The Maximum Term of Uniformly Mixing Stationary Processes

G.L. O’Brien *

Let $\left\{X_{n}\right\}$ be a uniformly (or strongly) mixing stationary process and let $Z_{n}=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$. For $\xi>0$, let $c_{n}(\xi)=\inf \left\{x \in R: n P\left(X_{1}>x\right) \leqq \xi\right\}$. Under a condition which holds for all φ-mixing processes, necessary and sufficient conditions are given for $P\left(Z_{n} \leq c_{n}(\xi)\right)$ to converge to each possible limit. Some conditions for convergence of $P\left(Z_{n} \leqq d_{n}\right)$ for any sequence d_{n} are also obtained.

1. Introduction

Let $\left\{X_{n}\right\}$ be a strictly stationary process. Assume $\left\{X_{n}\right\}$ is uniformly (or strongly) mixing with mixing function g : that is, $g(k) \rightarrow 0$ as $k \rightarrow \infty$ and if $A \in \mathfrak{B}\left(X_{1}, \ldots, X_{m}\right)$ and $B \in \mathfrak{B}\left(X_{m+k}, X_{m+k+1}, \ldots\right)$, then

$$
\begin{equation*}
|P(A B)-P(A) P(B)| \leqq g(k) \tag{1}
\end{equation*}
$$

We will sometimes assume further that $\left\{X_{n}\right\}$ is φ-mixing, that is, (1) holds with the right side replaced by $\varphi(k) P(A)$, where $\varphi(k) \rightarrow 0$ as $k \rightarrow \infty$.

Let $H(x)=P\left(X_{n} \leqq x\right)$. Let $x_{0}=\sup \{x \mid H(x)<1\}$. For each $\xi>0$ and each integer $n>\xi$, let $c_{n}(\xi)$ satisfy $P\left(X_{1}>c_{n}(\xi)\right) \leqq \xi n^{-1} \leqq P\left(X_{1} \geqq c_{n}(\xi)\right)$. Then

$$
\begin{equation*}
H^{n}\left(c_{n}(\xi)\right) \rightarrow e^{-\xi} \quad\left(\text { that is, } H\left(c_{n}(\xi)\right)=1-\xi n^{-1}+o\left(n^{-1}\right)\right) \tag{2}
\end{equation*}
$$

if and only if $P\left(X_{1} \geqq x\right) / P\left(X_{1}>x\right) \rightarrow 1$ as $x \uparrow x_{0}$ and H is continuous at x_{0} (see the author [5]). We assume henceforth that (2) holds.

Let $Z_{n}=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$. According to Loynes [4], the only possible limit functions of $P\left(Z_{n} \leqq c_{n}(\xi)\right)$ are $\exp (-\alpha \xi)$ for $0 \leqq \alpha \leqq 1$. We obtain, under Condition C, given below, necessary and sufficient conditions for each limit to occur (Theorem 1). Condition C always holds for φ-mixing processes.

Watson [6], Loynes [4] and Galambos [2] have previously investigated when $P\left(Z_{n} \leqq c_{n}(\xi)\right) \rightarrow \exp (-\xi)$ under various conditions which approximate independence. The methods used here are extensions of those used by Loynes. Examples when $P\left(Z_{n} \leqq c_{n}(\xi)\right) \rightarrow \exp (-\alpha \xi)$ for $\alpha<1$ are given by the author [5].

In Section 4 , we study limits of $P\left(Z_{n} \leqq d_{n}\right)$ for general sequences $\left\{d_{n}\right\}$. Of particular interest are sequences of the form $d_{n}=a_{n} x+b_{n}$. This problem was investigated in the independent case by Gnedenko [3] and de Haan [1]. We also have some results concerning Gnedenko's concepts of relative stability and the law of large numbers.

[^0]The results given here can easily be modified to apply to minima instead of maxima.

