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1. Introduction 

Let  (X, ~3, m) denote the measure space consisting of  the unit  interval, 
Lebesgue measurable sets, and Lebesgue measure respectively. Let  ~ denote the 
class of invertihle t ransformations T of  X onto X which are measurable and non- 
singular with respect to (2,  m). This class arises natural ly  in the problem of in- 
var iant  measure ([2], p. 81). A topology is defined on ~ by  the metric d(r ,  a) 
= m (T * a). Our main purpose is to show tha t  on the one hand  the class of  trans- 
formations with roots of every order are dense in ,~ while on the other hand  the 
class of  ergodic t ransformations which do not  have roots of  any  order are dense 
in the antiperiodic transformations.  This possibility is suggested by  the si tuation 
in the invar iant  measure problem where it is known tha t  on the one hand  the 
class of  t ransformations with a finite invariant  measure equivalent to m are dense 
in ~ while on the other hand  the class ~R of t ransformations with no a-finite in- 
var iant  measure absolutely continuous with respect to m are dense in the anti- 
periodic transformations.  The former result may  be obtained easily f rom Theo- 
rem 2 below and the lat ter  result is proven in [1]. 

These results imply  in particular tha t  an antiperiodic t ransformat ion may  be 
modified on a set of arbitrarily small measure so tha t  the nature  of the modified 
t ransformat ion m a y  va ry  great ly  with respect to existence of  roots or an in- 
var iant  measure. However,  with respect to the topology defined by  d, the class 
of  antiperiodic t ransformations are not  numerous as we show in Theorem 5. 

Theorem 1 below is a decomposition result which we utilize in order to modify 
an antiperiodic transformation.  Although Theorem 1 of  [1] yields Theorem 1 of  
this note, we see below tha t  a simple direct proof  is possible based on a con- 
s truct ion in [1]. Corollary 1 yields a short proof  of Theorem 2 which is an un- 
published result due to LI~D~I~OLM tha t  is s tated in [5]. The construction in the 
proof  of  Lemma 6 was suggested by the technique in [4J. 

I n  what  follows all set equations as well as conditions involving transforma- 
tions will be unders tood to hold modulo null sets. All t ransformations will be in ,~ 
either by  assumption or construction. 

2. Preliminaries 

A transformation ~ is (i) measurable and (ii) nonsingular with respect to (2,  m) 
if (i) B ~ ~3 implies T (B) E ~3 and T -1 (B) ~ ~3 and (ii) m (B) = 0 implies m (~ (B)) = 
m (T - I (B) )  = 0. A t ransformation ~ is said to be periodic with strict period n if 
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Ti (x) 4= x, 1 __< i ~< n - -  1, Tn (x) = x, x ~ X. We say z is periodic with period n 
if  Tn (x) = x, x e X,  and n is the smallest such positive integer. A t ransformat ion T 
is antiperiodie if Tn (x) :~ x for every positive integer n, x E X. Let  ~ denote the 
class of  periodic transformations,  | the class of  str ict ly periodic transformations,  
and 91 the class of  antiperiodic transformations.  Given a positive integer n, a 
t ransformat ion a is said to be an n TM root  Of T if ~ = a n. Given T, the measure 
mT is defined as roT(B) = m(T(B)), B e ~3. Since ~ is non-singular the Radon-  
N ikodym theorem implies there exists a funct ion T' which is positive and unique 
a.e. such tha t  roT(B) = f "~' (x) dm. 

B 

Definition 1. Given sets A, B e !3 of  positive measure, we say ~ maps  A 
linearly onto B if  ~(A) = B, ~ is one-to-one, and z '(x) = m ( B ) / m ( A ) ,  x ~ A.  

The existence of  such a mapping is well known. 

Definition 2. For  each positive integer n ~ 2 we let Sn denote the class of 
t ransformations ~ for which there exists a set B e !8 such tha t  V (B), 0 ~ i _< n - -  1, 

are pairwise disjoint and X = ~ J  ~ (B). 
i = 0  

In tu i t ive ly  speaking, ~ e Sn implies ~ yields a stacking {v~(B), 0 ~ i _< n -  1} 
of  X of  height n. We note t h a t  Definition 2 implies ~n (B) = B. 

Our start ing point  is the following lemma, a proof  of  which is contained in the 
construct ion in the proof  of  Lemma 4 [1]. 

