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Splitting Times for Markov Processes 
and a Generalised Markov Property for Diffusions 

Martin Jacobsen 

1. Introduction and Summary 

In [7], Williams gives the following result on decomposition of the one- 
dimensional Brownian motion. Let {B t: t > 0} be a B M  ~ (Brownian motion starting 
at 0). Let z denote the passage time to 1, a the last time 0 is hit before z and p 
the time point in [0, o-] where the path attains its maximal value ~.Then the follow- 
ing construction yields a process identical in law to {Bt: t < z}" choose a uniformly 
on [0, 1] and run a B M  ~ (independent of ~) until it first hits ~; continue with 

- R  3 where R 3 is a three-dimensional Bessel process, independent of ~ and the 
B M  ~ starting at 0 and run until it hits ~ for the last time; finish with a new Bessel 
process, independent of the previous items, starting at 0 and run until it first hits 1. 

It is an immediate consequence of this result that if ( is either of the random 
times p or o-, then conditionally on ((, {B t" 0 < t < ~}), the law of the post-~ process 
{B (t + (): t > 0} depends only on B ((), i.e., B M  ~ starts afresh at the random time 4. 
(For other decomposition results and proofs, see [8].) 

It is the purpose of this paper to define for time-homogeneous Markov processes 
a class of random times, splitting times, for which one might expect this kind of 
generalised strong Markov property to hold, to discuss the problems arising 
when one tries to prove general results to this effect, and to show a splitting times 
theorem for one-dimensional diffusions. 

Stopping times z may be characterised as splitting times enjoying the property 
that conditionally on the pre-z behaviour, the post-z process is a replica of the 
given Markov process. Williams' decomposition result shows that for splitting 
times z the conditional post-z process may be a Markov process different from 
the given process. 

In [5], Meyer, Smythe and Walsh and in [6], Pittenger and Shih discuss a 
Markov property with respect to coterminal times. As will be pointed out in Sec- 
tion 3 below, coterminal times come very close to being a special kind of splitting 
times. 

2. Preliminaries 

Throughout the paper we shall assume the basic Markov process to possess 
smooth sample paths and be given in canonical (i.e. function space) form. 

Therefore, assume E, the state-space of the process, to be a Polish space with 
Borel a-algebra ~,  and C(E) the space of bounded, real-valued continuous func- 
tions on E. Write T=  [0, or[, T = [0, oo] and let ~ be the relevant subset of E T, i.e. 

is either the space of continuous paths from T to E or the space of right-continu- 
ous paths possessing left-limits everywhere. 
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Write X~ for the projection Xt: Y2-~E given by Xto3=cot (t~T,o)~(2), let 
be the a-algebra of subsets of O generated by all the X~ and write ~ ( ~ )  for the 
pre-t (post-t) algebra generated by {X~}~<=t({X~}~>=, ). Finally, let 0 t be the shift 
X~oOt=X~+ , on O. 

Definition 1. A time-homogeneous, canonically-defined Markov process with 
state-space E is a family {W}x~ of probability measures on (O, ~ )  satisfying: 

i) for every bounded, ~-measurable  Y: Y2---, IR, the mapping x ~--~P~ Y from E 
to R is Borel-measurable; 

ii) for every xsE, W { X o = x } = l ;  
iii) for every bounded, ~-measurable  Y: ~ --> IR and for every te  T, xsE, 

P~(t) yo 0 t = pX(O ~. 

The transition semigroup {P,}t~r for the process is given by 

(Ptf) x = W f(X,) 

(ts T, x~E,f: E ~ IR bounded Borel). 

The notation used here as everywhere else is the following: ifYis W-integrable 
W Ydenotes the W-expectation of Y while W(Y; F) is the integral of Y over the set 
F. If Y= 1F we write of course WF instead o f W  1 v. If ff is a sub a-algebra o f ~  PC 
denotes conditional expectation of W given ft. In case there exists a regular condi- 
tional probability, P~ Y will always denote (pointwise on O) the integral of Y with 
respect to that conditional probability. Finally, functions like 

~o~-~ ~ Y(o/) PX*~(do/) 

will be denoted pX, ~ where more generally the ^ is used to show which parts of 
the PX'-integrand depend on the integration variable. For instance one writes 
pXt g(t~, 17) for 

cov---~ g(C o)', V~') PX~'~ (d~') 

and pX~g(U, ~') for 

m~--~ g(U~, Va/) PXt'~(da/). 

With the setup we are using here, the a-algebras ~ ,  ~ t  may be characterised as 
a-algebras saturated with respect to a measurable partition (cf. [2]). For t~T, 
let 7 ,  s be the equivalence relations on s defined by 

o),7e)' iff ~s=o~'s (s~[0, t]), 

o~Z~o' iff a~s=oYs (st[ t ,  ~[-). 

As a special case of Lemma 1.2 of [2], it follows that F ~  ( F e ~  t) iff F E ~  
and F is a union of T (Z)  equivalence classes (atoms). Notice that the atoms them- 
selves belong to ~ and thus determine a measurable partition of ft. 