2. The Limit Theorem

Under Condition C stated below, we obtain necessary and sufficient conditions for convergence of $P\left(Z_{n} \leqq c_{n}(\xi)\right)$ to each possible limit. C is related to a sufficient condition of Loynes [4] for convergence to the limit $e^{-\xi}$. (His condition was close to that obtained by taking $r_{m}=m$ and $\Delta(1)=0$.) We let $Z_{k, l}$ denote

$$
\max \left(X_{k}, X_{k+1}, \ldots, X_{i}\right)
$$

(if $k>l$, let $Z_{k, l}=-\infty$).
A sequence $\left\{c_{n}\right\}$ of real numbers with $c_{n}<x_{0}$ is said to satisfy Condition C if there are sequences $\left\{r=r_{m}\right\},\left\{s=s_{m}\right\}$ and $\left\{t=t_{m}=r s\right\}$ of positive integers such that $r \rightarrow \infty, s \rightarrow \infty,\left(t_{m}\right)^{-1} t_{m+1} \rightarrow 1$ and $r g(s) \rightarrow 0$, and such that

$$
\begin{equation*}
\Delta(j) \equiv \limsup _{m \rightarrow \infty} P\left(Z_{2, j} \leqq c_{t}, Z_{j+1, s}>c_{t} \mid X_{1}>c_{t}\right) \rightarrow 0 \tag{3}
\end{equation*}
$$

as $j \rightarrow \infty$.
Remarks. Define

$$
\begin{equation*}
\Delta^{\prime}(j)=\limsup _{m \rightarrow \infty} P\left(Z_{j+1, s}>c_{t} \mid X_{1}>c_{t}\right) \tag{4}
\end{equation*}
$$

Note that $\Delta(j)$ and $\Delta^{\prime}(j)$ are decreasing sequences. The first four of the five limits of C can always be met by choosing $s=m$ and r some sufficiently slowly increasing sequence. If $\left\{X_{n}\right\}$ is φ-mixing and $\lim \inf H^{t}\left(c_{t}\right)>0\left(\right.$ so that $\left.\lim \sup t P\left(X_{1}>c_{t}\right)<\infty\right)$, we then have

$$
\begin{aligned}
\Delta(j) & \leqq d^{\prime}(j) \leqq \lim \sup P\left(Z_{j+1, s}>c_{t}\right)+\varphi(j) \\
& \leqq \lim \sup s P\left(X_{1}>c_{t}\right)+\varphi(j)=\varphi(j) \rightarrow 0 \text { as } j \rightarrow \infty .
\end{aligned}
$$

In particular, if $c_{n}=c_{n}(\xi)$ for some ξ, C is always valid for φ-mixing processes. Similarly by choosing $r=m$ and s some slowly increasing sequence, the first three and the last limits of C can be met if $P\left(X_{i}>c_{t} \mid X_{1}>c_{t}\right) \rightarrow 0$ for all $i>$ some i_{0}. Then C holds if $g(s)=o\left(m^{-1}\right)$.

Lemma 1. Fix $j \in\{2,3, \ldots\}$ and let $\left\{t=t_{m}\right\}$ be a sequence such that $t_{m} \rightarrow \infty$ and $\left(t_{m}\right)^{-1} t_{m+1} \rightarrow 1$. For $\xi>0$,

$$
\limsup _{m \rightarrow \infty} P\left(Z_{2, j} \leqq c_{t}(\xi) \mid X_{1}>c_{t}(\xi)\right)=\limsup _{x \uparrow x_{0}} P\left(Z_{2, j} \leqq x \mid X_{1}>x\right)
$$

and

$$
\liminf _{m \rightarrow \infty} P\left(Z_{2, j} \leqq c_{t}(\xi) \mid X_{1}>c_{t}(\xi)\right)=\liminf _{x \uparrow x_{0}} P\left(Z_{2, j} \leqq x \mid X_{1}>x\right)
$$

