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A Method for Studying the Integral Functionals 
of Stochastic Processes with Applications 

II. Sojourn  Time Dis t r ibut ions  for M a r k o v  Chains  

Prem S. Puri* 

1. Introduction 

This paper is in continuation to [4], where the work done by several authors 
in the past on the integral functionals of stochastic processes was briefly surveyed. 
More importantly in [4J a method was introduced for the study of the distribu- 
tion of the integral 

t 

Y(t) = .l f (X(~),  z) dr, (1) 
o 

where X(t), t > 0 is a continuous time parameter stochastic process appropriately 
defined on a probability space (Q, d ,  ~), with ~r as its state-space; f is a non- 
negative (measurable) function defined on ~ x [0, ~).  Here it is assumed that the 
integral Y(t) exists and is finite almost surely for every t > O. The method is based 
on the introduction of a "quantal  response process" Z(t) defined for a hypo- 
thetical animal as: Z(t) equals one if the animal is alive at time t and is equal 
to zero otherwise. In particular, it is assumed that 

P(Z( t  + A t) = OlZ(t) = 1, X (t) = x) = 5 f (x, t) A t + o (A t), (2) 

with Z(0)= 1 and 5 a nonnegative constant. Here the state "zero" is an absorption 
state for the process Z(t). With this, it is evident that 

which in turn gives the Laplace Transform (L.T.) of the integral Y(t). Thus the 
study of the integral Y(t) can equivalently be carried out by studying the process 
Z(O. It is to be noted that the quantal response process Z(t) does not influence 
the process X(t)  in any way, rather as it is clear from (2), is influenced itself by the 
growth process X(t). Again as was pointed out in [4J, f is assumed to be non- 
negative here without loss of any generality. 

In [4], the above approach was applied to time homogeneous Markov Chains 
(M.C.) X(t) with {1, 2, 3, ...} as the state-space. In this paper, we shall explore 
further certain aspects of the integral Y(0 of such processes. In particular, for a 
M.C. X(t) we shall find the joint distribution of times spent by the chain in each 
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state of a given finite set J of states, before it hits a taboo set H. Constructively, 
we define the M.C. X(t) as follows: If X( t l )= i  at some epoch tl, the value of 
X(t) will remain constant for an interval tl_-< t <  tl +z,  whose random duration z 
is exponentially distributed with density function c i e x p ( - c  i x), c i > 0; the prob- 
ability that X(t l  + z ) = j  is Pij, where the matrix p-:(pij) is a stochastic transition 
matrix. We assume that the quantities c~ and pij are independent of time and that 
cj< ~ for all j so that the process X(t) is time homogeneous, stable and strong 
Markov. Also, we assume that the sample paths of the process X(t)  are right 
continuous. Again since the process is defined constructively, it is separable. We 
assume hereonwards that the function f depends only on X(t) and not explicitly 
on t. Also, in order to specify the function f ,  we are given a sequence of numbers 
f(i)-- f/ with 0_-_6 fi < o% i=  1, 2, . . . .  It is evident from the construction that the 
process {X(t) ,Z(t)}  is a M.C. with state space ~={( i , r ) ;  i = 1 , 2  . . . .  ; r = 0 , 1 } .  
Also it is not difficult to see that the exponential parameters for various states 
of ~ are given by 

Cil = (Ci -[- ~ f / )  ; Cio=Ci . (4) 

Furthermore, the transition matrix of the imbedded discrete time M.C. of 
{X(t), Z(t)} is given for i, j - -  1, 2, ..., by 

P~, i l=ciP~j (c i+~f i ) - l ;  Pil, iO=~Sf~(c~+~Sf~)-~; Pio, jo=P~i; p~o,jl--0. (5) 

Let N(t) denote the number of jumps (changes) occurring in the M.C. {X(t), Z(t)} 
during (0, t]. We now introduce the following notation. 