The Markov property iii) of Definition 1 may now be formulated as follows: 
for every x ~ E, t ~ Tthere exists a regular conditional probability P~{0 of px given ~ ,  
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uniquely determined by 

P;2(~>FnO 7'  G=IFpX(~ ( F e ~ t , G ~ ) .  

P ~  is also proper, i.e. for every ~ Q ,  the probability P~)(.)e) is concentrated 
on the T equivalence class containing e). 

Because of this, conditional expectations given ~ may be computed treating 
anything g-measurab le  as constant. 

A random time is a ~-measurable  mapping z: s T. The corresponding 
shift 0~ is a measurable mapping from { z < ~ }  to ~, identical to 0, on {z=t}. 
Similarly X~: {z < ~ }  -~ E is measurable and equal to X t on {z= t}. 

For an arbitrary random time z, the pre-z algebra ~ is defined as the a-algebra 
of events which is satUrated with respect to the equivalence relation 7 given by 

e)7o) '  iff ze)=ze)'  and cos=e)'s (se[0, ze)]c~T) 
(cf. [23). 

A (strict) stopping time is a random time r such that { r = t } ~  (t~T). The 
process is Markov with respect to the stopping time r if 

PA~I~ Y~ =Px(~ ~ on {z<ov} (2.1) 

for every bounded, measurable Y: f2- ,  IR and every xEE. 

Formally (2.1) is obtained from the M arkov property by identifying conditional 
expectations given ~ with those given ~ on {~ = t}. Since z is a stopping time, 
{z = t} ~-~t c~ ~ with T = T on {r = t}. This fact partly justifies the identification 
but does not of course provide a rigorous proof. For that, extra conditions are 
needed to ensure that one works with the correct versions of the conditional 
probabilities given the ~ .  

If (2.1) holds for all stopping times the process is strong Markov. The strong 
Markov property will appear as a special case of the corollary to Proposition 1 
below. The proposition deals with the identification principle in a more general 
setting. 

For the formulation we need the following concept. If z is a random time and 
{s~c~}t~ r a family of sub a-algebras o f ~  with each ~ being the saturated a-algebra 
determined by a measurable equivalence relation ~ ,  we say that the pre-z algebra 

is generated by {s~r provided 
i) {z = t} ~ ~ (te T), 

ii) T = ~  on {z=t} (t~r).  

Proposition 1. Let z be a random time and let {-~}t~r be a family of a-algebras 
which generate ~ such that 

F c~ {z< t} ~sr (F~,~, t~Y). (2.2) 

Suppose that for every x~E regular conditional probabilities P~, P~ d~ of given s~ 
exist for all t~ T, and suppose that versions of each of these may be chosen such that 
the following condition is satisfied." for every n~N, t 1 <... < t,~ T, fl . . . . .  f ,~ C(E), 
o0~{~ < oo} the mapping 

t~-+ (,) ) o 0~ co (2 .3)  
x j = l  ] 

is right-continuous at t o = re). 
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Then conditionally on o~ at o~ the post-z process is identical in law to the post-z co 
process conditionally on sJ~o ,, i.e. 

for every Y: t? -~ IR bounded and measurable. 

Proof It suffices to show that for every xeE,  PeN, h < ' "  < t ,  eT, f l ,  . . : , f , e  
C(E), F ~ c ~  {z< oo} 

~ (PA(,o) Y~ W(d~  F) 
F 

with Y -  l~fj(Xtj) and to check that the integrand on the left is o~-measurable. 
Because {~} generates o~ the integrand is constant on E-atoms. It is J~'- 

measurable since by (2.3) 

(5d(~o~) Yo 0~o~) co= lira PJ,k+l)2-~) YoO co lr.k(co), 
n ~ a o  k ~ 0  

( k  k + l )  
where F . k = l ~ <  z < ~ .  

Using this representation, dominated convergence and the fact that 

F c ~ { s < z < t } ~  ( F e ~ , s < = t s T )  

which follows from (2.2) because {s ~ z} E ~ ,  we find that 

j" (P~,)  y o 0~,o) co W (de)) 
F 

-,im 0 ( ( k + l ) 2  - n )  
n -*ao  k ~ O  

- l i r a  W Y o O ~--~--] , F c~ F.k 
n ~ o o  k = O  

=W(YoO~;F). 

In the special case where the sJ~ increase with t condition (2.2) is always ful- 
filled, assuming that {s~/~} generates ~ ,  and equivalent to 

F ~  {z<=t}~s~ t ( F ~ ,  t~T).  

Thus z is a strict stopping time with respect to the increasing family {s~}. 
In some cases condition (2.3) may be simplified. 

Corollary. The conclusion of Proposition 1 holds if {~/) generates ~ ,  /f (2.2! 
holds and if for every xE E, co~ {z < oo}, t~ T, the post-t process conditionally on d t 
at co under px is time-homogeneous Markov with initial state Xtco and transition 
semigroup {~Q=}=~T not depending on t satisfying 

~Q=: C ( E ) ~  C(E) (se T). (2.4) 

It is even sufficient that for any coe{z<oo} this condition on the post-t process 
holds for t >= z co only. 
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Proof. The first assertion is proved by verifying (2.3) of the proposition. By 

assumption (P~,) Yo 0,) co =~o~*O'~ Y (2.5) 

for every Y: t2-~IR bounded and measurable. (Here {~QY}y~E are the function 
space probabilities corresponding to the semigroup {~Qs}.) 

