convergence theorem, 
while the density ~p(a, w; s, x; b, y)d#(w,  y) of X~ is continuous in x again by (ii) 
and the bounded convergence theorem. Thus q(s, x; t, y), which is the quotient 
of r(s, x; t, y) and the (everywhere positive) density of x, is itself a continuous 
function of (x, y), from which it follows that both sides of (4.2) are continuous 
functions of (x, y, z) if s > a  and u < b, and (4.2) therefore holds for all (x, y, z) 
under this restriction. This completes the proof of the theorem. 

We note that in keeping with the statement of the theorem, the reciprocal 
process {Xt, 0 <  t <  1} studied by Slepian in [13] has a reciprocal transition density 
which satisfies (4.2) with q(s, x; t, y) being the transition density of the standard 
Brownian motion on [0, 1] and endpoint measure # the product measure whose 
factors are the one-dimensional Gaussian measures with zero mean and unit 
variance. 
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