Lemma 1. Let ~ ~ ~ and let k be a positive integer. I] v,t (x) 4= x, 0 < 1 ~= 3 ~-1, 
8 ~ 

x ~ X ,  then there exists a set E~ ~ ~ such that (i) m (Ee) ~ 2 -~, (ii) Ee = ~ J  E~,~ 
i = 2  ~ 

where x e E~,~ implies i is the smallest positive integer such that ~ (x) ~ Ek ,  (~)  the 
sets in the collection {~J(E~,d, 0 =< ] < i, 2~ _< i - ~  3 ~} are pairwise disjoint, 

3 ~ i - - I  3 ~ 

X = [,..J I,..J T~(E~,d, and ~:-I(E~) = U ~ : l - l ( E k j ) .  
i = 2  ~ ~ = 0  i = 2  ~ 

We also utilize the following result due to LINDERI~OLM (see [5]), a proof  of  
which follows f rom Lemma 1. 

Lemma 2. I[  ~ e | with strict period n then ~ e Sn.  
Pro@ Let  ]c be the smallest positive integer such tha t  2 ~ _< n --< 3 ~. I t  suffices 

to take B = E~ in Lemma 1 in order to satisfy Definition 2. 

3. Main Results 

Theorem 1. I / T  ~ 9.1 and s > 0 then there exists a positive integer N and a ~ S ~  
such that d(~, a ) ~  s independently o/ how a maps a iV- l (B)  onto B (where B 
corresponds to a in Definition 2). 

Pro@ Since ~ is non-singular there exists ~ > 0 such tha t  re(A) ~ ~ implies 
m ( z - l ( A ) )  <= e. Since ~ e  9/[ it follows tha t  Lemma 1 holds for each positive 
integer k. Let /c  be so large tha t  2 -~ ~ (~. Utilizing Lemma 1, let Ek,tj denote the 
subsets Ek,~ such tha t  m ( E ~ & ) > 0 ,  1 ~ ? ' ~ J ,  where J = < ( 3  k - 2  ~) is the 
number  of  such sets. We define a (x) = T(x) for x ~ ~-l(Ek),  hence Lemma 1 (i) 
implies d (~, ~r) ~ e independent ly  of  how a is defined on ~-1 (E~). Let  cr map 
a~J-l(Ek,i~) linearly onto E~,g+~, 1 ~ ~ ~ J - -  1. We complete the definition of  
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b y  le t t ing  ~ m a p  ~iJ-l(E~,tj)  onto  E~,tl .  Le t  B ---- E~,~I a n d / V  ~ ~ i j .  I t  is 
j = l  

easi ly  seen t h a t  ~ has the  desired proper t ies  wi th  respect  to  N and  B. 

Corollary 1. ~ is dense in 9g. 

Proo/. Le t  T e 9~ and  e > 0. Le t  ~ be as in theorem 1 and define a(x)  : ~-~v+l(x),  
x e ~ r  Therefore ~ has s t r ic t  per iod  N and d(3, ~) < e. 

Theorem 2. (Linderholms approximation theorem) ?~ is dense in ~. 

Proofi The resul t  follows f rom the  well known decomposi t ion  of  a t rans forma-  
t ion  into  ant iper iodie  and  periodic  components  and  Corol lary 1. 

L e m m a  3. I / 3  ~ | then 3 has roots o/every order. 

Proofi Le t  3 have  s t r ic t  per iod  n and  le t  B~ ----- 3i(B),  1 _< i _< n - -  1, where 
B is the  set corresponding to 3 in L e m m a  2. Le t  r be a posi t ive  integer.  W e  de- 
compose B into  pairwise d is jo int  subsets  Bj ,  1 =< j < r, each of  measure  m(B)/r.  
The sets B~+j ~- 3 i (Bj), 1 < j __< r, induce a decomposi t ion  of  B i, 1 _< i _< n - -  1. 
Le t  ~ m a p  Bj  l inear ly  onto Bi+I ,  1 =< ] < r - -  ]. Assume ~7 is defined on Bl such 
t h a t  ~(B~) --~ Bl+ l ,  1 _< l ~< k. W e  define ~(x) ---- 3(~-r+l(x)), x e B~+I, hence b y  
induc t ion  we define ~ on Bz, r <_ l <_ rn. F u r t h e r m o r e  the  s t r ic t  per iod ic i ty  now 
implies  ~(x) : 3(~-r+l(x)) ,  x e Bj ,  1 < 7' < r - -  1. Therefore  i t  is easily seen t h a t  
~r(x) : 3(X), x e X .  