That the right hand side of (2.5) is right-continuous in t for all Y of the form 
~fj(Xt~ ) with t I < . . .  < t,, fj.s C (E) follows if we show that, writing QY: xQy 

y ~--~QY Y (2.6) 

is continuous. But for n = i this is equivalent to (2.4). Furthermore, if~Qs = Qs, then 

n+l  n -1  

QY 1-I fj  (xt,) = QY ]-I fj (Xt) I f ,  Qt,+~ -t, f ,  +1 ] (Xt,) 
j = l  j = l  

so, using (2.4), (2.6) follows by induction. 
As for the proof of the second assertion observe that the proof of the pro- 

position applies if each P~,) is determined only within {z < t} and there satisfies 
(2.3). 

We shall need the second part of the corollary in Section 5 below. 
The first assertion contains a version of the strong Markov property as a 

special case: if-c is a strict stopping time, then {~} generates ~ and, since the 
conditional post-t process is the given Markov process itself starting at X~, the 
corollary shows (as is of course well known) that the strong Markov property 
holds if P~: C ( E ) ~  C(E) (t~T). (Recall that this condition is sufficient for the 
process to be strong Markov with respect to any stopping time v, strict or not, and 
the enlarged pre-z algebra ~ +  = ~ ~,~ +~.) 

e>0 

3. Definition and Basic Properties of Splitting Times 

We shall study random times z with respect to which the process obeys the 
following generalised Markov property: for every x~E, Y: s 1R bounded and 
measurable, the conditional expectation 

P ~  Yo 0~ (3.~) 

(defined on {~ < ~})  depends only on (z, X~). 
Intuitively one would expect this generalised Markov property to hold for 

random times ~ having the property that knowledge that z = t  may provide 
information about the behaviour of the path after time t, but only so that this 
post-t information does not depend on the behaviour of the path prior to t. This 
leads to the following. 

Definition 2. A random time z is called a splitting time if it has the following 
cross-over property: for any two paths 01, (~ with zcol=zco 2 ( = t  say) and 
colt=O)zt, it is true that zco=t where 

~o u = ~col u (u < t) (3.2) 
tO)2/A (U ~> t).  
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It is evident that any strict stopping time is a splitting time. Furthermore, the 
definition is symmetric in past and future so that random times that are stopping 
times for the time-reversed process (e.g. last exit-times) are also splitting times. 
One also finds that the random times a, p of the introduction are splitting times. 

David Williams suggested the name "splitting times" and himself proved 
that discrete time processes are Markov with respect to arbitrary splitting times. 
This result, which has not been published, may be formulated as follows. 

Let X =  (O, ./A(, Jr Xt, 0t, px) be a time-homogeneous Markov process in the 
sense of [1] with discrete time-parameter set Ta= {0, 1, ...} and state-space E. 
Write ~ for the a-algebra generated by {Xt}~r .. Call ~" D -+ Te • {oo} a splitting 
time if for every t~ T d there exists F~e Jr GtEff  such that 

(~ = t} = v,  ~ 0;- 1 G , .  (3 .3 )  

Define the a-algebra J i ,  as follows: MeJYi, iff M e  J///and for every te T d there 
exists Mte J/g~ with 

{'c=t} ~ m = m t ~ o ?  1 G t. 

Theorem 1 (Williams). For every xE E, Y: O-+ IR bounded and measurable, 

(P~(,) YoO,)o=PX'~ (co~{v< oe}) (3.4) 

where the right-hand side may be defined arbitrarily (subject to the measurability 
constraints) for those co for which pX~o~ G~oo =0. 

In the proof, one works of course on the sets {~=t} (teTd) separately. The 
proof rests on the Markov property alone. (See the proof of (3.5) below.) Notice 
that the representation (3.3) is non-unique but that (3.4) holds no matter how the 
F~, G~ are chosen. 

One reason why this result cannot be used to establish results for continuous 
time is that, unlike stopping times, splitting times cannot in general be approxi- 
mated by monotone sequences of splitting times with countable range. The 
splitting time p of Section 1 is an instance of this. 

We return now to the continuous time case and the discussion of Definition 2. 
In the setup we are using, Galmarino's characterisation of strict stopping times 
(see [4] p. 86) is valid. Definition 2 is the splitting-times analogue of Galmarino's 
characterisation. The following proposition gives the splitting-times analogue of 
the customary definition of stopping times, which also matches Williams' defi- 
nition. 

Proposition 2. A random time ~ is a splitting time if for every tE T there exists 
Fte ~ ,  G , e ~  such that 

{~=t}=F,c~O7 ~ G,. 

