The Maximum Term of Uniformly Mixing Stationary Processes

G.L. O'Brien*

Let $\{X_n\}$ be a uniformly (or strongly) mixing stationary process and let $Z_n = \max(X_1, X_2, ..., X_n)$. For $\xi > 0$, let $c_n(\xi) = \inf\{x \in R : nP(X_1 > x) \leq \xi\}$. Under a condition which holds for all φ -mixing processes, necessary and sufficient conditions are given for $P(Z_n \leq c_n(\xi))$ to converge to each possible limit. Some conditions for convergence of $P(Z_n \leq d_n)$ for any sequence d_n are also obtained.

1. Introduction

Let $\{X_n\}$ be a strictly stationary process. Assume $\{X_n\}$ is uniformly (or strongly) mixing with mixing function g: that is, $g(k) \rightarrow 0$ as $k \rightarrow \infty$ and if $A \in \mathfrak{B}(X_1, \ldots, X_m)$ and $B \in \mathfrak{B}(X_{m+k}, X_{m+k+1}, \ldots)$, then

$$|P(AB) - P(A) P(B)| \le g(k). \tag{1}$$

We will sometimes assume further that $\{X_n\}$ is φ -mixing, that is, (1) holds with the right side replaced by $\varphi(k) P(A)$, where $\varphi(k) \to 0$ as $k \to \infty$.

Let $H(x) = P(X_n \le x)$. Let $x_0 = \sup \{x | H(x) < 1\}$. For each $\xi > 0$ and each integer $n > \xi$, let $c_n(\xi)$ satisfy $P(X_1 > c_n(\xi)) \le \xi n^{-1} \le P(X_1 \ge c_n(\xi))$. Then

$$H^{n}(c_{n}(\xi)) \to e^{-\xi}$$
 (that is, $H(c_{n}(\xi)) = 1 - \xi n^{-1} + o(n^{-1})$) (2)

if and only if $P(X_1 \ge x)/P(X_1 > x) \rightarrow 1$ as $x \uparrow x_0$ and H is continuous at x_0 (see the author [5]). We assume henceforth that (2) holds.

Let $Z_n = \max(X_1, X_2, ..., X_n)$. According to Loynes [4], the only possible limit functions of $P(Z_n \leq c_n(\xi))$ are $\exp(-\alpha\xi)$ for $0 \leq \alpha \leq 1$. We obtain, under Condition C, given below, necessary and sufficient conditions for each limit to occur (Theorem 1). Condition C always holds for φ -mixing processes.

Watson [6], Loynes [4] and Galambos [2] have previously investigated when $P(Z_n \leq c_n(\xi)) \rightarrow \exp(-\xi)$ under various conditions which approximate independence. The methods used here are extensions of those used by Loynes. Examples when $P(Z_n \leq c_n(\xi)) \rightarrow \exp(-\alpha\xi)$ for $\alpha < 1$ are given by the author [5].

In Section 4, we study limits of $P(Z_n \leq d_n)$ for general sequences $\{d_n\}$. Of particular interest are sequences of the form $d_n = a_n x + b_n$. This problem was investigated in the independent case by Gnedenko [3] and de Haan [1]. We also have some results concerning Gnedenko's concepts of relative stability and the law of large numbers.

^{*} Research supported in part by the National Research Council of Canada and done at the Summer Research Institute of the Canadian Mathematical Congress.

G.L. O'Brien

The results given here can easily be modified to apply to minima instead of maxima.

2. The Limit Theorem

Under Condition C stated below, we obtain necessary and sufficient conditions for convergence of $P(Z_n \leq c_n(\xi))$ to each possible limit. C is related to a sufficient condition of Loynes [4] for convergence to the limit $e^{-\xi}$. (His condition was close to that obtained by taking $r_m = m$ and $\Delta(1) = 0$.) We let $Z_{k,l}$ denote

$$\max(X_k, X_{k+1}, \ldots, X_l)$$

(if k > l, let $Z_{k,l} = -\infty$).

A sequence $\{c_n\}$ of real numbers with $c_n < x_0$ is said to satisfy Condition C if there are sequences $\{r=r_m\}$, $\{s=s_m\}$ and $\{t=t_m=rs\}$ of positive integers such that $r \to \infty$, $s \to \infty$, $(t_m)^{-1} t_{m+1} \to 1$ and $rg(s) \to 0$, and such that

$$\Delta(j) \equiv \limsup_{m \to \infty} P(Z_{2,j} \leq c_t, Z_{j+1,s} > c_t | X_1 > c_t) \to 0$$
(3)

as $j \to \infty$.

