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A Characterization of Regular Solutions 
of a Linear Stochastic Differential Equation 

J. T. Lewis and L.C. Thomas 

w 1. Introduction 

The importance of the Hilbert space structure of wide-sense stationary stoch- 
astic processes was pointed out by Cram6r [1] and Kolmogorov [4]. The evolu- 
tion of a stationary process {At} is described on its space off x by a one-parameter 
group {T~} of unitary operators. The process is regular (completely non-deter- 
ministic) if there is a closed subspace D of ogg x such that the span of the T~-translates 
is dense in 34g x and their intersection is the zero vector. We call the triple (3r 'x, T, D) 
a K-structure. In their investigation of classical wave equations Lax and Phillips [5] 
discovered that scattering processes can be described by a double K-structure which 
which we refer to as an LP-structure. In this paper we consider regular stochastic 
processes which are solutions of a linear stochastic differential equation and show 
that they are characterized by having an LP-structure. This provides an isomor- 
phism between the Hilbert space structure of such a stochastic process and that of a 
scattering process. It is this isomorphism which makes possible the mechanical 
modelling of Brownian motion by arrays of coupled oscillators (see Ford, Kac, and 
Mazur [3] and earlier papers cited by them). We have used these ideas in showing 
how to construct a heat bath for a Langevin equation (Lewis and Thomas [6]). 

In this paper we are concerned only with the Hilbert space structure of the stoch- 
astic processes we refer to. Indeed, in the body of the paper we use the neutral 
term "process" to denote a family {Xt: teR} of linear mappings from a Hilbert 
space J l  into a Hilbert space ~4, ~. If we take 9ff to be L 2 ((L P) of a probability space 
(f2, ~ ,  P) we can interpret the process as a stochastic process over (f2, ~ ,  P) taking 
values in ~ and having zero mean and variance given by the inner product in 9f.  
On the other hand, if we take W to be the Hilbert space of Cauchy data for a wave 
equation with energy norm (see Lax and Phillips [5]) we can interpret the process 
as a scattering process. The abstract version of a linear stochastic differential 
equation is given the neutral name "Langevin equation". 

In w 2 we review results about K-structures, in w 3 we review results about 
LP-structures, and in w 4 we state and prove the characterization of the regular 
solution of a Langevin equation. The central idea is the moving-average represen- 
tation of a K-structure and the special form which this can be given in the special 
case of an LP-structure. 

Notation. Jr, Jg, X ,  K,. . .  will denote separable Hilbert spaces, either real 
or complex. The inner product in these spaces is denoted by ( ' , ' )  and is always 
linear in the second argument; when there is risk of confusion we distinguish the 
inner products in the different spaces by subscripts thus: (.,.)at, (', ')K . . . . .  When- 
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ever I-~q]: i ~ J }  is a collection of subsets of a Hilbert space we denote by V~ the 
smallest closed subspace which contains every member of the collection, and by A ~  
the largest closed subspace which is contained in every member of the collection. 
The Hilbert space of equivalence classes of Borel measurable functions n(-) on R 
taking values in a Hilbert space dV such that ~ IIn(u)Jl~du is finite is denoted by 

R 

L 2 (R, Jr The spaces L 2 ( ( -  oo, 0]; d )  and L 2 ([0, oo); Y )  will be identified in the 
obvious way with closed subspaces of L z (R ;#'). 

w 2. K-Structures 

Let ~ be a separable Hilbert space. Let {T~: t eR}  be a strongly continuous 
one-parameter group of unitary operators on ~tf. Let D be a closed subspace of ~f  
and denote by D t the image of D under T t. The triple (o~, Tt, D) is said to be a 
K-structure if the family {D~: teR}  satisfies the following three conditions: 
(i) D ~ D t  for all t>=0, (ii) VDt=3 f ,  (iii) ADt={O }. An isometry R from ~,~ onto 
L z (R; W) such that 

(R T t h) (u) = (Rh) (u - t) 

is called a translation-representation of {T~} on L2(R; dV'). Lax and Phillips [5] 
proved the following theorem for K-structures; it is closely relate to a result 
obtained earlier by Sinai [10]. 