Pij( t )=P(X(t)=jlX(O)=i);  ~ j ( t )=P(X( t )= j ,  Z ( t )=  llX(O)= i, 2(0)= 1); 

Pi~, js (t, n) = P(X(t)  =j, Z(t) = s, N(t) =nlX(O ) = i, Z (0) = r) ; 

Pi,, j~ (t) = P ( X  (t) =j, Z (t) = s iX  (0) = i, Z (0) = r); (6) 

1=(1, 1, 1 . . . .  )'; f=(6,j  f~); p--(p,~), 

where i, j--= 1, 2, 3, ... ; r, s = 0, 1; n = 0, 1, 2 . . . .  ; ~ > 0; b~j is the Kronecker delta and 
nij(a ) and ~ij(e) are L.T. of P~j(t) and/~/i(t) respectively. Similarly let nir, j~(c 0 and 
ni,.j~(a,n) denote the L.T. of P/,,j~(t) and Pirds(t,n) respectively. Clearly the 
symbols Pij(t) and Pa, jl(t) represent the same probability. We shall find it con- 
venient to use one notation or the other as the case may be. 

Following a standard argument, the L.T. nir, j~(c 0 satisfy the following back- 
ward system of equations with i, k = 1, 2 . . . .  

oo 

((X -~ C i "JV ~ f i)  nil,  kl(~)  : ~ik -[- Ci ~ Plj n j l  ' kl (0~), ( 7 a )  
j= l  

oo 

(0~ + C i + (~ f i )  nil,  k 0 (00 = ~ f i  ni O, k 0 (00 + Ci 2 P ij n i l ,  k 0 (~),  (7 b) 
j = l  

(a + ci) ni o, k 0 (00 = (3ik + Ci ~ Pij n j 0, k 0 (e). (7 C) 

It is known from Feller's construction (see [2]) that there always exists a 
solution n (~) of the system (7) which is minimal among all its solutions. For 
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simplicity sake, we now make the following basic assumption (B) throughout 
this paper. 

(B) The matrices p, f and C are such that the minimal solution of (7) is completely 
stochastic, or equivalently for c~ > O, and i = 1, 2 . . . . .  

~ 7~il, k 1 ( ~ ) " ~  ~ ~i~,go(CO---- 1 (8) 
k=l k=l 

and 

~ rci o, kO (") = 1. (9) 
k=l 

Necessary and sufficient conditions are available for condition (B) to hold. 
We describe one in the following (see also [3]). Let X(O)=i, Z(0)=r .  Also let 
To be the moment the process leaves the state (i, r) for the first time; z~ the moment 
it leaves the next state (il, rl)= (X(~o), Z(%)) for the first time, etc.; ~n the moment 
of leaving the state (i n, rn)=(X(~n-O, Z(~n_~)) for the first time. In order that 
M.C. (X(t), Z(t)) satisfies the condition (B), it is necessary and sufficient that 

- -  ~ 1 - oo, (10) 
n= 1 CX(~,d, ZO:~) 

with probability one, where c's are as given in (4). 

We state without proof the following lemma to be used later. 

Lemma L Let the condition (B) hold. Then the solution of the backward sys- 
tem (7) satisfying Chapman-Kolmogorov equations is unique. The same solution also 
uniquely satisfies the forward system (11) given below. Furthermore, these uniqueness 
properties are maintained even when the original M.C. is modified by lowering the 
values of any of the original cir's (or equivalently of ci's and fi's) or even when for 
some states these are replaced by zeros thereby making them absorption states for 
the modified M.C. 

The last statement of the lemma follows from (10). The forward system analogue 
of (7) is given by 

oo 

(C~ + Ck + f Jk) 7~il, k1( O0~-Sik-{- 2 Cj Pjk 7ril, j i (~) '  (1 l a )  
j = l  

(O: +Ck) rql, gO(,)=(S fk rCil, kl(O:)+ ~ cjpjk rCil, jO(~), ( l ib)  

(" + Ck) ~ZiO, kO (CO=~ik + i cj p~k ~ZiO,jO(C0' ( l lc)  
j = l  

Because of the condition (B), it easily follows that N(t) is almost surely finite for 
every t > 0, so that 

oo 
~i~,js(c~)= ~ ~zi~,j,(cq n); i , j = l , 2  . . . .  ; r,s=O, 1. (12) 

n=O 
Also, note that 

~Zij=TZiO,kO=~il, kl + 7ril, kO; i, k =  1, 2, .... (13) 

We now introduce the following fundamental lemma. 
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Lemma 2. Let the condition (B) hold. Then rc(~) and ~(~) are related through 
the identity. 