Proof. Let $\varepsilon>0$. We may assume without loss of generality that t_{m} is nondecreasing. Now,

$$
\begin{aligned}
P\left(c_{t_{m}}(\xi)<X_{1}<c_{t_{m+1}}(\xi)\right) & =P\left(X_{1}>c_{i_{m}}(\xi)\right)-P\left(X_{1} \geqq c_{t_{m+1}}(\xi)\right) \\
& \leqq\left(\frac{t_{m+1}}{t_{m}}-1\right) \frac{\xi}{t_{m+1}} \\
& \leqq \varepsilon P\left(X_{1} \geqq c_{t_{m+1}}(\xi)\right),
\end{aligned}
$$

for m sufficiently large. For $x<x_{0}$, pick m such that $y \equiv c_{t_{m}}(\xi) \leqq x<c_{t_{m+1}}(\xi)$. For large x (and hence large m), the above gives

$$
P\left(y<X_{1} \leqq x\right) \leqq \varepsilon P\left(X_{1}>y\right)
$$

Thus (if ε is close to 0),

$$
\begin{aligned}
P\left(Z_{2, j} \leqq x \mid X_{1}>x\right) & \leqq\left(\frac{P\left(X_{1}>y\right)}{P\left(X_{1}>x\right)}\right)\left(\frac{P\left(Z_{2, j} \leqq x, X_{1}>y\right)}{P\left(X_{1}>y\right)}\right) \\
& \leqq \frac{1}{1-\varepsilon}\left[P\left(Z_{2, j} \leqq y \mid X_{1}>y\right)+P\left(y<Z_{2, j} \leqq x\right) / P\left(X_{1}>y\right)\right] \\
& \leqq(1+2 \varepsilon)\left[P\left(Z_{2, j} \leqq y \mid X_{1}>y\right)+(j-1) \varepsilon\right] \\
& \leqq P\left(Z_{2, j} \leqq y \mid X_{1}>y\right)+2 j \varepsilon
\end{aligned}
$$

This proves the first statement, since ε can be chosen arbitrarily small. On the other hand, with x and y as above,

$$
\begin{aligned}
P\left(Z_{2, j} \leqq x \mid X_{1}>x\right) & \geqq \frac{P\left(Z_{2, j} \leqq x, X_{1}>x\right)}{P\left(X_{1}>y\right)} \\
& \geqq \frac{P\left(Z_{2, j} \leqq y, X_{1}>y\right)-\varepsilon P\left(X_{1}>y\right)}{P\left(X_{1}>y\right)} \\
& =P\left(Z_{2, j} \leqq y \mid X_{1}>y\right)-\varepsilon,
\end{aligned}
$$

which proves the second statement.
We are now ready to prove the main theorem. Let

$$
\beta(j)=\lim _{x \uparrow x_{0}} \sup P\left(Z_{2, j} \leqq x \mid X_{1}>x\right)
$$

and let $\gamma(j)=\liminf _{x \uparrow x_{0}} P\left(Z_{2, j} \leqq x \mid X_{1}>x\right)$. Let $\beta=\lim _{j \rightarrow \infty} \beta(j)$ and $\gamma=\lim _{j \rightarrow \infty} \gamma(j)$.
Theorem 1. Let $\xi>0$ and suppose $\left\{c_{n}(\xi)\right\}$ satisfies Condition C. Then

$$
\limsup _{n \rightarrow \infty} P\left(Z_{n} \leqq c_{n}(\xi)\right)=e^{-\gamma \xi}
$$

and

$$
\liminf _{n \rightarrow \infty} P\left(Z_{n} \leqq c_{n}(\xi)\right)=e^{-\beta \xi}
$$

Thus

$$
\lim _{n \rightarrow \infty} P\left(Z_{n} \leqq c_{n}(\xi)\right)=e^{-\alpha \xi}
$$

if and only if $\alpha=\beta=\gamma$.
Proof. Write c_{n} for $c_{n}(\xi)$. Since $r g(s) \rightarrow 0$, it can be shown that there is a sequence $\left\{q=q_{m}\right\}$ of positive integers such that $r g(q) \rightarrow 0$ and $q s^{-1} \rightarrow 0$. Define $p=p_{m}=s-q$. By the proof of Lemma 1 of Loynes [4], it is enough to show the results hold with $P\left(Z_{n} \leqq c_{n}\right)$ replaced by $P\left(Z_{p} \leqq c_{t}\right)^{r}$. Fix j. By the definition of $\Delta(j)$,

$$
\begin{align*}
p P\left(X_{1}\right. & \left.>c_{t}, Z_{2, j} \leqq c_{t}\right)-p P\left(X_{1}>c_{t}, Z_{2, p} \leqq c_{t}\right) \\
& =p P\left(X_{1}>c_{t}, Z_{2, j} \leqq c_{t}, Z_{j+1, p}>c_{t}\right) \tag{5}\\
& \leqq \xi r^{-1} \Delta(j)+o\left(r^{-1}\right) .
\end{align*}
$$