Theorem 2.1. Let (~,~f, T t, D) be a K-structure. Then there exists a translation- 
representation R: ~ ~ L 2 (R ; JV') of { Tt} in which the image of D is L z ( ( -  o% 0]; JV). 
The dimension of W is uniquely determined by (2,~, T t, D). This is an immediate 
consequence of Mackey's Imprimitivity Theorem [7]. 

The translation-representation can be pulled back to 3r ~ to give a moving- 
average representation. This is most conveniently done using the notion of quasi- 
isometric operator-valued measures introduced by Masani [8]. Let d be the 
pre-ring of intervals (a, b] of R, let IAI denote the Lebesgue measure of AEd. 
A function ~(') on d such that r is a linear mapping from W into dt ~ satisfying 

(~(A1) nl, ~ (A2) n2)~= lal • A21 (nl, n2)~ (*) 

for all A t, A 2 in J and all n 1, n 2 in W is called a quasi-isometric measure over 
(R, d ,  [" I). The integral ~ ~ (du)n (u) of a function n ( . )~L 2 (R; JV) with respect to a 

R 

quasi-isometric measure ~(-) is defined as follows: first consider the case of a 
simple function 

i = 1  

and define ~ ~ (du) n(u) to be ~ ~ (A i) ni. It follows from (*) that t hemap  from the 
R i = l  

simple functions into W defined in this way is an isometry and hence has a unique 
isometric extension ~ to all o fL  z (R; JV') since the simple functions are dense and 3r r 
is complete. We have 

Theorem2.2. Let ~('): j V ~ j / f  be a quasi-isometric measure over (R, J ,  ['[). 
Then there exists a unique isometry ~ of L 2 (R ; ~/') into d f  denoted by 

n(" )w-~ ~ ~ (du) n(u) 
R 
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such that for all A ~ J  and neJff  

~ (du)x~ (u) n = ~ (4) n. 
R 

The image ~ of L 2 (R; Jff) under ~ is given by 

~ e =  V{~(A)n: A ~d ,  n e X } .  

Combining this result with the translation-representation theorem we get the 
moving-average representation: 

Theorem2.3. Let (~,, T t, D) be a K-structure. Let R: ~ ~L2(R;  X )  be a 
translation-representation which maps D onto L 2 ( ( -  oe, 0] ; .A/'). Then there exists 
a quasi-isometric measure ~(.): J f f - - * ~  over (R, J ,  I'D such that the unique iso- 
merry ~: L2(R; jV) ~ j/~ determined by ~(.) is the inverse of R. 

In particular for each h~D 

Tth= i ~(du)(Rh)(u- t ) .  
- o o  

Proof. For each A ~ Y define the linear mapping ~ (A): ~ --* ~ by 

~(A) n = R - I ( z d  ( ' )n) .  

It is easily checked that ~ (.) is a quasi-isometric measure. The isometry ~ which 
it determines agrees with R-1 on the simple functions and hence on the whole of 
L 2 (R; JV'). Written explicitly 

T t h = ~ ~(du)(RTth)(u ) 
R 

--- ~ ~(du)(Rh)(u-  t). 
R 

For h~D the support of (R h)(') lies in ( -  0% 0] and so we may write 

Tth= i ~(du)(Rh)(u- t ) .  

w 3. LP-Struetures 
Let Yg~ be a separable Hilbert space, let {T~: teR}  be a strongly-continuous 

one-parameter group of unitary operators on ~ and let D+ and D_ be a pair of 
orthogonal closed subspaces o f ~ .  Then (~,, T~, D_, D§ is said to be an LP-struc- 
ture if (~,  Tt, D_ ) and (~, T~*,D+) are both K-structures. The subspace 
K = (D_ |  • is very important. We say that the LP-structure is trivial i fK = {0}, 
non-trivial if K @ {0}, and cyclic if V K  t = ~ff where K t denotes the image of K 
under T~. [Each K-structure (YK, T~, D) determines a trivial LP-structure 
(~,  T t, D, Dx)_.] The direct sum of two LP-structures ( ~ ,  Tt, D_,  D+) and 
(J~, Tt, D , D+) is the LP-structure (34" O ~ ,  Tt@~, D_ O D _ ,  D+ (~O+). 