Proof To verify the cross-over property, assume co~, o) 2 e {z = t} with co~ t-- 02 t. 
Defining co as in (3.2), since co t  co~, coLco 2 it follows that coeFt n 021 G t. 

Notice that if ~ is a splitting time and one defines F t (0~- ~ Gt) as the set of paths 
T-equivalent (L-equivalent) to some path in {z = t}, then 

{~=t}=F,c~O71 a,. 
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Since F t (O;-~Gt) is a union of ~t-atoms (~'-atoms) we see that the converse to 
Proposition 2 holds if F~ and 0;-1 Gt are ~-measurable. 

Consider now a splitting time z with {~ = t} as in Proposition 2. Define 1, = locl ot 
and let ~ denote the equivalence relation 

COl ~tco 2 iff 0)17692 and l t c o l = l t c o 2  

with f t  the a-algebra determined from ~.  
fCt 

It is immediate that the family {fir} generates o~. Furthermore, since f t  is the 
a-algebra generated by ({X,},__<t, 1 t) we claim that a regular conditional probability 
of P~ given f ,  is defined by 

(P~X(o F~O~ -1 G)co=lF(co)PX~~ (Fe~ ,  Ge~) (3.5) 

where the conditional probability on the right may be defined arbitrarily (subject 
to the N-measurability condition) for those co for which the PX~~ of the 
conditioning event is 0. 

The proof of (3.5) proceeds as follows: if for example F ' e ~  and H = F' c~ { 1 t = 1 }, 
one finds 

P~(PX(t)(51 {io(,)-- I,}); F n H) 

=p~(pX(O(~] {Tom = i}); F n F' c~ 071 Gt) 

= P~(PX(~ n Gt); F c~F') 

=P~(F nOt I G nH). 

This is the argument used by Williams in the proof of Theorem 1. 

Because of (3.5), one might expect that Proposition 1 could be used straightaway 
to establish the Markov property for ~. However, it may be true that 

pXto { lo(t ) = i t co} = 0 (3.6) 

for all coe{r=t}, which makes it impossible to verify (2.3) of Proposition 1, the 
limit as t.~zco not being defined. 

An example of this is provided by the splitting times p, a of the introduction. 
For instance, one has {a = t} = F t n 0 z- 1 G, with 

Ft= {Bt=O} n n {Bs<l}~o~, 
S<=1 

a 7 = {B o =0} c~ {B~>0 for all ss]0, ~]} s ~ ,  

using the notation of Section 1. It is now clear that (3.6) holds because BM ~ will 
with probability 1 cross its initial level infinitely often in any time-interval ]0, u]. 

The generalised Markov property (3.1) states that the process should start 
afresh at time ~. An important particular case arises naturally when the conditional 
post-z process is itself time-homogeneous Markov with law depending only on 
~, X~. In [5], ~ is then called a birth time for the process and it is proved (Theo- 
rem 5.1) that any coterminal time L is a birth time in the following sense: the 
process {XL+,},> o is strong Markov with respect to the family {~+t}t>o of 
a-algebras. Also the transition semigroup for the conditional process is given. 

3 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 30 
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It is pointed out in [5] that the restriction to t >0  is essential. This way the 
problem we discussed in connection with (3.6) is avoided. 

As we mentioned in the introduction, coterminal times are nearly splitting 
times. A coterminal time L satisfies in particular that 

LoO~=(L-t)vO (tsT). 

Assuming 0) 1 e {L < t}, t 0)2 ~ o)1 it follows that (L o 0t) 0) 2 = (L o 0r) 0)1 = 0 SO that 
L0) 2 =< t. Thus {L__< t} e ~ t  showing that L is a (non,strict) stopping time for the 
time-reversed process. 

On the other hand,  the p of Section 1 is a splitting time but not a coterminal 
time. 

In [6], results are given which show that a Markov property (in the sense of 
(3.1)) is valid with respect to any coterminal time. There the difficulties around 
(3.6) are solved by showing that certain limits of ordinary conditional probabilities 
exist (cf. Definition 5.2 and Theorem 1). 

4. A Class of Conditional Diffusions 

Before formulating and proving splitting-times theorems for diffusions we 
shall summarise the facts needed from diffusion theory and prove some preliminary 
results. 

We shall only discuss conservative regular diffusions but it is fairly obvious 
that the results extend to non-singular diffusions with killing. 

Let J be a subinterval of the extended real line, with int J denoting the interior 
of J. 

A canonically-defined Markov process {PX}x~j with state space J is called a 
conservative, regular diffusion provided 

i) the PX are probabilities on the space of continuous functions from T to  J;  

ii) the process is strong Markov; 

iii) px {~y < co} > 0  (xeint  J, yeJ). 
Here % is the passage time inf{te T: X t = x}. 

Let a be the lower and b the upper boundary of J. We shall need the following 
facts about diffusions (cf. [3] or [4]). 

Any conservative regular diffusion on J may be characterised by a scale 
S: J ~ IR, which is strictly increasing and continuous, and a speed measure m on the 
Borel subsets of J which is locally strictly positive and finite (i.e. 0 < m [x, y] < co 
for all x<ysintJ). S, m must satisfy certain conditions at the endpoints of J, 
mentioned below for the boundary a. 