Also,

$$
\begin{align*}
P\left(Z_{p}>c_{t}\right) & =\sum_{i=1}^{p} P\left[X_{i}>c_{t}, Z_{i+1, p} \leqq c_{t}\right] \tag{6}\\
& \geqq p P\left[X_{1}>c_{t}, Z_{2, p} \leqq c_{t}\right] .
\end{align*}
$$

By (5) and (6),

$$
\begin{aligned}
p P\left(X_{1}\right. & \left.>c_{t}, Z_{2, j} \leqq c_{t}\right)-\xi r^{-1} \Delta(j)-o\left(r^{-1}\right) \\
& \leqq p P\left(X_{1}>c_{t}, Z_{2, p} \leqq c_{t}\right) \\
& \leqq P\left(Z_{p}>c_{t}\right) \\
& \leqq(p-j) P\left(X_{1}>c_{t}, Z_{2, j} \leqq c_{t}\right)+j P\left(X_{1}>c_{t}\right) \\
& \leqq p P\left(X_{1}>c_{t}, Z_{2, j} \leqq c_{t}\right)+o\left(r^{-1}\right)
\end{aligned}
$$

By the above and by (2),

$$
\begin{aligned}
& \left(1-\xi r^{-1} P\left(Z_{2, j} \leqq c_{t} \mid X_{1}>c_{t}\right)+\xi r^{-1} \Delta(j)+o\left(r^{-1}\right)\right)^{r} \\
& \quad \geqq P\left(Z_{p} \leqq c_{t}\right)^{r} \geqq\left(1-\xi r^{-1} P\left(Z_{2, j} \leqq c_{t} \mid X_{1}>c_{t}\right)+o\left(r^{-1}\right)\right)^{r}
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& \exp \left[-\xi P\left(Z_{2, j} \leqq c_{t} \mid X_{1}>c_{t}\right)+\xi \Delta(j)\right]+o(1) \\
& \quad \geqq P\left(Z_{p} \leqq c_{t}\right)^{r} \geqq \exp \left[-\xi P\left(Z_{2, j} \leqq c_{t} \mid X_{1}>c_{t}\right)\right]+o(1) .
\end{aligned}
$$

Since j is arbitrary, the results follow, using Lemma 1.
Suppose C holds with $\Delta(j)=0$ for some j. For $i \geqq j, \beta(i)=\beta$ and $\gamma(i)=\gamma$. Thus the calculation of β and γ depends only on the j-dimensional distributions of $\left\{X_{n}\right\}$. This happens in particular if $\left\{X_{n}\right\}$ is φ-mixing and $P\left(X_{i}>x \mid X_{1}>x\right) \rightarrow 0$ as $x \uparrow x_{0}$ for all $i>j$, since in this case we have for $k>j$ that

$$
\begin{align*}
\Delta(j) \leqq & \Delta^{\prime}(j) \leqq \sum_{i=j+1}^{k} \lim \sup P\left(X_{i}>c_{t} \mid X_{1}>c_{t}\right) \tag{7}\\
& +\lim \sup P\left(Z_{k+1, s}>c_{t} \mid X_{1}>c_{t}\right) \leqq \varphi(k)
\end{align*}
$$

Because k is arbitrary, $\Delta(j)=0$. The case $j=1$ generalizes the final paragraph of Loynes [4].