Remarks. Define

$$\Delta'(j) = \limsup_{m \to \infty} P(Z_{j+1,s} > c_i | X_1 > c_i).$$
(4)

Note that $\Delta(j)$ and $\Delta'(j)$ are decreasing sequences. The first four of the five limits of C can always be met by choosing s = m and r some sufficiently slowly increasing sequence. If $\{X_n\}$ is φ -mixing and lim inf $H^t(c_i) > 0$ (so that lim sup $t P(X_1 > c_i) < \infty$), we then have

$$\Delta(j) \leq \Delta'(j) \leq \limsup P(Z_{j+1,s} > c_i) + \varphi(j)$$

$$\leq \limsup s P(X_1 > c_i) + \varphi(j) = \varphi(j) \to 0 \quad \text{as} \quad j \to \infty .$$

In particular, if $c_n = c_n(\xi)$ for some ξ , C is always valid for φ -mixing processes. Similarly by choosing r = m and s some slowly increasing sequence, the first three and the last limits of C can be met if $P(X_i > c_i | X_1 > c_i) \to 0$ for all i > some i_0 . Then C holds if $g(s) = o(m^{-1})$.

Lemma 1. Fix $j \in \{2, 3, ...\}$ and let $\{t = t_m\}$ be a sequence such that $t_m \to \infty$ and $(t_m)^{-1} t_{m+1} \to 1$. For $\xi > 0$,

$$\limsup_{m \to \infty} P(Z_{2,j} \leq c_t(\xi) | X_1 > c_t(\xi)) = \limsup_{x \uparrow x_0} P(Z_{2,j} \leq x | X_1 > x)$$

and

$$\liminf_{m \to \infty} P(Z_{2,j} \leq c_t(\xi) | X_1 > c_t(\xi)) = \liminf_{x \uparrow x_0} P(Z_{2,j} \leq x | X_1 > x).$$

Proof. Let $\varepsilon > 0$. We may assume without loss of generality that t_m is non-decreasing. Now,

$$P(c_{t_m}(\xi) < X_1 < c_{t_{m+1}}(\xi)) = P(X_1 > c_{t_m}(\xi)) - P(X_1 \ge c_{t_{m+1}}(\xi))$$
$$\leq \left(\frac{t_{m+1}}{t_m} - 1\right) \frac{\xi}{t_{m+1}}$$
$$\leq \varepsilon P(X_1 \ge c_{t_{m+1}}(\xi)),$$

for *m* sufficiently large. For $x < x_0$, pick *m* such that $y \equiv c_{t_m}(\xi) \leq x < c_{t_{m+1}}(\xi)$. For large *x* (and hence large *m*), the above gives

$$P(y < X_1 \leq x) \leq \varepsilon P(X_1 > y)$$

Thus (if ε is close to 0),

$$\begin{split} P(Z_{2,j} \leq x | X_1 > x) \leq & \left(\frac{P(X_1 > y)}{P(X_1 > x)} \right) \left(\frac{P(Z_{2,j} \leq x, X_1 > y)}{P(X_1 > y)} \right) \\ \leq & \frac{1}{1 - \varepsilon} \left[P(Z_{2,j} \leq y | X_1 > y) + P(y < Z_{2,j} \leq x) / P(X_1 > y) \right] \\ \leq & (1 + 2\varepsilon) \left[P(Z_{2,j} \leq y | X_1 > y) + (j - 1)\varepsilon \right] \\ \leq & P(Z_{2,j} \leq y | X_1 > y) + 2j\varepsilon. \end{split}$$

This proves the first statement, since ε can be chosen arbitrarily small. On the other hand, with x and y as above,

$$\begin{split} P(Z_{2,j} \leq x | X_1 > x) \geq & \frac{P(Z_{2,j} \leq x, X_1 > x)}{P(X_1 > y)} \\ \geq & \frac{P(Z_{2,j} \leq y, X_1 > y) - \varepsilon P(X_1 > y)}{P(X_1 > y)} \\ = & P(Z_{2,j} \leq y | X_1 > y) - \varepsilon, \end{split}$$

which proves the second statement.

