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Automorphisms of Baire Measures 
on Generalized Cubes. II 

J. R. Choksi* 

1. Introduction 

Let S = I ~  I~, ~ A ,  where each I s is the closed unit interval [0, 1] and A is an 
arbitrary index set, possibly uncountable. We call such a set a generalized cube. 
Let/~ be a probability measure on the product o--algebra of S, which is its Baire 
o.-algebra in the product topology. If 05 is an automorphism (not necessarily 
measure preserving) of the measure algebra of (S, ~), the question arises whether 
05 is induced by a (1-1) Baire (product) measurable point mapping of S onto itself. 
A classical result of von Neumann [5] states that this is always the case if A is at 
most countable. [(S, #) is then point isomorphic to a probability measure on 
I =  [0, 1].] This was generalized to the direct product of uncountably many 
normalized measures on [0, 1] by Maharam [4] and, using many of the ideas 
of [4], to a wide class of Baire probability measures on an uncountable generalized 
cube by the author [2]. Using many of the results of this last work, plus others, 
we prove it for an arbitrary Baire probability measure on an uncountable gener- 
alized cube, and thus settle the problem mentioned above. As in the case of all 
the earlier papers cited above, the same proofs work when S is the uncountable 
product of Polish spaces, # a probability measure on the product o--algebra. 

We note, however, that in view of the remarks in the Introduction to [2] and 
an example of Panzone and Segovia ([6], Sec. 5, Example (c)) there are finite 
Borel measures # on the cube and automorphisms of the measure algebra of # for 
which no Borel measurable invertible point mapping inducing the automorphism 
can exist. Since a Borel measure # and its Baire contraction have the same measure 
algebra our result shows that there are Baire point automorphisms (in the termino- 
logy of [2] or [4]) of a generalized uncountable cube for which no equivalent 
Borel point automorphism exists. (By equivalent we mean one inducing the same 
measure algebra automorphism.) The example of Panzone and Segovia shows 
that there is a compact space X, a finite Borel measure/~ and a measure algebra 
automorphism 05 for which there exists neither a Borel nor a Baire measurable 
point automorphism inducing 05. For a trivial example in which there exists a 
Borel but not a Baire measurable point automorphism inducing a given 05, let X 
be a compact space containing a point p which is a ~ and a point q which is not, 
let/~ consist of point masses 1/2 at each of p and q and let 05 simply interchange 
the two atoms which generate the measure algebra. 

Our earlier proof for the restricted class of measures given in [2] used the 
highly sophisticated decomposition-disintegration theorem. The present proof 
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of the general case is much more elementary and avoids this theorem. This 
illustrates Halmos' principle [3], p. 35, that a theorem proved using the decom- 
position theorem can usually be proved by other, more elementary means. 

Heavy use is made of the ideas, definitions, notation and results of [2] to 
which this is a sequel. These are not repeated here. Von Neumann's original 
theorem and its proof are probably most easily accessible in Billingsley [1], 
w 5.1, pp. 66 to 73. 

2. Notation 

In addition to the notation and definitions of [2] we use the following notation 
in Lemmas A, B, and C. I, J both denote the closed unit interval [0, 1], S = I • J 
denotes the unit square. This corresponds, in the notation of [2] to S = S ( A )  
where A has just 2 elements. The projection S-~I  is denoted by zc I, from S to J 
by n s. S t denotes the a-algebra in S of cylinders of the form rc i i (X), where X is a 
measurable subset of I. If # is a fixed, Lebesgue-Stieltjes probability measure 
on S, then, via S t and ~I, 12 induces a measure #i on I. The measure algebras of S, 
S I and I are denoted by E, E * and E (I), the last two being canonically isomorphic. 

The proofs of Lemmas A and C remain unchanged if I and J are only assumed 
to be Polish spaces, minor verbal changes are however needed in the proof  of 
Lemma B. The known measure theoretic isomorphism of finite Borel measures 
on Polish spaces and intervals, makes this exercise unnecessary. The Corollary 
to Lemma C is in fact the restatement of Lemma C for Polish spaces. 

If q5 is a set automorphism of S such that q5 (E I) = E I, then ~b induces a set 
automorphism ~b' of I. We say that q5 leaves the a-algebra of / -based cylinders 
invariant. 

3. Main Lemmas and Theorem 

Lemma A. Let S = I • J be the unit square, let 12 be a Lebesgue-Stiehjes proba- 
bility measure on S. Let ~b be a set automorphism of S leaving the a-algebra of 
I-based cylinders invariant, and so inducing a set automorphism qb' of (I, 12i). Let 
T' be a point automorphism of I inducing ~9'. Then there exists a subset f2 ~ S such 
that g(f2)= 1 [or equivalently 12(S-f2)= 03 and a point automorphism T 1 of f2 such 
that T 1 induces ~b and such that for (p, q) ~ f2, 

niTl(p, q)= T' ~I(p, q). 