If aq~J, then either Sa = - oo or ~ ( S y -  Sa) m(dy) = co for all x~int  J. 
la,x[ 

If a~J, then Sa>-oo  and ~ (Sy-Sa)m(dy)<oo for all x s i n t J .  If also 
la,x[ 

m]a, x[= oo for all x s i n t J ,  a :is necessarily absorbing. Otherwise a is absorbing 
iff m {a} = co, and reflecting iff m [a, x[ < co for all x eint  J. 
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S, m are related to the exit probabilities and mean exit times by 

S x - S ~  

W{r~< G}  Sfi-Sc~ ' 

W G p =  ~ G~a(x,y)m(dy) 
1~,#[ 

for all a < fie J, x s  [e, fi]. Here G~ = G/x ~p and G~ is the Green function 

(sx- s~)(s~-sy) 
G~p(x,y)=G~p(y,x)- Sfi-Sc~ (x<y6[a, fi]). 

More generally, if f :  [a, fl] ~ IR is bounded and measurable, then 
~(~#) 

W ~ f (Xt )d t= ~ G~a(x,y)f(y)m(dy). 
o l~,#[ 

From a special case of this, one finds 

S y - S ~  
P~(Gp; {za<G}) = ~ G~p(x,y) S f i - S ~  m(dy), 

1~, #[ 

s p - s y  
P~(%t~; {G<rt~})= Y G,p(x,y) Sfl-Sc~ m(dy). 

1~,#[ 

The proof of (4.1) is as follows: 

S y - S a  = W  P) S(Xt) -S~ 
G~a(x,y) Sfl-Sc~ m(dy) Sfl-So~ dt 

1~,#[ o 

C(3 

= ~ ex(pX(t){.~p < ~}; {Gp > t}) dt 
0 

ao 

= ~W{z~oOt<GoOt, G~>t} dt 
0 

0o 

= ~ P~{rt~<'G, Gp>t} dt 
0 

=W(Gp;  {z~<G}) 

(4.1) 

where we have used the Markov property once and Fubini's theorem twice. 
It is well known that the transition operators for any conservative regular 

diffusion on J are operators on C(J). 
Suppose {PX}x~j is conservative and regular on J with aCJ. Then a is an 

entrance non-exit boundary for {W} provided 

S a = - o %  ~ (Sx-Sy)m(dy)<oo (x~intJ) .  (4.2) 
la, x[ 

We shall need the following result about entrance non-exit boundaries. 

Proposition 3. Suppose {P~}x~s is a regular diffusion on d with a an entrance 
non-exit boundary. Then there exists a unique probability P~ on the space of contin- 
3* 
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uous functions from T to Jw{a}  satisfying Pa{zx<c~}=l  (x~J) and such that 
{PX}x~ju{a} defines a canonical strong Markov process with continuous paths and 
state space J w {a}. The transition operators for this process are operators on 
c (J u {a}). 

For the proof see [4]. 

Starting from a, the new process immediately moves into J itself never to 
return to a. 

To arrive at the conditional diffusions needed in Section 5, we begin with the 
following quite general result. 

Let {W}x~ be a canonical Markov process with state-space E. Let A ~  be an 
event satisfying this condition: for every t ~ T  there exists At~ ,  ~ such that 
A = A t c~ 0 t- 1 A. Finally, let E A = {x e E: W A > 0}. 

Lemma 1. For every x~E A, te  T 

px(XteEA[A)= 1. (4.3) 

Furthermore, if for X~ EA, ta T, f:  E A ~ IR bounded and measurable, one defines 

(Pa,t f )  x = p x ( f ,  (Xt)lA), (4.4) 

where f*  is an arbitrary bounded and measurable extension of f from E a to E, then 
the family {Pa,t}t~r defines a one-parameter semigroup of stochastic transition 
operators on E A. 

Proof Using the Markov property and the definition of E A, one finds 

W ( A  c~ {XteEA} ) = W ( P  x(~ 4; A t n {XteEA}) 

=w(PX(t) A; A t ) = W  A , 

proving (4.3). Eq. (4.3) shows that the Definition (4.4) is unambiguous. For the 
proof of the last assertion of the lemma, only the semigroup property needs 
verification. But 

(nA, t(nA,sf)) x 

=Px((PA, sf)(Xt); {XteEA}[A) 

= (P" A) - '  P': [(px(t)4)-i px(o ( f  (2s); {2s~EA } c~ 4); {XtEEA} n A] 

= (WA) -~ W [PX(t)(f(Xs); {X~eEA} n 4); {XteEA} n At] 

= (WA) -1PX(f(Xs+t); {XteEA} n A t n O; -~ A n {Xs+teEA} ) 

=(PA,t+~f)x. 

If it is also known that all paths in A take values in E a only, the proof of the semi- 
group property is easily converted into a proof that the conditional process 
{W(-IA)},~EA is Markov with state-space E a. 