7~ik(O0--~ik(~)=t~ 2 fJ ~iJ (O0 7~Jk(O0' (14) 
j~l 

or equivalently in matrix form 

(~) - ~ (ct) = 6 ~ (o 0 f ~  (a). (15) 

Proof. (14) follows by adding the system of equations 

o0 

nil,kO(e, n+ 1)=5 E fJ i nil, Jl(e, m) njO. kO(C q n - m ) ,  (16) 
j = l  m=O 

over n=O, l, 2, ..., and using (12) and the fact that n~l, kO(~, 0)--=0. On the other 
hand (16) follows from the following backward type system of equations for 
n/,.ks(~, n) and an induction argument on n. 

(O~+Ci+6fi) Xil, kO(Oqn+ l)=3fiT~iO, kO(~,n)+ ~ ciPijZCjl, kO(Ct, n), (17a) 
i=1 

(e+ci+6 fi) nil, kl(~, n+ 1)= ~, ci Pij njl, kl(~, n), (17b) 
j=l 

(c~ + ci) ni o, kO (~, n + 1) = ~ ci Pij njo, kO (C~, n). (17 C) 
j=t 

Here ni o, k o (~, O) = ni k (c~ + ci)- 1 and n, ,  J 1 (~, O) = nij (~ + ci + 6 f/) - 1. The details of 
the proof are omitted. 

2. Main Results 

One of the problems treated in this paper (section 2.2) is to find for a M.C. 
X(t) the joint distribution of the times spent by the chain in each state of a given 
finite set J of states, before it hits a taboo set H. For this we need to introduce 
the following notation. Let X(0) = i and H denote an arbitrary taboo set of states' 
which may possible be empty but is such that i6H. Following Chung [1] we define 

p~=inf{t" t > 0 ;  X(t),t:iIX(O)=i}. (18) 

c~ij=inf{t: t > &; X(t) =jlX(0) = i}. (19) 

Here Pi is the first exit time from i and 

P (Pi > t IX(0) = i) = e x p ( -  ci t); 

Also note that c~i > p~ almost everywhere. Let 

t=>o. (20) 

.~  if ~ij<= inf ~ik k~H 
nc~J = otherwise. 

(21) 
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Thus u~ij = aij if H is empty. Again let 

eiu =inf{t:  t > Pi; X(t) 6H[X(O) = i}. (22) 

If i +j, Hazj is the first entrance time from i to j under the taboo H. On the other 
hand since ir cq~ I is the first entrance time from i to the set H. We define for 
t > 0  and id~H, 

HPu (t) = P(CqH > t; X (t) =jlX(0) = i), (23) 
and 

~ j ( t )  =P(CqH> t; X(t)=j, Z(t)= ltX(0 ) = i, Z(0)= 1). (24) 

The probability uPu(t ) is the transition probability from i to j in time t under the 
taboo H. Note that if i=t=j and j eH,  then uP~j(t)-O. A similar interpretation is 
to be taken for u~j(t). Also it is evident that (nPu(t)) and (t/~i(t)) are in general 
both substochastic matrices with 

,Pu (0) = uP~j (0 + ) = u~j (0) = ti~j (0 + ) = 5,j. (25) 

We say k is accessible from j and write j -~  k iff for some t > 0, Pjk (t) > 0. If H 
is nonempty, we write j . ~ H  iff there is a state k e H  such that j .~k .  If j . ~ H  it 

oo 

can be shown that f uPij(t)dt< oe (see Chung [1-1, p. 192). Since ifPiij(t)<uPu(t), 
oo 0 

it follows that f uPu(t) dt< oo. 
o 

To begin with, in the next section, our aim will be to find the joint distribution 
of the integral Y(c~m) and X(cqu ). To this end, let 

uF~j (t) = P (~j <= min (inf C~ik, t)[X (0) = i). (26) 