Lemma. A non-trivial LP-structure is either cyclic or the direct sum of a cyclic 
LP-structure and a trivial LP-structure. 
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Proof. Let (J~,, T~, D_, D+) be non-trivial so that K=(D_ OD+) -L is not the 
zero-vector. Let o~fc= VK r If ~ = ~ c  the LP-structure is cyclic. If ~ # o ~  ~ 
then (~,~fc)l # {0}, and ~ is invariant under T t for all t and (o~c) • is invariant under 
T~* for all t so that the orthogonal projection P of ~ onto ~f~ commutes with 
{Tt: tER}. It is easily checked that (P~,, TtP, P D ,  PD+) is a cyclic LP-structure 
and that (Q~, TtQ, Q D ,  QD+) is a trivial LP-structure where Q = 1 - P .  

Lax and Phillips [5] have shown that the restriction of T~ to K is a semi-group 
of contractions which tends strongly to zero as t--. o0. 

Theorem 3.1. Let (~, T,  D ,  19+) be a non-trivial LP-structure, let P+, P be the 
orthogonal projections onto D~+ , D ~ - respectively and for t 2 0  let S~ = P+ T t P . Then 

(i) St annihilates D+ and D and maps K into itself. 

(ii) On K the operators {St: t>0} form a strongly continuous semi-group of 
contractions. 

Off) {St} tends strongly to zero as t--, oo ; for each k e K  

lim S, k = 0. 
t ~ o O  

We sketch the proof; Lax and Phillips [5] give full details. (i) and (ii) are 
straightforward consequences of the definitions. To prove (iii) we use the fact 
that the translates of D+ are dense in ~ .  Thus for every k in K and every e>0  
there exists h in D+ and t o > 0 such that 

Since P+ T t is a contraction 

so that 

IIk- r_tohN <e. 

liP+ Tt(k- T_,o h)] I <e  

IIStk-P+ Tt_to hi[ <e.  

Choose t> to ;  then T~_toheD + and hence IlStkll <e. 
The following result which is a special case of a theorem of Sz-Nagy and 

Foias [11] was proved by Lax and Phillips [5]. We sketch the proof. 

Theorem 3.2. Let {St: t > 0} be a strongly continuous semi-group of contractions 
on a Hilbert space K which tends strongly to zero as t-~ oo. Let B be the generator 
of {St}. Then there exists a Hilbert space X,, a linear mapping A: D ( B ) ~  Y and an 
isometry ~ of K into L 2 (R; Y )  given on D (B) by 

{ o S s  k s < O  
( ~ k ) ( s ) =  - - 

s>O 

which sends S t into right-translation by t followed by restriction to ( -  oo, 0]. 

Proof. Let B be the infinitesimal generator of S t. The domain D(B) of B is 
dense in K and since St, is a contraction the form [-, .] defined on D(B) by 

[k, k] = - (k, B k) K - (B k, k)K 

is non-negative. Let D (B)o be the set of vectors in D (B) for which [k, k] is zero. 
The form [ ' ,  .] induces an inner product (., ")x on D(B)/D(B)o and we define 
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to be the completion of D (B)/D (B) o in the associated norm. Let A be the quotient 
map of D (B) into W. For k in D (B) define 

(Rk)(s)={oS-sk 

Then 

s_<0 

s>0 .  

0 

H(Rk)(s)lp 2 ds= - ~ {(B~_sk, S sk)K+(S~k, BS_~k)ic} ds 
R --cx) 

i d HS ski] 2 ds= IIkll~ 

since limLlS~k(l~=0. Thus R is an isometry from. D(B) into L2(R; d )  which 

extends by continuity to all of K. It is clear from the construction that St goes into 
translation by t followed by restriction to ( -  0% 0]. 

It has been shown by Douglas [2] that the unitary group of translations on 
U(R; ,#') is a minimal unitary dilation of the semigroup RStR -1 so that the 
translates of RK are dense in L 2 (R; JV'): This enables us to get explicit forms for 
the translation' representations of the K-structures associated with a cyclic 
LP-structure (W,, T~, D ,  D+). Let {St: t >0} be the semigroup of contractions on 
K=(D+ @ D )  1 which it determines and let B be its generator. Applying the 
construction of Theorem 3.2 to this we get a translation representation 
R+" J f ~ L 2 ( R ;  JQ) where X+ is the completion of D(B)/D(B)o with respect 
to the norm got from the form 

[k, k] + = - (k, B k)K -- (B k, k)K. 