Again let {W}:,~j be a regular conservative diffusion on J with scale S and 
speed measure m and let c~ e J with a < b. Write 

a~= N{xt>~}, s 
t > O  
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We have the following dichotomy: either px A~ > 0 for all x > ~ or PX A~ = 0 for all 
x > ~ with the first possibility occurring i f fSb < oo and b is not a reflecting boundary 
(i.e. b is in J and absorbing or not in J with S b < oo and ~ (S b - S y) m (dy) = oo). 

To see this, observe that for x > ct 
S x - S ~  

PX A~= px {% = oo} = lim P~ {z~ < z~} - - (4.5) 
~tb S b - S ~  

provided b is not reflecting. If b is reflecting, pb {'C~ < OO } ---= 1 and consequently 

px A~= px {.cb <.C~, z~o 0(zb)= oo} -~ PX {'Cb < Z~} Pb {z = oo} = 0 .  

This motivates the following. 

Definition 3. A conservative regular diffusion {P~} on J is said to be positively- 
inclined if P ~ A , > 0  for all c~J--. {b}, x~J~. 

The next result is basic for the sequel. 

Proposition 4. Let {P~}x~s be a positively-inclined conservative and regular 
diffusion on J. For every c ~ J \  {b}, the equations 

Q~=PX(.]A~) (xeJ~) 

Q~ define a family { ~} of probability measures on the space of continuous functions 
from T to J, which determine a conservative regular diffusion on J~. This diffusion 
has scale 

S~t= - -  ( S -  S(z) - 1  , 

speed measure 
m~(dx) = (S x -  Sc~) z m(dx) 

and c~ as entrance non-exit boundary. 

Proof Although formally defined as a probability on the space of continuous 
paths from T to J, Q~ for x > ~ may obviously be considered a probability on the 
space of continuous paths with values in J~. Furthermore A~ satisfies the condition 
imposed on the A of Lemma 1 with EA(~ = J~. By that lemma therefore, 

(Q~,t f ) x  = Q~(f(Xt) ) 

defines a stochastic semigroup {Q~,~} of transition operators. According to the 
remark following Lemma 1 one finds that {Q~} is a canonical Markov process 
on J~ in the sense of Definition 1. To prove that it is a regular conservative diffusion, 
it thus remains to show that Q~{~y< oo} >0  for all x~int  J~, y~J~ (which is trivial) 
and to verify the strong Markov property. 

We shall achieve this by showing that each Q,,t maps C(J,) into itself. As (4.5) 
shows x~--~P x A~ is continuous, so this is equivalent to showing that 

x~--~P~(f(Xt); As) = P~(f(Xt); {v~ = oo}) (4.6) 

is continuous on J~ for every f e  C(J~). 
But i f x < y e J ~ ,  then 

PX( f (X( t  + ~r)); {~y < z~, z o 0 (zy) = oo}) 

S x - S c ~  
- S y - S o :  PY(f(Xt); {z~=oo}). 
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When yJ, x the left hand side converges to PX(f(Xt); {%= ~})  by dominated 
convergence. It follows that (4.6) is right-continuous. 

A similar argument may be used to establish the left-continuity except at b 
when b is absorbing. But in that case we have for any x < y s  J~ that 

Sx -S~  
Sy-Soc W(f(X,); {%= oo}) 

= px ( f ( X ( t  + z,)); {%0 0 (z,) = 0% z, < %}) 

= W(f(X(t  + zr)); {% < % = oo}) 

and as yTb the last term tends to 

Sx-Sc~ 
W(f(b ) ;  {%<%})= Sb-Sc~ f(b). 

Thus 
lim W(f(Xt) ;  {%= oe})=f(b)=pb(f(Xt); {%= oe}) 
yTb 

proving the left-continuity at b. 

The scale and speed for {Q~} may be computed directly. If 7 < 5eJ~, x e [7, 6], 
Eq. (4.5) shows that 

Sb-Sa  
O'~{za<z~} Sx-So~ PX{%<z~"G=~176 

Sb-S~ 
- S x - S ~  PX{%<zv' %oO(zv~)=oo} 

Sb-S~ S x - S y  S6-Sa  
Sx -S~  $6-$7 Sb-S~ 

S~x-S~ 
= S ~ 8 -  S~- '  

proving that S~ is the scale for {Q~}. Also 

x S~x x 
Q~%~=~b P (z,~; {%=oo}) 

S~x [(W(z~a; S~b %}) ~!S~b - {z~<z,})~+W(z,~; {%< 
S~b 

and using (4.1) this reduces to 

G= ,a(x, y) S;- 2 (y) m(dy) 
1~, ,~[ 

with G~ being the Green function for S~. Thus m~ is the speed measure for {Q~}. 
Finally it is immediate that (4.2) holds for a = c~, S = S~, m = m~ so ~ is entrance 

non-exit. 

This proposition in conjunction with Proposition 3 shows that for every e e J  
a probability Q~ on the set of continuous paths from T to J~ w {e} may be adjoined 
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to the family {Q~}~s= such that the enlarged family defines a strong Markov 
process with continuous paths, state space J=w{~}, and transition operators 
mapping C(J= u {~}) into itself. 