Proof. By the theorem of yon Neumann there exists a point automorphism 
T~ of S which induces qk Since ~b leaves the a-algebra of/-based cylinders invariant 
and so induces the set automorphism ~b' of (I, 12i), for any measurable subset 
X o f /  

{ x  • J} = 4,' {x} x {j},  
and so 

p(TI"(X x J) a (T ' "X  x J) )=0 

for all integers n (positive or negative). Let Zx, . denote this set; put Z x =  U Zx, . 
then p (Zx)= 0 and for all integers n, - ~ 

TI"(X • J ) - Z x = ( T ' n X  x J ) -  Z x. 
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Let X k (k= 1, 2, 3 . . . .  ) be a separating sequence of generators of the a-algebra of 
measurable subsets of I (say the intervals with rational end-points). Put Z =  

Z x a n d  N =  U TI"Z, then/~(N)=0,  Ta"N=N and 
k = l  n =  --oo 

T~ ( Xk X J) - N = ( T'" Xk x J) - N,  

for all n and k=  1, 2, 3, .... Hence (since X, is a separating sequence) for all 
measurable X c I, 

TI"(X x J ) - N = ( T ' ~ X  x J ) - N ;  
and for all p~I, 

So if (p, q ) ~ f 2 = S -  N, 

Ta"(p x J ) -  N =(T'"  p x J ) -  N. 

7C I r 1 (p, q) = T' rc I (p, q). 

Thus T I and f2 have the required properties, concluding the proof. [Note that 
T 1 can be chosen to be any point automorphism inducing qS.] 

Note. I am indebted to the referee for suggesting this short and elegant proof 
(which is actually almost identical to an argument in the proof of Lemma 5 of 
our earlier paper [2]). My original proof  consisted in following von Neumann's 
original construction with an added condition to ensure that rc~ T=  T' zc I on f2. 

Lemma B. I f  p is a Lebesgue-Stieltjes probability measure on S = I  x J, there 
exists a Borel set Z in S with p ( Z ) = 0  and such that Z meets every vertical line seg- 
ment ~-1 (p) in a set of cardinal c. 

Proof Let Pc be the non-atomic part of p. The lemma is trivial if & = 0. There 
exists a set L such that L is a countable union of horizontal line segments L,,  
n=  1, 2, 3 . . . .  with L = S  and such that pc(L)=0. (Here L denotes the closure of 
L.) For  there are uncountably many such sets which are disjoint and each is 
Borel and so #-measurable. Since the intersection of all open horizontal strips 
(i. e. open sets bounded by two horizontal lines) containing L, is L,  itself, and 
since the decreasing directed family of all such strips has a countable cofinal 
subfamily, it follows that given e > 0  there exists an open horizontal strip V, ~ 

V~= ~) containing L, such that #c (V ,~ )<~ .  Let V, ~, then/4(V~)<e and V~=L. 
( ~  n = l  

Let Z ' =  V 1/k. Then Z ' ~ L ,  &(Z') = 0, Z' is a union of horizontal line segments, 
k = l  

Z' is an everywhere dense ~a in S, and so Z' m ~-  * (p) is, for every p, an everywhere 
dense Na in the Polish space 7:; 1 (p)=p x J. Thus Z'c~ rc~ 1 (p) is of cardinal c for 
every p. There are at most countably many atoms of/~ contained in Z'. If M is 
their union then Z = Z ' - M  has all the required properties namely/~(Z)=0 and 
Z c ~ [ l ( p )  has cardinal c for all ps i .  

Alternative Proof First note that if K is any non-trivial sub-interval of J (i.e. 
one consisting of more than one point) and a>0 ,  then there exist two disjoint 
non-trivial closed sub-intervals K o and K 1 of K such that # ( I x  (KowKa))< 
a # ( I x K ) .  Fix a such that 0 < a < l .  
8 Z.Wahrscheinlichkeitstheorie verw, Geb., Bd. 23 
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Using the above remark we construct inductively for any positive integer r 
and each sequence il, iz, ..., i r with ij=O or 1 for l<=j<r, a closed non-trivial 
interval Ji ...... i~ with the following properties: 

(i) J0 and J1 are closed non-trivial disjoint sub-intervals of J such that 

p (I x (J0 w J1)) ~ a #(I x J)--- a. 

