
Z. Wahrscheinlichkeitstheorie verw. Gebiete 30, 57--63 (1974) 
�9 by Springer-Verlag 1974 

The Maximum Term 
of Uniformly Mixing Stationary Processes 

G.L. O'Brien* 

Let {X,} be a uniformly (or strongly) mixing stationary process and let 
Z ,=max(X1,  Xz, ..., X,). For 4>0,  let c , (4)=in f{xeR:  nP(X1 >x)<4}.  Under 
a condition which holds for all (p-mixing processes, necessary and sufficient 
conditions are given for P(Z,<c,(~)) to converge to each possible limit. Some 
conditions for convergence of P (Z,__< d,) for any sequence d, are also obtained. 

1. Introduction 

Let {Xn} be a strictly stationary process. Assume {X,} is uniformly (or strongly) 
mixing with mixing function g: that is, g(k)-~O as k-->~ and if A ~ ( X  1 . . . .  , Xm) 
and B~3(Xm+k,  Xm§ ...), then 

I P (AB) - P (A) P (B)[ =< g (k). (1) 

We will sometimes assume further that {X,} is ~p-mixing, that is, (1) holds with the 
right side replaced by q)(k)P (A), where (p (k)~ 0 as k--* oe. 

Let H ( x ) = P ( X , < x ) .  Let x o = s u p { x l H ( x ) < l  }. For each ~>0 and each 
integer n > 4, let c, (4) satisfy P (X 1 > c, (~)) < ~ n-1 < p (X1 > c, (4)). Then 

H"(c,(~))--,e -~ (that is, H(c,(4))-- l - 4 n  -1 +o(n-a)) (2) 

if and only if P (X 1 > x)/P (X 1 > x) --, 1 as x T Xo and H is continuous at x o (see the 
author [5]). We assume henceforth that (2) holds. 

Let Z , , = m a x ( X  1, X 2, ..., 32,). According to Loynes [4], the only possible 
limit functions of P(Z,<c,(4))  are exp( -e~)  for 0<e_<l .  We obtain, under 
Condition C, given below, necessary and sufficient conditions for each limit to 
occur (Theorem 1). Condition C always holds for (p-mixing processes. 

Watson [6], Loynes [4] and Galambos [2] have previously investigated 
when P(Z,, < c,(4))--, e x p ( -  4) under various conditions which approximate 
independence. The methods used here are extensions of those used by Loynes. 
Examples when P (Z, < c, (4)) ~ exp ( -  ~ 4) for ~ < 1 are given by the author [5]. 

In Section4, we study limits of P (Z ,<d , )  for general sequences {dn}. Of 
particular interest are sequences of the form d,,=a, x+b,,. This problem was 
investigated in the independent case by Gnedenko [3] and de Haan [1]. We also 
have some results concerning Gnedenko's concepts of relative stability and the 
law of large numbers. 
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The results given here can easily be modified to apply to minima instead of  
maxima. 

2. The Limit Theorem 

Under  Condi t ion C stated below, we obtain necessary and sufficient condit ions 
for convergence of P(Z, ,< c,,(4)) to each possible limit. C is related to a sufficient 
condit ion of Loynes [-4] for convergence to the limit e -  e. (His condit ion was close 
to that  obtained by taking r m = m and A (1)= 0.) We let Zk, t denote  

max(Xk, Xk + l . . . . .  X1) 
(if k >  I, let Zk, t = -- oe ). 

A sequence {c.} of real numbers  with c. < x o is said to satisfy Condition C if 
there are sequences {r = r,.}, {s = sin} and {t = t,. = rs} of positive integers such that  
r-~ oe, s--, oo, (t~)- 1 t,.+ 1 --' 1 and r g (s) ~ 0, and such that  

A (j) = lim sup P (Z2,j < % Z~+l,~ > c~IX 1 > c,) ~ 0 (3) 
m~oo 

as  j--+ (X3. 