In particular, let 

F~j(t)=P(chj<=t[X(O)=i); F~n(t)=P(ein<ttX(O)=i). (27) 

Similarly let 

u~j(t)=P(~u<min(infcqk, t), Z(~ij) = I[X(0)= t, Z(0)= 1) (28) 
- -  k c H  

and 
~j (t) = P(~u < t, Z(%) = 1IX(0) = i, Z(0) = 1). (29) 

2.1. Joint Distribution of Y(cqu ) and X(cqu ) 

Let H and the set 

D={j :  jCH, j , ~ H }  (30) 

oo 

be both nonempty. We then have ~ uPu(t)dr< 0% for all jED. Let i(~H. Also let 
for keH, o 

Gik(t[H)=P(cqn<= t, Z (r = 1, X(~,,)= klX(0)= i, Z(0)= 1). (31) 

It is clear that if iCD, aiB=oo , a.s., so that Gik(tIH)=-O. Thus we assume that 
i6D, and have the following theorem. 
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Theorem 1. Let the condition (B) hold. Then for i~D, 

Ctitl 

and 

E exp - 3  f(X(r))dz X(0)=i =Fcjp jH,~5~(0t+l ims2,~i j (~ / ,  (331 
j~D ~ 0  jiiH 

where 
FiH(~ ~ cj Pjn Hnij(0); PjH = ~ Pjk; (34) 

j~D k~H 

nrcij(ct) and nfro(s ) are the L.T. of nPii(t) and H~(t) respectively, with s>0,  and 
Ik(t ) is the indicator function of the set [X(t)= k]. 

Proof. Observe that the history of the process until the time point sin does 
not depend upon Ck and J~ for k~H. Consequently, since we shall be concerned 
with the process {X(t),Z(t)} only until the moment chn starting from state i, 
without loss of anything we modify the M.C. by taking Ck=fk=0 for all keH.  
With this modification, the states of H become absorption states for the M.C. 
{X(t), Z(t)}. Let for this modified M.C. 

Qii (t) = P(X(t) =j, Z (t) = lIX (0) = i, Z (0) = ! ) .  (35) 

Clearly, for j~H,  and kaH, 

(~i) (t) = n~j (t); Qik (t) = dig (t [H). (36) 

In view of condition (B) and Lemma 1, the modified Eqs. (7) and (11) for the 
modified M.C. also have a unique solution which is completely stochastic. Thus 
considering the last jump to set H during (0, t) for the modified M.C., we have 
for kEH, i~D, t 

Qik(t) = ~ ~ Oij(z) cj Pig dz. (37) 
jeD 0 

From (36) and (37), it then follows that 

t 

Gik(tlH)-= 2 ~ HPiij(T') Cj Pjk dz. ( 3 8 )  
j~D 0 

Using this, we have for k~H, leD, 

L.H.S. of (32) = P(Z (sin) = 1, X(am) = klX(O) = i, sin < oe) 
(39) 

= Gik(~lH)/Fm(~ ) = R.H.S. of (32), 

where Fm(~ ) is positive, since i , ~ H  by assumption. From the above, it easily 
follows that for i~D, 

L.H.S. of (33)= ~ ejpjH n~ij(O)~ limP(~in> t, Z(t)= l lX(0)= i, Z(0)= 1), (40) 
j~ D t ~  oo 

where it is easily seen that the last limit exists and that, by using a Taubarian 
argument, is equal to the limit on the right side of (33). This completes the proof. 
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Subject to the condition (B), it is not difficult to see that for i,j~D, H~j satisfy 
the following analogues of Eqs. (7a) and (11 a) 

(0~ -k C i -k (~ fi) H~ij (00 = ~)ij -[- 2 Ci Pil If~lj (00, (41) 
leD 

(c~ + cj + 6fj) u~ij (~) = cSij + ~ ttT~iz (c~) ez Ptj. (42) 
leD 

For jr the Eqs. (41) and (42) are still valid if I~D is replaced with lCH 
under the summation signs on their right sides. These equations can be solved 
to yield (~/~i), which in turn using (32) gives for every i ,~H the desired conditional 
joint distribution of Y(ein) and X(~.in ) given c~z<oo. Also by taking f~=l ,  
for jCH, (33) gives the L.T. of the first passage time ein to set H. 