3. Bounds on α

Suppose $P\left(Z_{t} \leqq c_{t}(\xi)\right) \rightarrow e^{-\alpha \xi}$. By Loynes, or by Theorem 1 if C holds, $0 \leqq \alpha \leqq 1$. We did not use C for the lower bound on $\lim P\left(Z_{n} \leqq c_{n}\right)$ in the proof of Theorem 1 . Consequently $\alpha \leqq \beta$ for all uniformly mixing processes. If $P\left(X_{i}>x \mid X_{1}>x\right) \rightarrow \delta>0$ for some $i>1$, then $\alpha \leqq \beta(i) \leqq 1-\delta<1$.

The next lemma leads to a positive lower bound for α in many cases. We call a sequence of events stationary if the sequence of their indicator functions is strictly stationary. Let A^{*} denote the complement of A.

Lemma 2. Let $\left\{A_{n}\right\}$ be a stationary sequence of events. For $j>1$,

$$
j P\left(A_{2} A_{3} \ldots A_{j} \mid A_{1}^{*}\right) \geqq P\left(A_{j+1} A_{j+2} \ldots A_{2 j-1} \mid A_{1}^{*}\right)
$$

Proof. We have

$$
\begin{aligned}
P\left(A_{1}^{*} A_{j+1} \ldots A_{2 j-1}\right) & =\sum_{i=1}^{j} P\left(A_{1}^{*} A_{i}^{*} A_{i+1} \ldots A_{2 j-1}\right) \\
& \leqq \sum_{i=1}^{j} P\left(A_{i}^{*} A_{i+1} \ldots A_{j+i-1}\right) \\
& =j P\left(A_{1}^{*} A_{2} \ldots A_{j}\right)
\end{aligned}
$$

which gives the required result.
Theorem 2. For any uniformly mixing stationary process $\left\{X_{n}\right\}$,
$\limsup _{n \rightarrow \infty} P\left(Z_{n} \leqq c_{n}(\xi)\right) \leqq \exp \left(-\gamma_{0} \xi\right)$ where $\gamma_{0}=\sup _{j}\left[j^{-1}\left(1-\Delta^{\prime}(j)\right)-\Delta(j)\right]$.
(Recall (4).)
Proof. By the proof of Theorem 1 and by Lemma 2 with $A_{i}=\left\{X_{i} \leqq c_{t}(\xi)\right\}$ for large t,

$$
\begin{aligned}
\gamma & \geqq \liminf _{m \rightarrow \infty} P\left(Z_{2, j} \leqq c_{t} \mid X_{1}>c_{t}\right)-\Delta(j) \\
& \geqq j^{-1} \lim \inf P\left(Z_{j+1,2 j-1} \leqq c_{t} \mid X_{1}>c_{t}\right)-\Delta(j) \\
& \geqq j^{-1}\left(1-\Delta^{\prime}(j)\right)-\Delta(j) .
\end{aligned}
$$

If $\Delta^{\prime}(j)=0$ for some j, then by Theorem 2 , $\lim \sup P\left(Z_{n} \leqq c_{n}(\xi)\right) \leqq \exp (-\xi / j)$. This is the case if the conditions above (7) hold. In particular, $\Delta^{\prime}(j)=0$ if $\left\{X_{n}\right\}$ is j-dependent (see Watson [6]). One of our examples [5] shows how to obtain any limit $e^{-\alpha \xi}$ for $j^{-1} \leqq \alpha \leqq 1$ in the j-dependent case.

In the case of φ-mixing we can obtain the result $\alpha>0$ without any further assumptions. We first need the following lemma.

Lemma 3. If $\left\{Y_{n}\right\}$ is φ-mixing (not necessarily stationary) and if $A_{i} \in \mathfrak{B}\left(Y_{i k}\right)$ for $i=1,2, \ldots$, then

$$
\left|P\left(A_{1} A_{2} \ldots A_{l}\right)-P\left(A_{1}\right) P\left(A_{2}\right) \ldots P\left(A_{l}\right)\right|<\varphi(k)
$$