(ii) Jil ..... i . . . .  o and Ji, ..... ~r_,,1 are closed, non-trivial, disjoint sub-intervals 
of J i  ...... it-, such that 

#(I  x (Jil ..... i . . . .  o w Ji ...... ~ . . . .  O) < a #(I  x Ji ...... i~-1)" 

It follows that for each r, 

# ( I x  ~ Jh ..... i~)<=a'--*O as r ~ o o .  
i l ,  . . . .  i r  

For every infinite sequence i~, ie, ..., i . . . . .  , (~ J~l ..... i4=~[ (being an intersec- 
r = l  

tion of a decreasing sequence of non-empty compact sets) and these intersections 
are disjoint for different infinite sequences. Since the intersections are in (1-1) 
correspondence with the binary decimals between 0 and 1, it follows that 

Z' = ~.) Ji ...... i 
i l , i 2 , . . . , i r , . . .  \ r = l  

has cardinal c. But Z ' =  U Ji ...... ir for each r and so 
i l  . . . .  , i t  

# ( I • 2 1 5  U J~ ...... it) <at  for each r, 
i l , . . . , i r  

so #(I x Z')=O. Thus Z = I  x Z'  has the required properties. [This argument was 
suggested by the referee. Note that although the construction of Z' is similar to 
that of the Cantor ternary set, Z' may contain non-trivial sub-intervals, and so 
not be a Cantor set.] 

Lemma C. Under the same hypotheses as in Lemma A on S = I • J, #, O, and 
T', there exists a point automorphism T of  S such that T induces 0 and such that 
rc I T=  T' 7r I. 

Proof. Let s T 1 be as in the conclusion of Lemma A, Z as in Lemma B. Let 

i f = a -  ~) T,~(Qc~Z). 
n =  ~ oo 

Then #(f2')= 1, T1 f2'=f2' and so for (p,q)~O' 

~, T1 (p, q)= T' Try(p, q). 

Further if N = S - f 2 ' ,  then /~(N)=0 and since N 2 Z ,  N~rc[x(p)  has cardinal c 
for every p s i .  Let Rp denote any bijection from N~rcF~(p) to N c ~ z i ~ ( T ' p ) .  
For (p, q)ef2' let T(p, q)= T~(p, q). For  (p, q ) e N = S - s  let T(p, q)=Rp(p,  q). Then 
T is a point automorphism of S which induces q5 and for all (p, q)~S, 

~, T(p, q) = T' 7ci(p, q). 
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Corollary. Lemma C remains true if I, J are replaced by arbitrary Polish spaces 
and # is a Borel probability measure on their product; in particular it remains true 
if they are replaced by countable products of closed unit intervals. 

Proof There is a Borel point isomorphism of a Polish space and a closed unit 
interval, such an isomorphism induces a Lebesgue-Stieltjes measure on S. Alter- 
natively only minor verbal changes, are needed in the proof of Lemma B to make 
the entire argument of all three lemmas valid for arbitrary Polish spaces. 

Theorem 1. Let A be an arbitrary set, possibly uncountable, let S = 1~ I~, ~ cA, 
each I~ = [0, 1]. Let # be a probability measure on the product (Baire) a-algebra 
of S. Then every set automorphism 0 of# on S is induced by a point automorphism 
ToyS. 

Proof By Lemma C, Corollary applied to countable products of I~, ~b has 
the countable extension property of [2] for every countable set F c A, invariant 
under ~b. By Lemma 8 of [21 q~ has the countable extension property. The result 
then follows by Lemma 7 of [2]. 

Corollary. The result still holds if S is an arbitrary (possibly uncountable) 
product of Polish spaces. 

Note. The above proof does not use the last two lemmas of [2] which are the 
only ones which use the disintegration theorem. It is thus more elementary, apart 
from being valid for a much wider class of measures #. In fact even Lemmas 4, 
5 and 6 of [21 are not really used. Lemma 4 is used in [2] only in the proof of 
Lemma 9 and Lemma 5 in the proof of Lemma 6. Lemma 6 appears to be used 
in the proof of Lemma 8 but in fact its use is entirely unnecessary. The vital point 
is that the point automorphism Ton S(F) can, by the countable extension property 
for countable invariant sets, assumed in the hypothesis of Lemma 8, be extended 
to a point automorphism ToY S(F u C) inducing f), the set automorphism induced 
by q5 on S(F~ C) [which exists since F ~  C is invariant]. In the argument as given 
in [2.] it is merely stated that ~ can be extended to some point automorphism 
P of S(Fu  C) and then Lemma 6 is invoked to get the required point auto- 
morphism ~ which is clearly unnecessary. [A more vital use of Lemma 6 is how- 
ever made in Lemma 9 of [2] for which we have now no further use.] 

Combining Theorem 1 with the theorem of Lamperti (see Theorem 3.1 of 
[7]) we have the following. 

Theorem 2. Let A be an arbitrary set, let S= I] I~, c~EA, with each I~= [0, 1.]. 
Let # be a probability measure on the product or Baire a-algebra ~o of S. Let U 
be an invertible isometry of LV(S, ~o, #), 1 <=p< c~, p:# 2. Then there exists a point 
automorphism T of (S, ~o, #) such that 

(U f )  (x) = f  (T-* x) h(x) 

with [h(x)]P=co~(x), where COT(X ) is defined by 

~(T-1E) = ~ COT(X ) #(dx). 
E 

8* 
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