Consider, in particular, the case where the set D is finite. For this let CR, fR, PR 
be the finite matrices obtained from C, f and p respectively by restricting them 
only to the states of D. Let 

h = (h~) = (H~,~ (0)), i, j q~ D.  (43) 

Since j - ~ H ,  we have hij<oo for all i,j~D. Also for fixed k~H, let 

PR, k=(pik); t~R.k=(Gik(OOIH)); i~D, (44) 

be two finite column vectors. We then have the following corollary. 

Corollary. Let D be finite, and CR, fR and pg be such that the matrix 
(CR + 6 f R -  CR PR) is nonsingular. Then under the conditions of Theorem 1, 

CJR, k=(CRq-t~fR--CRPR) -1" CRPR, k; k~H, (45) 

which, for the case with F/H(~)=  1 for i~D, yields the exact expression for (32). 

Proof For fixed k6H, and varying i~D, we have from (38) on letting t ~  ~ ,  

(JR, k = 11" C R - PR, k ; k ~ H.  (46) 

On the other hand letting ~ ~ 0 we have from (4l) and (42) 

(CR+CSfR--CRPR)'h=I; h'(Cg+6fg--CRPl~)=I, (47) 
SO that 

h = (CR + CSfR -- CR pg)- 1, (48) 

which yields (45). This completes the proof. 

2.2. Joint Distribution of Sojourn Times for Different States 

Let the taboo set H be nonempty. Let J={Ii , l  2 . . . .  , l~t} be another set of 
states with l~(~H, but l~,~H for r = l , 2 , . . . , M .  Given that the process starts 
with X(0)=i ,  iCH, i.~H, our aim in this section is to find the joint distribution 
of the amounts of times nCur, r = 1, 2, ..., M, spent by the process X(t) in states 
I t ,  l 2 . . . . .  l M respectively, prior to the moment it hits the taboo set H. To this end 
let fir>0, fl=(flr6,,) and I=(6~m); r , m = l ,  2 . . . .  ,M. Also, let q(J,J)=(rhrlm(ct)) , 
and q(j, J)=(t/jll(~ ) . . . .  , t/jl~(a))', where t/jk(c~ ) is the L.T. of HPjk(t), for j, kCH. 
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In particular, if k(~H and k,~H, the integral 

co 

Hqjk (oe) -- ~ HPjk (t) d t =  ~/jk (0), (49) 
o 

is finite. Finally let 

~o(J, J) =(~.,m(0)); qo(J, J) =(~j,l(0) . . . . .  ~ ,~  (0))'. (50) 

Then we have the desired theorem. 

Theorem 2. Let the condition (B) hold, and the M x M matrix (1 +t/o(J,  J)fl) 
be nonsingular. Then,/fX(0)=i; id~H and iw, H, we have 

M 

Proof. It is evident that the distribution of (HCul, ..., HCu~) is independent 
of cj for jd-I. As such, like in section 2.1, we consider a modified M.C. which 
is same as the original one except that now cj=O for jeH,  so that every state 
of H is now an absorption state. Clearly as in (36), the probability P(X(t) =jlX(0) = i) 
for the modified chain with i, jdfH, is same as HP/j(t). Again, we assume that 
5fir=fir, r =  1, 2, ..., M, and otherwise f j = 0  for j~J. The following relations are 
now easy to establish. 

L.H.S. o f (51)=E(exp[-5~Hf(X(z ) )dz]  X(0) = i) 
0 

] 0 
= l i m E ( e x p [ - 6 i f ( X ( z ) ) d  Q X(0)= i) (52) 

=lim=!exp(-~t)E exp - 6 ! f ( X ( z ) ) d z  i dt 

co 

= lim c~ ~ rhk (cO, 
~ 0  k = l  

where ~hk(C0 is L.T. of P(X(t)=k,Z(t)=l]X(O)=i, Z(0)=I) ,  defined for the 
modified M.C. the last but one equality of(52) follows from a Taubarian argument, 
whereas the last one follows from the condition (B) which incidently remains 
valid for the modified M.C., by virtue of Lemma 1. 