5. Future-Minimum Times and a Splitting-Times Theorem for Diffusions 

We shall be concerned with positively-inclined conservative and regular 
diffusions on a state-interval J. g2 will denote the space of continuous paths from 
T t o  J. 

For  t ~ T l e t  G, denote the event (~ {Xs>X,} and write 1 t for lain. 
S > t  

Definition 4. A random time z on g2 is called a future-minimum time if 

i) for any t~ Tand any ~o~ s {z = t} the conditions ~a T % and 1 s ~z = ls ~ (s =< t) 
imply zw 2 = t; 

ii) 1~=1 on { z < ~ } .  

Condition i) states that z is a stopping time with respect to {(X t, lt)}t~r. 
Suppose that l t~o=l  and let s<t.  Then 1~o9=1 iff cou>~os for all ua]s, t]. 

This being a pre-t condition on ~o it follows that i) and ii) are equivalent to 

a.i) for any t~ T and any co 1 ~ {z = t} the conditions Ca 2 T ~~ and 1 t ~% = 1 imply 
"gr = t; 

a.ii) 1~=1 on {z< ~}.  

Definition 4 as it now stands, is due to J.W. Pitman and supersedes an earlier de- 
finition where the random times were described in an implicit manner only. 

The two most important examples of future-minimum times are the last time 
the path is below a given level 

z = s u p { t ~  T: X t<~  } (with s u p S =  oo) 

=inf{tE T: 1,= 1, X t =~} (with i n f , =  co), 

and the last time the path attains its minimum value 7 = inf{Xt: t ~ T} 

z = s u p { t 6  T: Xt=7} 

= inf{t~ T: 1 t = 1}. 

Proposition 5. Any future-minimum time z is a splitting time. Furthermore, if for 
te T~r t is the a-algebra saturated with respect to the equivalence relation if, given by 

O)l~t(.O 2 iff oo, Ta) 2 and lo:<t}O)l=l{z_<t}(.02, 

then the ~ increase with t and generate ~,~. In particular (2.2) holds and z is a 
stopping time with respect to {a/7}. 

Proof Using condition a.i) it is immediately verified that any future-minimum 
time has the cross-over property. 

For  the remainder of the proof observe first that 

c o j ~ o  2 with 0)1 , r  } implies zoh=zr (5.1) 
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since for example the inequality t I =-~0)j < z 0)2 = tz shows that l t, 0)1 = l t, 0)2 and 
hence by a.i) that T0)1 = ~0)a. 

Let t < u  and 0) 1 ~ 0)2" If 0)X' 0)2~{ 77~u} evidently 0)1Jt 0)2. I f % ,  0)2 ~ {"C~__---_ U} 

the equivalence 0)1 ~ 0)2 follows from (5.1). Thus ~r  ~r 
The implication (5.1) also shows that {'c=t}e~r ( t eT) ,  and that cols{z=t}, 

% ~ 0)2 implies 0)1Te)2. Since the converse implication is obvious, we see that 
�9 t r 

{~r generates ~ .  
By the remarks following Proposition 1, condition (2.2) is satisfied and ~ is a 

stopping time relative to {ar 

For the proof of Theorem 2 below we need the fact that for any path 0) ~ {z < t} 
it is possible to pick out the level X, 0) by looking at 0) on the interval [0, t] only. 
This is formalised in Lemma2 which shows how the information c0e{z<t} 
decomposes into information about the pre-t behaviour of 0) and, relative to that, 
information concerning the post-t part of 0). 

To formulate the lemma introduce the stopping operators s,: f2--+f2 given by 
X ,  o s, = X(u  A t) (u, t~ T). 

Lemma 2. Let  ~ be a future-minimum time and define 

M , = X ( t / x ( ~ o s t )  ) ( t~T) .  

Then M t is ~,~-measurable, M~ = X ,  on {~ < t} and 

{'c< t} = ( - ] { X , > M t }  ( t ~ r ) .  
u>=t 

Proof  The ~-measurabil i ty of M t is evident since 0)1 "7 0)2 implies s t 0)1 = s, 0)2. 

Assume 0)~ {~ < t} so that in particular 0)~ ~ {X. > X,}. Because ~ is a future- 
U ~ t  

minimum time and s, 0) "7 0) it follows that (z o st) 0) = z 0). Hence M t 0) = X~ co and 
0) N {X,>M,}. 

U ~ t  

If conversely 0)e ~ {X , ,>M,}  in particular co t > M t 0 )  and the definition of Mf 
u~t 

then shows that t o = (z o st)0)< t. The assumption on 0), the fact that ~ is a future- 
minimum time and the equivalence 0)"7s, co now implies that ~ 0)= t o so that 

We come now to the main theorem. For the formulation of this let {W}x~s 
be a positively-inclined conservative and regular diffusion on J, let {Q~}~j~,,{=} be 
the conditional diffusion of Proposition 4 with the entrance non-exit boundary 
adjoined and let z be a future-minimum time with M t as in Lemma 2. 