Proof. First note that for any $A \in \mathfrak{B}\left(Y_{1}, \ldots, Y_{m}\right)$ and $B \in \mathfrak{B}\left(Y_{m+k}, Y_{m+k+1}, \ldots\right)$, $|P(A B)-P(A) P(B)|=\left|P\left(A^{*} B^{*}\right)-P\left(A^{*}\right) P\left(B^{*}\right)\right| \leqq P\left(A^{*}\right) \varphi(k)$. Thus,

$$
\begin{aligned}
& \left|P\left(A_{1} A_{2} \ldots A_{l}\right)-P\left(A_{1}\right) P\left(A_{2}\right) \ldots P\left(A_{l}\right)\right| \\
& \quad \leqq\left|P\left(A_{1} A_{2} \ldots A_{l}\right)-P\left(A_{1}\right) P\left(A_{2} A_{3} \ldots A_{l}\right)\right| \\
& \quad+P\left(A_{1}\right)\left|P\left(A_{2} A_{3} \ldots A_{l}\right)-P\left(A_{2}\right) P\left(A_{3} \ldots A_{l}\right)\right| \\
& \quad \quad+\cdots+P\left(A_{1}\right) \ldots P\left(A_{l-2}\right)\left|P\left(A_{l-1} A_{l}\right)-P\left(A_{l-1}\right) P\left(A_{l}\right)\right| \\
& \quad \leqq \\
& \quad P\left(A_{1}^{*}\right) \varphi(k)+P\left(A_{1}\right) P\left(A_{2}^{*}\right) \varphi(k)+\cdots+P\left(A_{1}\right) \ldots P\left(A_{l-2}\right) P\left(A_{l-1}^{*}\right) \varphi(k) \\
& \quad=\varphi(k)\left[1-P\left(A_{1}\right) P\left(A_{2}\right) \ldots P\left(A_{l-1}\right)\right]
\end{aligned}
$$

which gives the result.
Theorem 3. If $\left\{X_{n}\right\}$ is a φ-mixing stationary process, then $\lim \sup P\left(Z_{n} \leqq c_{n}(\xi)\right)<1$.

Proof. Let k be such that $\varphi(k)<(2 e)^{-1}$. Let η be sufficiently large that $e^{-\eta / k}<(2 e)^{-1}$. By Lemma 3, $P\left(Z_{n} \leqq c_{n}(\eta)\right) \leqq H^{n / k}\left(c_{n}(\eta)\right)+\varphi(k)<e^{-1}$ for large n. Thus, $\lim \sup P\left(Z_{n} \leqq c_{n}(\eta)\right) \leqq e^{-1}=e^{-\eta / \eta}$. By Theorem 1, $\lim \sup P\left(Z_{n} \leqq c_{n}(\xi)\right) \leqq e^{-\xi / \eta}$.

4. Limits for General Sequences

The preceeding results may often be used to find $\lim _{n} P\left(Z_{n} \leqq d_{n}\right)$ for any sequence $\left\{d_{n}\right\}$.

Theorem 4. (a) Suppose $P\left(Z_{n} \leqq c_{n}(\xi)\right) \rightarrow \exp (-\alpha \xi)$ for all $\xi>0$. If $\alpha>0$, then $H^{n}\left(d_{n}\right) \rightarrow$ lif and only if $P\left(Z_{n} \leqq d_{n}\right) \rightarrow l^{\alpha}$. If $\alpha=0, H^{n}\left(d_{n}\right) \rightarrow l>0$ implies $P\left(Z_{n} \leqq d_{n}\right) \rightarrow 1$.
(b) Conversely, under Condition $C, H^{n}\left(d_{n}\right) \rightarrow l \in(0,1)$ and $P\left(Z_{n} \leqq d_{n}\right) \rightarrow l^{\alpha}$ together imply $P\left(Z_{n} \leqq c_{n}(\xi)\right) \rightarrow \exp (-\alpha \xi)$.