We now proceed to evaluate (52). It is easy to see that subject to condition (B), 
q and f/satisfy the identity (14) which in the present case takes the form 

M 

~ik(e)--ghk(CO= ~flrfhl.(a) th.k(~); k =  1,2, .... (53) 
v = l  

The Eq. (53), for k = 1 . . . . .  M, can be written down in the matrix form as 

[I +t /(J ,  J) fl] O(i, J )=q( i ,  J), (54) 
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where ~/(i, d)=(f/u~ . . . . .  fhtM)'. Since (I+t/0(J,  J) 1~) is nonsingular, (I+t/(d, J)fl) 
will be nonsingular for small enough c~, so that (53) for key  can be uniquely 
solved for f/u~, r =  1, 2 . . . . .  M, in terms of t/'s. The remaining ?Izk'S with k~J, can 
then be obtained explicitly as (see also [4]) 

Again, let 

M 
0~(~)= ,~(~)  - Y fi.O,Aa) ~ ( ~ ) .  (55) 

r=l  

r/j. (c 0 -- ~ r/jk ((X). (56) 
k=l 

Since (55) is valid for all k, on using it we have from (52) 

L . H . S .  of  (51)=~im0(z /~i.(~)-- 2 ~rOilr( O00lr.( O~ 
r=l  

[~ 1 =lim 1 -  y, fi,.fh~.(cO 
~ 0  r=l  

M 

= 1 -  Z/~.0.A0).  

(57) 

Here we have used the fact that :~ q~. (:t)_= 1, for all j and c(> 0. This is a simple 
consequence of the condition (B). Finally, since the matrix [ I+  i/o(J, J)fl] has 
an inverse, (51) follows from (57), thereby completing the proof. 

In general the L.T. given by (51) is a rational function of ill, f12 . . . . .  tim and 
can be easily inverted to yield the desired joint distribution of the sojourn times. 

Special Cases. As an illustration let us consider the case when M =  1, so that 
we are interested in the distribution oft~Cu for a given state l~I-I. From (53) we have 

~Zk(~)--Oik(~)=fi0i(C~)~k(~); k = l , 2  . . . . .  

For k = l, this yields 

Using this in (51) we finally have 

E (exp [ - fl H Cu]) = 1 -- fi r/,~ (0) (1 + fi t/u (0))-1 

= 1 - P n q . ( ~ ) ( 1  + fl..q,,(oot) -~, 

where nqil(~) is given by (49). 
Again, we have (see Chung [1], p. 213) 

(58) 

(59) 

(60) 

Hqu(OV)=gqu(oo)nFil(oO), i*l ,  (61) 

so that using these in (60) we obtain 

E~e r _ ,  C 7" - ( ( l+ f iHqu(~176  
t xpl_ t)~ uJ)--~.[l+finqu(Oo)(l_~Fil(oo))](l+fiuqu(OO))-i ; 

i=l 
i~l .  

(62) 
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Inversion of this transform yields 

p(Hcn <_tlX(O)=i)= {l-exp[-t/nqn(oo)]; i=l, 
- --nF~l(oo)exp[--t/Hqu(oo)]; i4=1. (63) 

This coincides with the known result due to Chung ([1], p. 229), where he gives 
three different methods of deriving it. Here then we have given a fourth method 
based on the ideas presented here. Our method however, works for the general 
case involving any finite number M of states as exhibited above. 

Continuing further, let us now consider the case with M = 2 .  We use the 
notation l and s for 11 and 12 respectively. With M = 2 ,  it is easy to show that 
the matrix (I+tlo(J,J)fl) has an inverse, so that the Eq.(53) with k=l and s 
can be uniquely solved for t/n and ~ti~. This along with (61), on using in (51) yield 
after a little simplification 

where 

E (exp [ -  fll H Ciz - f12 H CiJ) = [ 1 + fll//2 al +//1 a2 -t-//2 a3] 

�9 [1 +//1//2 a4 +//1 a5 +//2 a6] - 1 

al = (1 - Ou)(1 - 6is) a5 a6 [-(i -I- nFsl (o0) ifFis(c~) -k nets (oo) nFit (o(3)) 
-(HV, s(oo),,V~(og)+ HF,.~(oo)+,~F,~(oo))], 

a ; = ( 1 - 6 u )  as(1 - nFu (oo)); a a =(1 - c~) a6(1 - HF~ (00)), 

a4=asa6(1-- nFls(OO)HF~t(oo)); as=HqU(o0); a6=nqss(oO). 