Denoting the quotient map of D (B) into dV'+ by A+ we have 

(R+k)(s)={A+exp(-sB)k s~O 
s>0.  

This extends to a translation representation of {Tt} on L2(R; W+) in which D+ is 
mapped onto L2([0, 00); X+). Starting with D(B*) in place of D(B) we get a 
translation representation R_: 2/f ~ L 2 (R; Jff)  where ./V is the completion of 
D(B*)/D(B*)o with respectto the norm got from the form 

[k, k]_ = - (k, B* k) - (B* k, k)K. 

Denoting by A the quotient map of D(B*) into W we have 

{o 
( R  k)(s)= _ exp(sB*) s>0 .  

This extends to a translation-representation of {Tt} on L 2 (R; JU_) in which D_ is 
mapped onto L 2 ( ( -  0% 0]; X ) .  Thus we have 

Theorem3.3. Let (3r T~,D_,D+) be a cyclic LP-structure. Let {S,: t>0} 
be the semi-group of contractions got by restricting {Tt} to K=(D_ OD+) • Then 
there exist translation-representations R+ : 3f--* LZ(R; JV• of {T~} such that 
R+ D +=Lz([o, oe); jff+), R D =L2(( -o%0] ;  Jf ' ) .  Let B be the infinitesimal 
4 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 30 
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generator of {St}. Then there exist linear mappings A +" D (B) ~ ~+, A_ : D (B*) ~ Y 
such that R + are given by 

k)(s)= ~A + S_sk s<__O,~ (a+ 
(0 s>O,J 

s < 0,'~ 
(R-k)(s)={OA_ S*k s>_O,J 

for kED(B), 

for k6D(B*). 

Combining this result with Theorem 2.3 we have 

Theorem 3.4. Let (~,, T, D ,  D+) be a cyclic LP-structure. Then there exist 
quasi-isometric measures i + ('): ~+ ~ ~ such that 

t 

Ttk= ~ i+(du)A+ eB('-")k, k~D(B) 
- - o o  

o0 

= $i_(du) A_ eB*(t+")k, keD(B*). 
t 

w 4. Langevin Equations 
Let ~ ('): W ~ J f  be a quasi-isometric measure over (R, J ,  l" I)- Define the 

function t~--~ it as follows: for each t e R let it: W ~ ~ be the linear mapping given 
by 

/ ~((O,t]) t>O 

it = t =O 
L . i ( ( t ,  0]) t<O, 

so that for all s, t~R we have 

i ((s, tl) = i , -  is. (*) 
It follows that 

(it n, is n')je = (s ̂  t)(n, n')x. (**) 

We say that a function t --, ~t taking values in the linear mappings from ~/U into 
is an operator-valued Wiener process if it satisfies (**). It is easy to see that given 
such a function we can define a quasi-isometric measure on (R, J ,  l" I) by means 
of (,). We are now in a position to derive an "integration-by-parts" formula 
which generalizes that for stochastic integrals. We adapt the proof given by 
Nelson [9] to the general situation. 

A function n(-)eLZ(R; ~ )  is said to be a function of bounded variation with 
compact support if for some orthonormal basis {el} for Y all the components 
n (~ (,) = (ei, n (-)) of n (') are functions of bounded variation with compact support. 
For such a function n(.) we define an integral ~itdn(t) of an operator-valued 

R 

Wiener process as follows: for each i define the function t--~ili)=itei; then 
i~ i) ~r=ltl ~ and for each h~j/g 

I(h, ~~  ~('))1 < Ilhll Is- t l  ~ 

so that for each h ~ J f  the Stieltje's integral 

(h, i~ i)) dn(~ 
R 
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exists, and 
h ~ ~ (h, ~(,')) dn (0 (t) 

R 

is a bounded linear functional on ~ .  Let ~ ~li)dn(i)(t) be the element of 34f which 
R 

it determines through the Riesz Representation Theorem. In the case where 
n(~ = Z(a,bJ ( ') we have 