L e m m a  4. I / 3  E ~3 then 3 has roots o] every order. 

Proo/. A p p l y  L e m m a  3 on each of  the  s t r ic t ly  per iodic  components  of  3. 

Theorem 3. The class o/trans/ormations with roots o/ every order is dense in ~. 

Proo/. B y  L c m m a  4 and Theorem 2. 

L e m m a  5. I / 3  ~ Sn and 3 is ergodic then 3 has no n TM root. 

Proo/. Assume ~n ~_ 3. Le t  B be the  set in Defini t ion 2 corresponding to v. 
Then  for some i, 1 _< i _< n - -  1, e i ther  ~(B)  : 3l(B) or 0 ~ mOT(B) (3 z~(B)) 
< m(3i(B)). W e  note  t h a t  ~ v  ---- z~.  I n  the  former  case we have ~n(B) = 3hi(B) 
= (3n) l (B) ---- B since 3n(B) ~ B. This cont rad ic t s  the  a s sumpt ion  t h a t  ~n ~_ 3. 

n--1  

I n  the  l a t t e r  case we let  E ~ ~ ( B ) ( 3  3~(B) and  F - - - - ~ J  z i (E) .  W e  then  have  
i = 0  

0 ~ m(F) ~ 1 and  3 (F)  = F since 3n(E) ~-- ~(3n(B) 5~ 3i(3n(B))) ---- E. This 
con t rad ic t s  the  assumpt ion  t h a t  3 is ergodic. 

Concerning L e m m a  5, see Theorem 4 [3]. 

L e m m a  6. There exists an ergodie measure preserving trans/ormation 3 which 
does not have roots o/ any order. 

Proo/. We will cons t ruc t  3 so t h a t  3 does not  have  a pt~ root  for each pr ime 
p > 1. I t  easi ly follows t h a t  3 cannot  have  an r th roo t  for each in teger  r > 1. 
The t r ans fo rma t ion  3 will be defined induc t ive ly  in s tages so t h a t  a t  the  n th s tage 
3 ~ S~(n) where p(n) is the  n TM pr ime grea ter  t h a n  one. The comple te  defini t ion 
of 3 will i m p l y  t h a t  3 is ergodic, hence b y  L e m m a  5 3 will have  the  desired p roper ty .  
Le t  I0 = (0,1]. W e  decompose Io  in to  subin te rva ls  I0,1 = (0,1/2] and  I0,2 = (1/2,1] 
and  le t  3 m a p  I0,1 l inear ly  (ord inary  meaning)  onto I0,2. W e  will define ~ in- 
duc t ive ly  so t h a t  3(I0,2) = I0,1, hence z e $2. Le t  No = 1 and  N~ = 2. A t  the  
n th  s tage we have  a posi t ive  integer  Nn such t h a t  Nn ----- Nn-~p (n) and  in te rva ls  

1" 
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N n - - 1  

(0, bn] = In = In-l,x, (1 - -  bn, 1] = Jn =" l:lV=-l(In), and  X = ~Jz~(In). W e  
i = O  

will define r on more  t h a n  one-hal f  of  dn which is the  set on which v is not  ye t  
defined. A u t o m a t i c a l l y  z -1 will be defined on more t h a n  one-hal f  of  In. I n  the  

subsequent  s tages  we will ob ta in  ~:(Jn)= In, hence le t t ing  B = [,.JTiP(n)(In) 
i = 0  

we see t h a t  TeSs(n).  Le t  bn+l = bn/p(n-~ 1), In,l = ((]--1)bn+l,]bn+l], 
Jn,l---- ~:N~-l(In,i), 1 ~ ] ~ p(n ~-1). W e  note  t h a t  the  subin te rva ls  Jn,j ,  
1 ~ j ~ p(n Jr 1), genera te  a decompos i t ion  of  Jn, each wi th  length  bn+l, and  
Jn,~(n+l) ---- (1 - -  bn+l, 1]. Le t  T m a p  Jn,1 l inear ly  onto In,J+1, 1 ~ ] ~ p(n ~- 1) 
- -  1. Le t  In+l ~ In,l ,  Jn+l ~ Jn,~(n+l), and  Nn+l ---- Nnp(n  ~- 1). 