We are now ready to prove the main theorem. Let

$$\beta(j) = \lim_{x \uparrow x_0} \sup P(Z_{2,j} \leq x | X_1 > x)$$

and let $\gamma(j) = \liminf_{x \uparrow x_0} P(Z_{2,j} \leq x | X_1 > x)$. Let $\beta = \lim_{j \to \infty} \beta(j)$ and $\gamma = \lim_{j \to \infty} \gamma(j)$.

Theorem 1. Let $\xi > 0$ and suppose $\{c_n(\xi)\}$ satisfies Condition C. Then

$$\limsup_{n \to \infty} P(Z_n \leq c_n(\xi)) = e^{-\gamma \xi}$$

and

$$\liminf_{n\to\infty} P(Z_n \leq c_n(\xi)) = e^{-\beta\xi}.$$

Thus

$$\lim_{n\to\infty} P(Z_n \leq c_n(\xi)) = e^{-\alpha\xi}$$

if and only if $\alpha = \beta = \gamma$.

Proof. Write c_n for $c_n(\xi)$. Since $rg(s) \to 0$, it can be shown that there is a sequence $\{q=q_m\}$ of positive integers such that $rg(q) \to 0$ and $qs^{-1} \to 0$. Define $p=p_m=s-q$. By the proof of Lemma 1 of Loynes [4], it is enough to show the results hold with $P(Z_n \leq c_n)$ replaced by $P(Z_p \leq c_l)^r$. Fix j. By the definition of $\Delta(j)$,

$$p P(X_{1} > c_{t}, Z_{2,j} \leq c_{t}) - p P(X_{1} > c_{t}, Z_{2,p} \leq c_{t})$$

$$= p P(X_{1} > c_{t}, Z_{2,j} \leq c_{t}, Z_{j+1,p} > c_{t})$$

$$\leq \xi r^{-1} \Delta(j) + o(r^{-1}).$$
(5)

Also,

$$P(Z_{p} > c_{t}) = \sum_{i=1}^{p} P[X_{i} > c_{t}, Z_{i+1,p} \le c_{t}]$$

$$\ge p P[X_{1} > c_{t}, Z_{2,p} \le c_{t}].$$
(6)

By (5) and (6),

$$p P(X_1 > c_t, Z_{2,j} \leq c_t) - \xi r^{-1} \Delta(j) - o(r^{-1})$$

$$\leq p P(X_1 > c_t, Z_{2,p} \leq c_t)$$

$$\leq P(Z_p > c_t)$$

$$\leq (p-j) P(X_1 > c_t, Z_{2,j} \leq c_t) + j P(X_1 > c_t)$$

$$\leq p P(X_1 > c_t, Z_{2,j} \leq c_t) + o(r^{-1}).$$

By the above and by (2),

$$(1 - \xi r^{-1} P(Z_{2,j} \leq c_t | X_1 > c_t) + \xi r^{-1} \Delta(t) + o(r^{-1}))^r \geq P(Z_p \leq c_t)^r \geq (1 - \xi r^{-1} P(Z_{2,j} \leq c_t | X_1 > c_t) + o(r^{-1}))^r,$$

which implies that

$$\exp[-\xi P(Z_{2,j} \le c_t | X_1 > c_t) + \xi \Lambda(j)] + o(1)$$

$$\ge P(Z_p \le c_t)^{r} \ge \exp[-\xi P(Z_{2,j} \le c_t | X_1 > c_t)] + o(1).$$

Since *j* is arbitrary, the results follow, using Lemma 1.

Suppose C holds with $\Delta(j)=0$ for some j. For $i \ge j$, $\beta(i)=\beta$ and $\gamma(i)=\gamma$. Thus the calculation of β and γ depends only on the j-dimensional distributions of $\{X_n\}$. This happens in particular if $\{X_n\}$ is φ -mixing and $P(X_i > x | X_1 > x) \to 0$ as $x \uparrow x_0$ for all i > j, since in this case we have for k > j that

$$\Delta(j) \leq \Delta'(j) \leq \sum_{i=j+1}^{k} \limsup P(X_i > c_i | X_1 > c_i)$$

+
$$\limsup P(Z_{k+1,s} > c_i | X_1 > c_i) \leq \varphi(k).$$
(7)

Because k is arbitrary, $\Delta(j)=0$. The case j=1 generalizes the final paragraph of Loynes [4].