Theorem 2. With {px} and �9 as above, conditionally on ~ within { ,  < ~ } ,  the 
post-z process is identical in law to the process {QX} with a = X ~ ,  starting at its 
entrance non-exit boundary X , .  More  specifically 

p~(~) yon~_-t)x(~)~x(~) ~ on { z < ~ }  (5.2) 

for  every x ~ J ,  Y: 0 - ~  lR bounded and measurable. 

Proof  For the proof of the Markov property (5.2), we shall use the second 
assertion of the corollary to Proposition 1. Since {~r generates ~ and since (2.2) 



M a r k o v  P r o c e s s e s  4 1  

holds (Proposition 5), it suffices to show that 

ix, YoOt_nx(t) ~ on {~<t} (5.3) d t  - -  ~ X ( O  

for every x~E, t~T, Y: O ~ l R  bounded and measurable and to check that (2.4) 
holds. 

Given (5.3), this latter fact follows from Propositions 3 and 4 so only (5.3) 
needs verification. 

Because ~r is the a-algebra generated by ~t and {z < t} it suffices to show that 

- - - -  ~ X ( ~ )  for any F 6 ~ .  PX(YoOt; Fc~ {'~t}) -pxtox(t) Y; FC~ {z< t}) (5.4) 

Because {W} is a regular diffusion 

PX ('] {X,>Xo} =0  (x+J) 
and consequently u> o 

P ~ { v = t } < P ~ { X , > X t } = w P X ( ~  {X, >)(o} = 0 
U > t  u > O  

so in (5.4) we need only integrate over F r~ {r < t}. 

Using Lemma 2 and the Markov property it is seen that with A s as in Section 4 

P~(Y oOt; F c~ {~ < t})= PX(YoOt; F ~ ~ iX, > Mr} ) 
u ~ t  

=px(px(t,(~z; /1/(o); F) 

pxtnx(t) ~ pX(t) ^ F) 
= ~  kY.SM (t) AM( t ) ;  

pxtnX(t) ~; Fc~ ~ {Xu>M,}) 
---- - -  ~ , ~ M ( t )  

u ~ t  

p~rnx(t) ~; F c~ {'c<t}) 
= - -  k ' ~ X ( r )  

and the proof is complete. (The fact that there is a proper, regular conditional 
probability of W given ~t justifies the above manipulations with conditional 
expectations, cf. Section 2.) 

The theorem holds in particular f o r ,  the last time the process is below a given 
level a or ~ the last time the process attains its minimum value. 

If in particular the diffusion {W} is a Brownian motion with an upper ab- 
sorbing boundary b, the associated diffusion {Q~} of Proposition4 becomes 

+ R 3 with b absorbing and R 3 the three-dimensional Bessel process on [0, oo [. 
It is now clear why the Bessel processes occur in Williams' decomposition 

result [73. 
That a splitting-times theorem holds at the time where a positively-inclined 

diffusion attains its minimum is proved in Theorem 2.4 of [8]. The result is first 
proved for a particular diffusion and then extended to other diffusions by time 
substitution. 

We shall now mention an example of a splitting times theorem slightly dif- 
ferent from Theorem 2. 

Let {B~}~R be canonical one-dimensional Brownian motion and let {B~} be 
Brownian motion with constant drift k>0.  Then B~=B~c~ -~ with q~: s 
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given by Xto4)=Xt+kt. Also {B~} is positively-inclined and the associated 
conditional diffusion {Q~}x____~ has scale and speed 

S~x= --(e- 2k~--e- Zkx) -1, 

2ko~ 2kx 2 1 e2kX dx m~,(dx)=(e- - e -  ) ~- 

corresponding to the generator 

1 d 2 d 
2 dx 2 +kc~ d~ 

(cf. 2.4 of [-8-]). 

Defining -c = sup {te T: X, < - k  t} (with sup ~= oo) it is readily verified that -c 
is a splitting time. The map q~ transforms ~ into z*= sup{re T: X,<0}. Applying 
Theorem 2 to z* and {B~} and transforming back we therefore find 

(B)(,) YoO,)oo=Q x''+k~{~ Y~ (toe{z< oo}) 

where ~kc: f2--+ ~2 is given by 

X, oq, c=x,-k(t +c). 

In other words, a Brownian motion starting at xEIR and conditioned to stay 
above the line t~-+y- kt forever (where y <  x) is identical in law to the diffusion on 
[0, oo [ with generator 1 d 2 d 

2 dx 2 +kcoth(kx) dx 

starting at x - y  subjected to the transformation O_r of f2. In particular this 
conditional process is non-homogeneous Markov. 

The main result of this paper, Theorem 2 gives a generalised Markov property 
for a special class of processes and a special class of splitting times. By exploiting 
the theory of diffusions we were able to describe exactly what the conditional 
post-z process should be and to verify the crucial condition 2.4. However, the 
structure of the problems discussed and solved for diffusions (for instance the fact 
that certain splitting times are stopping times with respect to families of increasing 
a-algebras other than the .~) suggest that a generalised Markov property with 
respect to splitting times must hold in great generality. 
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