Proof. Assume $H^{n}\left(d_{n}\right) \rightarrow l>0$ and $\alpha>0$. Let ξ be such that $l>e^{-\xi}$. Since $H^{n}\left(c_{n}(\xi)\right) \rightarrow e^{-\xi}, c_{n}(\xi)<d_{n}$ for large n. Therefore $P\left(Z_{n} \leqq d_{n}\right) \geqq P\left(Z_{n} \leqq c_{n}(\xi)\right) \rightarrow e^{-\alpha \xi}$. Therefore $\lim \inf P\left(Z_{n} \leqq d_{n}\right) \geqq l^{\alpha}$. The rest of the proof is similar.

We give an example with $\varphi(2)=g(2)=0$ for which $P\left(Z_{n} \leqq d_{n}\right)$ converges but $H^{n}\left(d_{n}\right)$ and $P\left(Z_{n} \leqq c_{n}(\xi)\right)$ do not converge. Let $X_{1}, X_{3}, X_{5}, \ldots$ be independent random variables, each uniform on (0,1). Let $X_{2 n}=2-3\left(2^{-k-1}\right)-X_{2 n-1}$ when $1-2^{-k} \leqq X_{2 n-1}<1-2^{-k-1} . X_{2 n}$ is also uniform on $(0,1)$. Let

Then

$$
F(x)=P\left(X_{1} \leqq x, X_{2} \leqq x\right)
$$

$$
F(x)=1-2^{-k} \quad \text { if } 1-2^{-k} \leqq x<1-3\left(2^{-k-2}\right) \quad \text { and } \quad F(x)=2 x-1+2^{-k-1}
$$

if $1-3\left(2^{-k-2}\right) \leqq x<1-2^{-k-1}$. Thus F is a continuous function with alternating sections of slope 0 and slope 2. Let $d_{n}=\inf \left\{x: F(x)>1-\frac{1}{n}\right\}$. Then $P\left(Z_{n} \leqq d_{n}\right)=$ $\left(F\left(d_{n}\right)\right)^{n / 2}+o(1) \rightarrow e^{-\frac{1}{2}}$. On the other hand, $H\left(d_{n}\right)=d_{n}$. If $n=2^{k}$ for some k, $d_{n}=1-3\left(2^{-k-2}\right)$ so that $H\left(d_{2^{k}}\right)^{2 k} \rightarrow e^{-\frac{3}{4}}$. If $n=2^{k}-1$,

$$
d_{n}=1-\left(2^{k+1}-1\right) /\left(2^{k+1}\left(2^{k}-1\right)\right)=1-2^{-k}+o\left(2^{-k}\right)
$$

so that $H\left(d_{2^{k}-1}\right)^{2^{k}-1} \rightarrow e^{-1}$. Thus $H^{n}\left(d_{n}\right)$ does not converge. By Theorem 4a, $P\left(Z_{n} \leqq c_{n}(\xi)\right)$ cannot converge. If we now let $d_{n}^{\prime}=c_{n}(1)$, we see that $H^{n}\left(d_{n}^{\prime}\right) \rightarrow e^{-1}$ while $P\left(Z_{n} \leqq d_{n}^{\prime}\right)$ does not converge. In order to achieve stationarity, we modify the process as follows: let J be a random variable which is independent of $\left\{X_{n}\right\}$ and takes values 0 and 1 with equal probability. If $J=0$, make no change, but if $J=1$, replace X_{n} by X_{n+1} for each n.

The above example can be modified in such a way that F has alternating sections of slope $\varepsilon>0$ and $2-\varepsilon$. Then let H be any strictly increasing distribution such that $F\left(H\left(a_{n} x+b_{n}\right)\right)^{n} \rightarrow \Phi(x)$ for some extreme value distribution Φ (see Gnedenko [3]). Let $Y_{n}=H^{-1}\left(X_{n}\right)$. Then $P\left(\max \left(Y_{1}, \ldots, Y_{n}\right) \leqq a_{n} x+b_{n}\right) \rightarrow \Phi^{\frac{1}{2}}(x)$ but $H^{n}\left(a_{n} x+b_{n}\right)$ does not converge.