Remarks.  Define 
A' (j) = lira sup P (Z j+ 1,~ > c~lX 1 > q),  (4) 

?rl~ o9 

Note  that A (j) and A'(j) are decreasing sequences. The first four of the five limits 
of C can always be met by choosing s-- m and r some sufficiently slowly increasing 
sequence. If {X,} is (p-mixing and lira i n fW (c,) > 0 (so that  lim sup t P (X 1 > c~) < ~ ) ,  
we then have 

A (j) < A' (j) -< lim sup P (Zj + 1,2 > ct) + (P (J) 

< l i m s u p  s P ( X  1 > c t ) + ( p ( j ) = ( p ( j ) ~ 0  as j o o o .  

In particular, if c, = c.(4) for some 4, C is always valid for (p-mixing processes. 
Similarly by choosing r = m and s some slowly increasing sequence, the first three 
and the last limits of C can be met if P ( X ~ > c t I X  ~ > c t ) ~ 0  for all i>  some i 0. 
Then  C holds if g(s)= o(m-x). 

Lemma 1. Fix  j~{2, 3 . . . .  } and let {t=tm} be a sequence such that tm---)~ and 
(t,~) -1 t , . + l ~  1. For 4 > 0 ,  

lim sup P(Z2, j < ct(4)lX 1 > c t (4)) = lim sup P(Z2, j__< x IX 1 > x) 
m~ oo x~ xo 

and 
lim infP(Z2, j<=ct(4)lX 1 > ct(~))=lim inf P ( Z  2 j-< x I X  1 >x) .  

Proof. Let e > O. We may assume without  loss of generality that t m is non- 
decreasing. Now, 

P (ct~ (~) < X 1 < ct~+, (4)) = P (X1 > ct~ (~)) - P (X1 ~ Ct.,+, (~)) 

< ( t m + e _ _ _ l )  ~ 
= \ t~ tin+ 1 

<-_ e n (X  1 > ct~+, (~)), 
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for m sufficiently large. For x < x  o, pick m such that y=-ctm(~)<_x<ct,,+,(~ ). For 
large x (and hence large m), the above gives 

P ( y < X I  ~x)<=eP(XI > Y). 
Thus (if e is close to 0), 

P(Z2 JK-XlXl > x ) ~  ( P(X~ > y) t (-P(Z2j <=x' XI > Y)~ 
P (X 1 > x ) I  , - \ P ( X  1 > y)  ] 

1 
< __ [P(Z2,j<=yIX 1 >y)+P(yKZ2, jK=x) /P(X,  >y)] 
- - 1 - ~  

<(1 +2s)[P(Z2,j<=y]X ~ >y) + ( j -  1)el 

<=P(Z2,j <=ylX ~ >y)+2 j~ .  

This proves the first statement, since e can be chosen arbitrarily small. On the 
other hand, with x and y as above, 

> P(Z2, j~  x, X 1 > x) 
P ( Z 2 , j ~ x I X  1 > x ) =  p(xa >y) 

~ P (Z2,j K= Y, X1 > y) - e P (X1 >y) 
P(Xl  > y) 

= P(Z2,j<=ylX a > y ) - e ,  

which proves the second statement. 

We are now ready to prove the main theorem. Let 

fi (j) = lira sup P (Z2,j < x lX l > x) 
x ~ x o  

and let 7(j)=lim infP(Z2,j<_xlX 1 >x). Let f l= !im tiff) and 7= !im 7(J). 
x'[  xo  j ~  oo j ~  co 

Theorem 1. Let ~ >0 and suppose {c,(~)} satisfies Condition C. Then 

lira sup P(Z,  < c, (4)) = e- ~ 
n ~ o o  

and 

Thus 

lira inf P (Z. <= c, (~)) = e- ~ r 

l imP(Z.<c, ,(~.))=e -~r 

if and only if c~ = fl = 7. 

Proof Write c, for c,(~). Since rg(s) ~ O, it can be shown that there is a sequence 
{q = qm} of positive integers such that rg (q) --* 0 and q s- 1 ~ 0. Define p =Pm = s -  q. 
By the proof of Lemma 1 of Loynes [4], it is enough to show the results hold with 
P(Z,  < c,) replaced by P(Zp <__ ey.  Fix j. By the definition of A (j), 

p P ( X  1 > c,, Z2,j K=ct)-p P (X  1 > ct, Z2,p~ Ct) 
=P P(X1 > 6 ,  Z2,j <=ct, Zj+l,v>ct) (5) 

<= ~r -1 A (j)+o(r-1).  
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Also, 
P 

P(Zp>ct)= ~, P[Xi>ct ,  Zi+l ,p~Ct3 
i=i  (6) 

>=p P[X1 >ct, Z2,p<ct]. 
By (5) and (6), 

P P(XI >ct, Z2 , j<c t ) -  ~r -1 A ( j ) - o ( r  -1) 

< p P(X1 > c .  Z2,p< c ~) 

<= P (Zp > c,) 

< (P - j )  P (X1 > ct, Z2, j < c~) + j P (X 1 > c~) 

<=p P(XI > ct, Z2,j <_ct) + o(r-1). 