3. Bounds on α

Suppose $P(Z_t \leq c_t(\zeta)) \rightarrow e^{-\alpha \zeta}$. By Loynes, or by Theorem 1 if C holds, $0 \leq \alpha \leq 1$. We did not use C for the lower bound on $\lim P(Z_n \leq c_n)$ in the proof of Theorem 1. Consequently $\alpha \leq \beta$ for all uniformly mixing processes. If $P(X_i > x | X_1 > x) \rightarrow \delta > 0$ for some i > 1, then $\alpha \leq \beta(i) \leq 1 - \delta < 1$.

The next lemma leads to a positive lower bound for α in many cases. We call a sequence of events stationary if the sequence of their indicator functions is strictly stationary. Let A^* denote the complement of A.

Lemma 2. Let $\{A_n\}$ be a stationary sequence of events. For j > 1,

$$jP(A_2A_3...A_j|A_1^*) \ge P(A_{j+1}A_{j+2}...A_{2j-1}|A_1^*).$$

60

Proof. We have

$$P(A_1^* A_{j+1} \dots A_{2j-1}) = \sum_{i=1}^{j} P(A_1^* A_i^* A_{i+1} \dots A_{2j-1})$$
$$\leq \sum_{i=1}^{j} P(A_i^* A_{i+1} \dots A_{j+i-1})$$
$$= j P(A_1^* A_2 \dots A_j),$$

which gives the required result.

Theorem 2. For any uniformly mixing stationary process $\{X_n\}$,

 $\limsup_{n \to \infty} P(Z_n \leq c_n(\xi)) \leq \exp(-\gamma_0 \xi) \quad where \quad \gamma_0 = \sup_j \left[j^{-1} (1 - \Delta'(j)) - \Delta(j) \right].$

(*Recall* (4).)

Proof. By the proof of Theorem 1 and by Lemma 2 with $A_i = \{X_i \leq c_t(\xi)\}$ for large t,

$$\begin{split} \gamma &\geq \liminf_{m \to \infty} P(Z_{2,j} \leq c_t | X_1 > c_t) - \Delta(j) \\ &\geq j^{-1} \liminf_{m \to \infty} P(Z_{j+1,2j-1} \leq c_t | X_1 > c_t) - \Delta(j) \\ &\geq j^{-1} (1 - \Delta'(j)) - \Delta(j). \end{split}$$

If $\Delta'(j)=0$ for some *j*, then by Theorem 2, $\limsup P(Z_n \leq c_n(\xi)) \leq \exp(-\xi/j)$. This is the case if the conditions above (7) hold. In particular, $\Delta'(j)=0$ if $\{X_n\}$ is *j*-dependent (see Watson [6]). One of our examples [5] shows how to obtain any limit $e^{-\alpha\xi}$ for $j^{-1} \leq \alpha \leq 1$ in the *j*-dependent case.

In the case of φ -mixing we can obtain the result $\alpha > 0$ without any further assumptions. We first need the following lemma.

Lemma 3. If $\{Y_n\}$ is φ -mixing (not necessarily stationary) and if $A_i \in \mathfrak{B}(Y_{ik})$ for i = 1, 2, ..., then

$$|P(A_1 A_2 \dots A_l) - P(A_1) P(A_2) \dots P(A_l)| < \varphi(k).$$

Proof. First note that for any $A \in \mathfrak{B}(Y_1, ..., Y_m)$ and $B \in \mathfrak{B}(Y_{m+k}, Y_{m+k+1}, ...)$, $|P(AB) - P(A) P(B)| = |P(A^*B^*) - P(A^*) P(B^*)| \le P(A^*) \varphi(k)$. Thus,

$$\begin{split} |P(A_1 A_2 \dots A_l) - P(A_1) P(A_2) \dots P(A_l)| \\ &\leq |P(A_1 A_2 \dots A_l) - P(A_1) P(A_2 A_3 \dots A_l)| \\ &+ P(A_1) |P(A_2 A_3 \dots A_l) - P(A_2) P(A_3 \dots A_l)| \\ &+ \dots + P(A_1) \dots P(A_{l-2}) |P(A_{l-1} A_l) - P(A_{l-1}) P(A_l)| \\ &\leq P(A_1^*) \varphi(k) + P(A_1) P(A_2^*) \varphi(k) + \dots + P(A_1) \dots P(A_{l-2}) P(A_{l-1}^*) \varphi(k) \\ &= \varphi(k) [1 - P(A_1) P(A_2) \dots P(A_{l-1})], \end{split}$$

which gives the result.