(64) 

(65) 

Here 6's are the Kronecker deltas. The L.T. (64) can easily be inverted to yield 
for tl, ts>0, 

t P(nCn<tz, nCis<=ts)=l- 1--~5 exp(-ts/as)-exp(-a5 ts/a4) 

�9 { 1 - a ~ - - ( 1 - ~ -  ) exp(-tJas) 

( a 3 a l )  } + exp ( -- a 6 tJa4) - exp ( -  a 5 ts/a4) 
a6 a4 

(66) 
[ (  a l ) ~  x k  t t k  l 

�9 1--a44 k=t k!(k-1)!  ! z  - exp(-a6z/a4)dz 

oo xk  

- (1 - \  aZ ] 5 ] k! ( k -  1)! 

t, { (a6  a4 a5 1 )  } dz �9 !zk-lexp -- Z 

a3 al  a6 ~ x k t~ 

a4 a~ ) k ~ = l ~ !  \ a4 z]dz],! 



A Method for Studying the Integral Functionals. II 95 

where 

x = (  aSa6 1 ) t ~ .  (67) 
a~ a4 

Finally, we present in the following the first two moments of nCu and nCis as 
obtained by using (64)�9 

Case (i). s = i. 
E(nCit) =HqU (o0)�9 HFiz (o0); 

E (nCi i )=  nqii( O0 ) ; 

Var (nCu) = [nqu (~ 2 nFgl (oo)(2 -- nF~l (o0)) ; 
(68) 

Var (nCii) = [nqii ( 0 0 ) ]  2 ; 

Cov (,Cg l, nCii ) = nqu (CO). Hqu (00) nFiz (o0) nFli (~); 

, (n Cu, ,C,,) = nF~z (oo) nFz, (oo). [nF~, (oo) (2-  nF//, (oo))] - +. 

Case (ii). l + i, s ~= i. 

E(nCu)=nqu(oo)" HF/t (oo); 

E(i-iCis)=nqss(og) nF/s (oo); 

Var (nCil) = [_nqu (~176 2 nF/t (oo)(2 - nF/t (oo)); 

Var (nCis) = [nqs~(O�9 2" nF/~ (oo)(2 - nFi~ (oo)); 
(69) 

Cov (. C., .C~s)=.qll (~) .qs~(~) 
�9 [ . F . l  (~) .~.  (~) + .6 ,  (~) .F,., (~) --.~, (~) . ~ ' .  ( ~ ) 3  ; 

,o(.C., .c~)=(.~(oo) .~(~)+ .~s(oo) .rii~(~)-.~(oo) .~(~)) 
�9 [HF~, (oo) nFis (oo)(2 -- uF~, (oo))(2 - ,F~s (oo))] - }. 

Here p represents the correlation coefficient which, of course, is defined when 
nF/l(oo) and nF/s(OO) are both positive�9 It is clear from (68) that when one of 
the two states l and s coincides with the initial state i, the two sojourn times 
nCu and HC~ are nonnegatively correlated�9 However, the author has not been 
able to conclude one way or the other about the possible sign of p for the case (ii) 
or equivalently of the expression 

nF~l (oo) nF/s (oo) + nFI~ (oo) nF/, (oo) - uF/, (~) uF/, (oo). (70) 

particularly when all the F's involved are positive�9 The results of [4] and of the 
present paper have been applied to birth and death processes arising in various 
practical situations. These along with other results have been reported elsewhere 
(see [-5]). The reader may also refer to a result analogous to our (51) and due to 
Professor J.F.C. Kingman (Z.Wahrscheinlichkeitstheorie verw. Geb. 11, 9-17 
(1968))�9 The author is grateful to Professor Kingman for drawing his attention 
to this result. 
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