By the above and by (2), 

(1 - ~ r  -1 P ( Z 2 , j < q I X  1 >ct )+  ~r -~ A ( j )+o(r-1) f  

>=P(Zp<=ct)'>=(1 - ~ r  -1 P(Z2,i<~c~[X 1 > c,) + o(r-  1)) r, 

which implies that 

exp [ -  ~P(Z2, j < c,[X 1 > ct) + ~A (j)] + o(l) 

> P ( Z v < c t ) " > e x p [ -  ~P(Zz , j<ct[X x >ct) ] +o(1).  

Since j is arbitrary, the results follow, using Lemma 1. 

Suppose C holds with A ( j )=0 for some j. For i>j,  fl(i)=fl and ?(i)=?. Thus 
the calculation of fi and y depends only on the )-dimensional distributions of {X,}. 
This happens in particular if {X,} is ~0-mixing and P ( X  i > x lX~ > x ) ~  0 as x Tx o 
for all i >L since in this case we have for k > j  that 

k 
A (j) < A' (j) < ~ lim sup P (X~ > c~]X 1 > ct) 

~=s+~ (7) 

+ l im  sup  P(Z  k+ 1,s > Ct IX1 > c t) ~ (P (k). 

Because k is arbitrary, A (])= 0. The case j =  1 generalizes the final paragraph of 
Loynes [4]. 

3. Bounds on 

Suppose P(Z~ < c t (~)) ~ e-~r By Loynes, or by Theorem 1 if C holds, 0_< c~ < 1. 
We did not use C for the lower bound on lira P(Z,  < c,) in the proof of Theorem i. 
Consequently ~ < fl for all uniformly mixing processes. If P(Xi > xlX1 > x) --, 6 > 0 
for some i> 1, then c~<fl(i)< 1 - 6 <  1. 

The next lemma leads to a positive lower bound for c~ in many cases. We call 
a sequence of events stationary if the sequence of their indicator functions is 
strictly stationary. Let A* denote the complement of A. 

Lemma 2. Let {A,} be a stationary sequence of events. For j >  1, 

j P(A 2 A3 ... Aj[A~) > P(Aj+ 1 A j+2. . .  A2j- 1 ]A~*). 
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Proof We have 
J 

P(A* A j+l . . .  A2j_I)= 2 P(A~ A* Ai+l ... A2j_I) 
i ~ 1  

J 
<= ~ P(A* Ai+l ... Aj+i_ l) 

i = 1  

=jP(A*  A2. . .  A j), 

which gives the required result. 

Theorem 2. For any uniformly mixing stationary process {X,}, 

lim supP(Z ,<c , (~ ) )<exp( -~o~  ) where 7o=SUp[ j - l (1 -A ' ( j ) ) -  A(j)]. 
t |  ~ o~3 J 

(Recall (4).) 

Proof By the p roof  of Theorem 1 and by L emma  2 with A i = {X i < c t (4)} for 
large t, 

y > lim infP(Z2,j< c~[X 1 > ct)-  A (j) 
m ~  oo  

j - 1 lim inf P (Z~ + 1, a j - 1 < ct IX1 > ct) - A (j) 

> j -  I ( 1 -  A' (j))- A (j). 

If A ' ( j )=0  for some j, then by Theorem 2, lim supP(Z,<c, (~) )<exp(-~/ j ) .  
This is the case if the condit ions above (7) hold. In particular, A ' ( ] )=0  if {X,} is 
j -dependent  (see Watson [6]). One of our  examples [5] shows how to obtain any 
limit e -  ~ for j -  1 < ~ < 1 in the j -dependent  case. 