~i) dn(i)(t)= haY(i)-- ~b;~(i) ---- -- ~ ~(dt) e i n(i)(t). 
R R 

Taking a sequence { f,.} of step-functions such that fm ~ n(~) in L 2 (R) and df~ ~ dn (~ 
in the weak*-topology of measures we have 

~li)dn (0 (t) = - ~ ~ (dr) e, n (i) (t) 
R R 

for an arbitrary function of bounded variation with compact support. It follows 
that 

II ~ r i) dn(i)(t)l[ 2 = ~ [n(i)(t)] 2 dt.  
R R 

Hence ~, [t Jf;~(~)dn(~)(t)[[ 2 = - ,  [In(')[[ z < ~  since we assumed that n( ' ) eLZ(R;  X )  
i=1 R 

and so we may define S ~ dn (t) as an element of 3r ~ by 
R 

R i=1 R 
It follows that 

~t dn( t )= - ~ ~ ~ (dt) ei(ei, n(O) = - j" ~(dt) n(t). 
R i ~ 1  R R 

The right-hand side is independent of the choice of basis {e~} so the value of the 
left-hand side is the same for any basis {e~} in which each component n(~)(.) is of 
bounded variation with compact support. Hence S~t dn(t) is well-defined and we 
have the "Integration-by-parts" formula: R 

Theorem4.1. Let  n( ' )  be a function in LZ(R; JV') of  bounded variation with 
compact support. Let  {it: t e R }  be an operator-valued Wiener process. Then 

~ ~(dt) n(t)= - S ~t dn(t). 
R R 

We define a process as a family {Xt: t~R}  of continuous linear mappings 
X,: ~?/_~ juf such that for all m~/~  the function t ~ X ~ m  is continuous. The space 
of  the process y f x  is defined by • x =  V{X ,m:  t~R,  m~J~}.  The history o f  the 
process up to time t is ~ x ,  defined by 

Clearly we have 

If in addition we have 

4* 

Y~t x = V { X  s m: s<__ t, m 6 J g } .  

v ~ X =  Yg x. 

A X= {0} 
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we say the process is regular. We say that the process is stationary if (X~ m, X~+ t m') 
is independent of s for all t and all m, m' e Jg. In which case there exists a bounded 
operator R (t): s / / ~  ~//g such that 

(X~m, X~+tm')=(m, R(t)m') 

for all seR and all m, m'eJr The family {T~: t�9 of linear operators on j f x  
defined by TtXsm=Xs+tm for all seR and all me J// is a strongly continuous 
group of unitary operators. Evidently {Xt: teR} is a regular stationary process if 
and only if ( i f  x, T~, ~o x) is a K-structure. 

Let {St: t>0} be a strongly continuous semi-group of contractions on a 
Hilbert space d / w h i c h  tends strongly to zero as t ~ m. Let B be the infinitesimal 
generator of {St} with domain D(B). Let A: D ( B ) ~ X  be a linear mapping such 
that I t B  2 2 ]lAe kl]xdt=llk[l~. 

R 

Let it: X ~ Y f  be an operator-valued Wiener process. We say that a process 
{Xt: t�9 where Xr: ~/~oug is a solution of the Langevin equation 

dX,= Xt~ dt + ~ (dt) A 

if for all reeD(B) we have 
t 

Xtm-X~m= ~X, Bmdu+~tAm-r 
for all s, t �9 R. 

Theorem 4.2. The Langevin equation 

dXt= XtS dt + ~(dt)A 

has a unique regular solution given for each m�9 (B) by 

Xtm= i r AeB(t-~)m" 
-- CX3 

It is necessarily stationary with 
, ((m, eBtm')~t t>--_O 

(X~m, X~+t m)ae =1. , - (m, e-n*tm)~a t<=O. 
t 

Proof The integral J" 
- o o  

(ds)A emt-S) m exists by virtue of the condition 

ct) 

llAentmll 2 dt= Ilmll 2, 
0 

since then the function 

n(s)={oeB(t-S)m s>tS<t 

has L z (R; X)-norm equal to [Iml[. 

By polarization 
o0 

S ( Aentrn, AeBtm')dt=( rn, m'). 
0 
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Hence 
m i n  (s ,  s + t)  

(X~m, X~+tm')= ~ (AeB(s-")m, AeS(S+t-")m ') du 
- -00  

=f(m,  eBtm')~u t>O 

((m, e-B*tm')~ t<O. 