Theorem 3. If $\{X_n\}$ is a φ -mixing stationary process, then $\limsup P(Z_n \leq c_n(\xi)) < 1$.

G.L. O'Brien

Proof. Let k be such that $\varphi(k) < (2e)^{-1}$. Let η be sufficiently large that $e^{-\eta/k} < (2e)^{-1}$. By Lemma 3, $P(Z_n \leq c_n(\eta)) \leq H^{n/k}(c_n(\eta)) + \varphi(k) < e^{-1}$ for large n. Thus, $\limsup P(Z_n \leq c_n(\eta)) \leq e^{-1} = e^{-\eta/\eta}$. By Theorem 1, $\limsup P(Z_n \leq c_n(\xi)) \leq e^{-\xi/\eta}$.

4. Limits for General Sequences

The preceding results may often be used to find $\lim_{n} P(Z_n \leq d_n)$ for any sequence $\{d_n\}$.

Theorem 4. (a) Suppose $P(Z_n \leq c_n(\xi)) \rightarrow \exp(-\alpha\xi)$ for all $\xi > 0$. If $\alpha > 0$, then $H^n(d_n) \rightarrow l$ if and only if $P(Z_n \leq d_n) \rightarrow l^{\alpha}$. If $\alpha = 0$, $H^n(d_n) \rightarrow l > 0$ implies $P(Z_n \leq d_n) \rightarrow 1$.

(b) Conversely, under Condition C, $H^n(d_n) \to l \in (0, 1)$ and $P(Z_n \leq d_n) \to l^{\alpha}$ together imply $P(Z_n \leq c_n(\xi)) \to \exp(-\alpha \xi)$.

Proof. Assume $H^n(d_n) \to l > 0$ and $\alpha > 0$. Let ξ be such that $l > e^{-\xi}$. Since $H^n(c_n(\xi)) \to e^{-\xi}$, $c_n(\xi) < d_n$ for large *n*. Therefore $P(Z_n \leq d_n) \geq P(Z_n \leq c_n(\xi)) \to e^{-\alpha\xi}$. Therefore lim inf $P(Z_n \leq d_n) \geq l^{\alpha}$. The rest of the proof is similar.

We give an example with $\varphi(2) = g(2) = 0$ for which $P(Z_n \leq d_n)$ converges but $H^n(d_n)$ and $P(Z_n \leq c_n(\xi))$ do not converge. Let X_1, X_3, X_5, \ldots be independent random variables, each uniform on (0, 1). Let $X_{2n} = 2 - 3(2^{-k-1}) - X_{2n-1}$ when $1 - 2^{-k} \leq X_{2n-1} < 1 - 2^{-k-1}$. X_{2n} is also uniform on (0, 1). Let

Then

$$F(x) = P(X_1 \leq x, X_2 \leq x).$$

$$F(x) = 1 - 2^{-k}$$
 if $1 - 2^{-k} \le x < 1 - 3(2^{-k-2})$ and $F(x) = 2x - 1 + 2^{-k-1}$

if $1-3(2^{-k-2}) \leq x < 1-2^{-k-1}$. Thus F is a continuous function with alternating sections of slope 0 and slope 2. Let $d_n = \inf\left\{x: F(x) > 1-\frac{1}{n}\right\}$. Then $P(Z_n \leq d_n) = (F(d_n))^{n/2} + o(1) \rightarrow e^{-\frac{1}{2}}$. On the other hand, $H(d_n) = d_n$. If $n = 2^k$ for some k, $d_n = 1-3(2^{-k-2})$ so that $H(d_{2^k})^{2^k} \rightarrow e^{-\frac{1}{4}}$. If $n = 2^k - 1$,

$$d_n = 1 - (2^{k+1} - 1)/(2^{k+1}(2^k - 1)) = 1 - 2^{-k} + o(2^{-k}),$$

so that $H(d_{2^{k-1}})^{2^{k-1}} \to e^{-1}$. Thus $H^n(d_n)$ does not converge. By Theorem 4a, $P(Z_n \leq c_n(\xi))$ cannot converge. If we now let $d'_n = c_n(1)$, we see that $H^n(d'_n) \to e^{-1}$ while $P(Z_n \leq d'_n)$ does not converge. In order to achieve stationarity, we modify the process as follows: let J be a random variable which is independent of $\{X_n\}$ and takes values 0 and 1 with equal probability. If J=0, make no change, but if J=1, replace X_n by X_{n+1} for each n.