The process $\left\{X_{n}\right\}$ is said to satisfy the law of large numbers if there is a sequence of constants $\left\{A_{n}\right\}$ such that $P\left[\left|Z_{n}-A_{n}\right|>\varepsilon\right] \rightarrow 0$ for all $\varepsilon>0$. It is said to be relatively stable if there is a sequence of positive constants $\left\{B_{n}\right\}$ such that

$$
P\left[\left|Z_{n}-B_{n}\right|>\varepsilon B_{n}\right] \rightarrow 0 \quad \text { for all } \varepsilon>0
$$

These concepts were introduced by Gnedenko [3]. The next theorem shows in particular that these properties hold for φ-mixing processes if and only if they hold for the i.i.d. process with the same marginal distribution.

Theorem 5. Assume $\gamma>0$ and $\left\{c_{n}(\xi)\right\}$ satisfies C for all $\xi>0$. For any sequence $\left\{d_{n}\right\}, P\left(Z_{n} \leqq d_{n}\right) \rightarrow 1$ (or 0) if and only if $H^{n}\left(d_{n}\right) \rightarrow 1$ (or 0 , respectively).

Proof. Assume $P\left(Z_{n} \leqq d_{n}\right) \rightarrow 1$. Now, $\lim \sup P\left(Z_{n} \leqq c_{n}(\xi)\right)=e^{-\gamma \xi}<1$ for all $\xi>0$. Thus $d_{n}>c_{n}(\xi)$ for large n. Therefore $\lim \inf H^{n}\left(d_{n}\right) \geqq \lim \inf H^{n}\left(c_{n}(\xi)\right)=e^{-\xi} ;$ thus, $H^{n}\left(d_{n}\right) \rightarrow 1$. The rest of the proof is similar.

Remarks. The assumption that H is continuous at x_{0} only serves to avoid trivialities. The assumption that $P\left(X_{1} \geqq x\right) / P\left(X_{1}>x\right) \rightarrow 1$ may be dropped by making some minor modifications. Condition C must be changed to C^{\prime} by replacing (3) by $\Delta^{\prime}(j) \rightarrow 0$.

The conclusions of Theorem 1 take the form (for example)

$$
\limsup _{n \rightarrow \infty} P\left(Z_{n} \leqq c_{n}(\xi)\right)-H^{n \gamma}\left(c_{n}(\xi)\right)=0
$$

This is proved by the methods of the author [5]. All φ-mixing processes are still included. Theorem 5 remains valid under these circumstances.

The stronger Condition C^{\prime} mentioned above has the following property: if $\left\{c_{n}\right\}$ is a sequence such that $\lim \sup H^{n}\left(c_{n}\right)<1$ and $\lim \inf H^{n}\left(c_{n}\right)>0$ and $\left\{c_{n}\right\}$ satisfies C^{\prime}, then any sequence $\left\{d_{n}\right\}$ such that $\lim \sup H^{n}\left(d_{n}\right)<1$ and $\lim \inf H^{n}\left(d_{n}\right)>0$ also satisfies C^{\prime}.

We are grateful to Professor D.L. McLeish and the referee for some useful comments, particularly in connection with Lemma 2.

References

1. De Haan, L.: On regular variation and its application to weak convergence of sample extremes. Mathematical Centre Tracts 32, Amsterdam 1970
2. Galambos, J.: On the distribution of the maximum of random variables. Ann. Math. Statist. 43, 516-521 (1972)
3. Gnedenko, B. V.: Sur la distribution du terme maximum d'une série aléatoire. Ann. Math. 44, 423-453 (1943)
4. Loynes, R.M.: Extreme values in uniformly mixing stationary stochastic processes. Ann. Math. Statist. 36, 993-999 (1965)
5. O'Brien, G. L.: Limit theorems for the maximum term of a stationary process. To appear. Ann. Probab. 2, 540-545 (1974)
6. Watson, G.S.: Extreme values in samples from m-dependant stationary stochastic processes. Ann. Math. Statist. 25, 798-800 (1954)

G. L. O’Brien
York University
Faculty of Arts
Department of Mathematics
Downsview, Ontario M3J 1P3
Canada

[^0]: * Research supported in part by the National Research Council of Canada and done at the Summer Research Institute of the Canadian Mathematical Congress.