In the case of q~-mixing we can obtain the result ~ > 0 without  any further 
assumptions.  We first need the following lemma. 

L e m m a  3. I f  { Y,} is ~o-mixing (not necessarily stationary) and if Aie~B(Yi, ) 
for i= 1, 2, . . . ,  then 

IP(A1 A 2 ... At) -P(A1)P(Az) . . .  P(AI)[<~o(k). 

Proof First note  that for any Ae~B(Y 1 . . . . .  Y,,) and Be~(Y,,+k, Y,,+k+1, ...), 
[P(AB)-  P(A) P(B)I = IP(A* B * ) -  P(A*) P(B*)I _-< P(A*) q~(k). Thus, 

[P(A 1 A2 ... A l ) -  P(A1) P(A2) ... P(Al)[ 

_-<IP(A~ A 2 ... A~)- P(A 1) P(A 2 A 3 ... A,)[ 

+P(AO [P(A2 A3 ... AI) -P(A2)P(A3 ... At)[ 

+...  + P(A~) ... P(A z_ 2) [P(Az-a Al) - P(Al-1)  P(AI)[ 

~ P(A*) go(k) + P(Ai) P(A*) q~(k)+ . . - + P ( A  0 ... P(A1_2) P ( A S  ~ ) q~(k) 

= q~ (k)[1 - P(A 0 P(A2) ... P(A l_ 1)], 

which gives the result. 

Theorem 3. I f  { X,} is a (p-mixing stationary process, then lim sup P(Z, <= c, (4))< 1. 
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Proof Let k be such that r -1. Let q be sufficiently large that 
e-"/k<(Ze) -~. By Lemma3,  P(Z,<c.(rl))<H"/k(cn(tl))+q)(k)<e -1 for large n. 
Thus, lim sup P(Z,  < c. (r/)) < e -~ = e-"/". By Theorem 1, lim sup P(Z. < e. (0) < e- r 

4. Limits for General Sequences 

The preceeding results may often be used to find lira P (Z. =< d.) for any sequence 
{d.}. 

Theorem 4. (a) Suppose P (Z, < e, (0) --+ exp ( -  ~ {) for all ~ > O. I f  ~ > O, then 
H" (d,) --+ I if and only if P (Z, < d,) --+ l ~. I f  ~ = O, H" (d,) --+ l > 0 implies P (Z, < d,) ~ 1. 

(b) Conversely, under Condition C, H" (d,) ~ l e (0, 1) and P (Z, < d,)-+ l ~ together 
imply P(Z, < %(0)--+ e x p ( -  a 0.  

Proof Assume H"(d.)--+ l > 0  and c~>0. Let { be such that l > e  -r Since 
H"(c,({))+ e -~, c , ({)<d,  for large n. Therefore P(Z,<d.)>P(Z,<c,({))- -+e -~ .  
Therefore lim inf P (Z, < d,) > l ". The rest of the proof is similar. 

We give an example with (p (2)= g(2)=0 for which P(Z.  < d,) converges but 
H"(d,) and P(Z,<c,({))  do not converge. Let X I , X a , X  s . . . .  be independent 
random variables, each uniform on (0, 1). Let XZ,=2- -3 (2 -k -1 ) - -X2 ,_ l  when 
1 - - 2 - k < x 2 , _ l  < 1 --2 -k-1. X2, is also uniform on (0, 1). Let 

Then F(x) = P(X  1 <= x, X 2 < x). 

F ( x ) = l - 2  -k if l - - 2 - k < x < l - - 3 ( 2  -k-2) and F ( x ) = 2 x - l + 2  -k-1 

if 1 - 3 (2- k- 2) < X < 1,-- 2-  k- 1. Thus F is a continuous function with alternating 

of slope 0 and slope 2. Let d .= in f~x :  F(x)>  1 - 1 ~ .  Then P(Z.<dn)= sections 
t 

(F(d,))"/Z+o(1)~e -~. On the other hand, H(d,)=d,.  If n = 2  k for some k, 
d, = 1 - 3 (2- k- Z) SO that H(dzk) 2k --+ e -  �88 If n = 2 k -  1, 

d, = 1 - (2 k +1 _ 1)/(2 k +1 (2 k _ 1)) = 1 - 2-k + O (2- k), 

SO that H(dzk_liZ~-l--+e -1. Thus H"(d,) does not converge. By Theorem4a,  
P(Z,<c.({))  cannot converge. If we now let d',=c,(1), we see that H"(d'.)--+e -1 
while P(Z,<d'.) does not converge. In order to achieve stationarity, we modify 
the process as follows: let J be a random variable which is independent of {X,} 
and takes values 0 and 1 with equal probability. If J = 0, make no change, but if 
J =  1, replace X, by X.+ 1 for each n. 