The above example can be modified in such a way that F has alternating sections of slope $\varepsilon > 0$ and $2-\varepsilon$. Then let H be any strictly increasing distribution such that $F(H(a_n x + b_n))^n \to \Phi(x)$ for some extreme value distribution Φ (see Gnedenko [3]). Let $Y_n = H^{-1}(X_n)$. Then $P(\max(Y_1, \ldots, Y_n) \leq a_n x + b_n) \to \Phi^{\frac{1}{2}}(x)$ but $H^n(a_n x + b_n)$ does not converge.

The process $\{X_n\}$ is said to satisfy the law of large numbers if there is a sequence of constants $\{A_n\}$ such that $P[|Z_n - A_n| > \varepsilon] \to 0$ for all $\varepsilon > 0$. It is said to be relatively stable if there is a sequence of positive constants $\{B_n\}$ such that

$$P[|Z_n - B_n| > \varepsilon B_n] \to 0$$
 for all $\varepsilon > 0$.

These concepts were introduced by Gnedenko [3]. The next theorem shows in particular that these properties hold for φ -mixing processes if and only if they hold for the i.i.d. process with the same marginal distribution.

Theorem 5. Assume $\gamma > 0$ and $\{c_n(\xi)\}$ satisfies C for all $\xi > 0$. For any sequence $\{d_n\}, P(Z_n \leq d_n) \rightarrow 1 \text{ (or } 0) \text{ if and only if } H^n(d_n) \rightarrow 1 \text{ (or } 0, \text{ respectively}).$

Proof. Assume $P(Z_n \leq d_n) \rightarrow 1$. Now, $\limsup P(Z_n \leq c_n(\xi)) = e^{-\gamma\xi} < 1$ for all $\xi > 0$. Thus $d_n > c_n(\xi)$ for large *n*. Therefore $\liminf H^n(d_n) \geq \liminf H^n(c_n(\xi)) = e^{-\xi}$; thus, $H^n(d_n) \rightarrow 1$. The rest of the proof is similar.

Remarks. The assumption that H is continuous at x_0 only serves to avoid trivialities. The assumption that $P(X_1 \ge x)/P(X_1 > x) \rightarrow 1$ may be dropped by making some minor modifications. Condition C must be changed to C' by replacing (3) by $\Delta'(j) \rightarrow 0$.

The conclusions of Theorem 1 take the form (for example)

$$\limsup_{n\to\infty} P(Z_n \leq c_n(\xi)) - H^{n\gamma}(c_n(\xi)) = 0.$$

This is proved by the methods of the author [5]. All φ -mixing processes are still included. Theorem 5 remains valid under these circumstances.

The stronger Condition C' mentioned above has the following property: if $\{c_n\}$ is a sequence such that $\limsup H^n(c_n) < 1$ and $\liminf H^n(c_n) > 0$ and $\{c_n\}$ satisfies C', then any sequence $\{d_n\}$ such that $\limsup H^n(d_n) < 1$ and $\liminf H^n(d_n) > 0$ also satisfies C'.

We are grateful to Professor D.L. McLeish and the referee for some useful comments, particularly in connection with Lemma 2.

References

- De Haan, L.: On regular variation and its application to weak convergence of sample extremes. Mathematical Centre Tracts 32, Amsterdam 1970
- Galambos, J.: On the distribution of the maximum of random variables. Ann. Math. Statist. 43, 516-521 (1972)
- Gnedenko, B.V.: Sur la distribution du terme maximum d'une série aléatoire. Ann. Math. 44, 423-453 (1943)
- 4. Loynes, R. M.: Extreme values in uniformly mixing stationary stochastic processes. Ann. Math. Statist. **36**, 993-999 (1965)
- 5. O'Brien, G.L.: Limit theorems for the maximum term of a stationary process. To appear. Ann. Probab. 2, 540-545 (1974)
- Watson, G.S.: Extreme values in samples from *m*-dependant stationary stochastic processes. Ann. Math. Statist. 25, 798-800 (1954)

G.L. O'Brien York University Faculty of Arts Department of Mathematics Downsview, Ontario M3J 1P3 Canada

(Received September 23, 1973; in revised form June 6, 1974)