To see that Xtm satisfies the Langevin equation we use Theorem 4.1 to inte- 
grate by parts. 

We have 
t 

X t m = X o e Bt m + ~ ~ (du) A e B~t- ") m 
0 

t 

= X  o e n t m + ~ t A m - ~ o A e B ' m +  ~ ~.AeB(t-")Bmdu. 
0 

We see that X t m -  {, A m is differentiable with derivative 

d 
dt (Xt m -  it A m) = X o eBtB m-- 4o A e ' tB m 

+ ~t AB m + i ~.A eB(t-U) B2m du= XtB m. 
0 

Hence 
t 

X t m - X s m =  ~X,  B m d u + ~ t A m - ~ s A m .  
$ 

Thus {X~: t~R) is a solution of the Langevin equation, and 3r ~ for all t. 
Hence AJt~x= {0}, so that {Xt} is regular. Suppose {Yt} is another regular process 
satisfying the Langevin equation; put 

Then 

so that 

w , = x , -  Y,. 

t 

Wtk-VV~k= ~ W,,Bkdu 
s 

Wtk= W o eBt k 

for all k~D(B) and all t6R. 
Hence ~ t w =  V{Wom: m~D(B)} = Wsay. But for all t 

~ w  ~ ~ x  v ~ 
so that W~_~ct~tXv~ r for all t. 

Since { Yt} satisfies the Langevin equation, Yt m -  Y~ m -  i Y,B m du = ~(~,tlA m, 
t 

we see that 
~(~,tlAm~Ct~t r which implies 3r r 

and so 
W~_~t r for all t; 

hence 
W ~_A~ft Y. 
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But Ao~r = {0} since {Yt} is regular and so Wr-0. 

We can restate Theorem 3.4 as 

Theorem4.3. Let (~,, Tt, D ,  D+) be a cyclic LP-structure. Let {St: t>0} be 
the semi-group of contractions got by restricting {Tt} to K = (D_ (~D+) • and let B 
be the infinitesimal generator of {St}. Let j be the injection of K in ~ .  Then there 
exists a Hilbert space Y,, an operator-valued Wiener process {r ~: X - - . ~ ,  and 
a linear mapping A: D(B)--.Jff such that the process {Xt} given by Xt= T~oj is the 
unique regular solution of the Langevin equation d Xt= XtB tit+ ~(dt) A. 

Finally, we prove a converse to this: 

Theorem4.4. Let {Xt: teR} be the unique regular solution of the Langevin 
equation 

dXt=XtBdt+~(d t )A .  

Let K= V{X o m: m~J/[}, D+ = (3r • and let D_ =(D+ OK) • Then (~x,  Tt ' D_, P +) 
is a cyclic LP-structure. 

Proof. We have remarked that (~r T,, ~o x) is a K-structure since {Xt} is 
regular, and so (~vg x, Tt*, D+) is also a K-structure. It is clear from the definition 
that K is a cyclic subspace and that ATtD_ ~_ATz~oX=A~ftx= {0} so all that 
remains to be proved is that 

V Tt D - = ~ut~ x . 

Since ~ x = y g r  it is enough to show that for an arbitrary interval A and n ~ Y  
the vector ~(A)n can be approximated arbitrarily closely by a Tctranslate of a 
vector i n D .  

Now there exists t o such that for all t > to 

T _  , ( A ) n  eoC = = O _ e K . 

Hence there exists k~K, Ilkll = 1 such that 

T_t~(A)n=d+2k 

where deD. Given e>0  there exists meJg,  such that 

k - _ ~  ~(du)Ae-"um < 2 "  

Then IlT_~(A)n-d]l =[21 and 

so that 
k) 

(T t~(A) o Ae_n.m) e [21< _ n, ~ ~(du) + ~ - <  ~ [(n, Ae-B"m)ldu+ 2- 
- - c ~  A - - t  

Ilnll [AI IIAe"-l~l)Bm[] + 2 "  

But eBtm-~ 0 so we may choose t > t o such that [21 < e and then 

IL~(A) n -  Ttdk[ <e.  
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