The above example can be modified in such a way that F has alternating 
sections of slope e > 0 and 2 - ~. Then let H be any strictly increasing distribution 
such that F ( H ( a , x + b . ) ) " ~ ( x )  for some extreme value distribution q~ (see 
Gnedenko [3]). Let Y, = H -  1 (X.). Then P(max(Y1, ..., Y,) < a. x + b,) ~ q}~*(x) but 
H" (a. x + b.) does not converge. 

The process {X,} is said to satisfy the law of large numbers if there is a sequence 
of corrstants {A,} such that P [ I Z , - A , I  >e]--+0 for all e>0.  It is said to be rela- 
tively stable if there is a sequence of positive constants {B,} such that 

P [ I Z . - B ~ I > e B . ] o O  for all e>O. 
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These concepts were introduced by Gnedenko [3]. The next theorem shows in 
particular that these properties hold for q~-mixing processes if and only if they 
hold for the i.i.d, process with the same marginal distribution. 

Theorem 5. Assume 7 > 0 and {c.(4)} satisfies C for all 4 > O. For any sequence 
{d.}, P (Z. < d.) -~ 1 (or O) if and only if H" (d.) ~ 1 (or O, respectively). 

Proof Assume P (Z. < d.) --* 1. Now, lim sup P (Z. < e. (4)) = e-  ~ ~ < 1 for all 4 > 0. 
Thus d. > c, (4) for large n. Therefore lim inf H" (d.) > lim inf H" (c. (4)) = e-  ~; thus, 
H" (d.) ---, 1. The rest of the proof is similar. 

Remarks. The assumption that H is continuous at x o only serves to avoid 
trivialities. The assumption that P ( X I > x ) / P ( X I > x ) ~ I  may be dropped by 
making some minor modifications. Condition C must be changed to C' by 
replacing (3) by A'(j )~  0. 

The conclusions of Theorem 1 take the form (for example) 

lim sup P (Z. < c. (4))-  H"~ (c. (4)) = 0. 
n - - *  oo 

This is proved by the methods of the author [5]. All ~0-mixing processes are still 
included. Theorem 5 remains valid under these circumstances. 

The stronger Condition C' mentioned above has the following property: if {c.} 
is a sequence such that lira sup H" (G)< 1 and lim infH" (c.)> 0 and {c.} satisfies 
C', then any sequence {d.} such that lira sup H" (d.) < 1 and lim infH" (d.) > 0 also 
satisfies C'. 

We are grateful to Professor D.L. McLeish and the referee for some useful comments, particularly 
in connection with Lemma 2. 

References 
1. De Haan, L.: On regular variation and its application to weak convergence of sample extremes. 

Mathematical Centre Tracts 32, Amsterdam 1970 
2. Galambos, J.: On the distribution of the maximum of random variables. Ann. Math. Statist. 43, 

516-521 (1972) 
3. Gnedenko, B.V.: Sur la distribution du terme maximum d'une s6rie al6atoire. Ann. Math. 44, 

423-453 (1943) 
4. Loynes, R.M.: Extreme values in uniformly mixing stationary stochastic processes. Ann. Math. 

Statist. 36, 993-999 (1965) 
5. O'Brien, G,L.: Limit theorems for the maximum term of a stationary process. To appear. Ann. 

Probab. 2, 540-545 (1974) 
6. Watson, G.S.: Extreme values in samples from m-dependant stationary stochastic processes. Ann. 

Math. Statist. 25, 798-800 (1954) 

G. L. O'Brien 
York University 
Faculty of Arts 
Department of Mathematics 
Downsview, Ontario M3J 1 P3 
Canada 

(Received September 23, 1973; in revised form June 6, 1974) 