I t  follows t h a t  T will be defined induc t ive ly  everywhere  except  for 0 and  1. 
Moreover  T is one- to-one and  measure  preserving since this  is fulfilled a t  each 

N n - - ]  

stage. W e  have  X ~ ~JT:i(In) for each posi t ive  in teger  n and  i t  is easi ly seen 
i = 0  

t h a t  the  collection of  sub in te rva l s  (T i (In), 0 ~ i <-- Nn - -  1, n ---- 1, 2, . . . )  are  
dense in (~,  m). I t  therefore  follows t h a t  T is ergodic.  

W e  r e m a r k  t h a t  i t  is no t  diff icult  to  cons t ruc t  a t r ans fo rma t ion  wi th  no roots  
t h a t  is no t  ergodic b u t  which would  consist  of  a countable  number  of  ergodic 
components .  

L e m m a  7. I[ m(B) > 0 then there exists an ergodic measure preserving trans- 
/ormation ~ on B which does not have roots o/any order. 

Proo/. This follows f rom L e m m a  6 via  an  i somorphism.  

Theorem 4. The class o/ergodic trans/ormations which do not have roots o /any  
order is dense in ~. 

Proo/. Let  T e ~ and  e > 0. Le t  a be as in Theorem 1 and  let  ~ be a t ransfor-  
m a t i o n  on B as in  L e m m a  7. W e  define (~(x) ~ ~((~-iv+l(x)) ,  x E ~2r (B). I t  
follows t h a t  a is ergodic,  a cannot  have  a root  of  any  order,  and  d (T, g) ~ e. 

Corollary 2. The ergodic trans/ormations are dense in 2. 

W e  will now show t h a t  ?I is nowhere dense in ~.  I t  will follow as a corol lary 
t h a t  the  class ~ men t ioned  in the  in t roduc t ion  is also nowhere dense. W e  will 
need  the  following resul t  which is known  for the  measure  preserving case ([2], 
p. 75). The  proof  consists in  first  a p p r o p r i a t e l y  reducing to  the  measure  preserving 
case and  then  ut i l iz ing the  technique  in [2]. 

L e m m a  8. The class o/ergodic trans/ormations is nowhere dense in ~. 

Proo/. Le t  S be a sphere in ~. I t  will suffice to  show t h a t  there  exists  a sphere 
S* c S such t h a t  S* conta ins  no ergodic t rans format ions .  B y  Theorem 2 there  
exists  a E ~ (3 S. Le t  n be the  per iod  of  a. W e  select e > 0 such t h a t  the  sphere 
(~ I d (T, ~) < e) c S. I f  Fr -~ (x [ (~' (x) ~ r} then  i t  is easi ly  seen t h a t  m (Fr) ~ 1/r. 

n - - I  

Le t  /~ = ~ m (d. Since a is non-s ingular  i t  follows t h a t  there  exists  5 > 0 such 
i = 0  

t h a t  m(B) ~ c~ impl i e s /~ (B)  ~ e/2. W e  select r such t h a t  1/r < (~. Le t  ~(x) ---- x, 
~ - - 1  

x ~ ~ o ~ (Fr), and  ~ (x) = a (x) otherwise.  I t  follows t h a t  d (a, ~) <= 8/2, ~ has per iod  
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n, and ~' < r. The measure 7 - -  1/n ~ m~ ~ is a finRe invariant measure for ~ and 
i = 0  

equivalent to m. I t  is obvious that 7 (B) > m (B)/n. Furthermore it is easily seen 
n - - 1  n - - 1  

that m (~ (B)) ~ rim (B), hence ~ r~m (B) ~ n7 (B). Let ~ = min {e/2, [n ~. ri]-~} 
i = 0  i = 0  

and let S* = {~[d(~,  ~) < ~ } ,  hence S * c S .  Let ~ e S *  and let E = {~ . ~}, 
~ - - 1  

hence m(E) < ~. I f  E*  = ~ J ~ ( E )  then ~(E*) = E*  and re(E*) ~ ny(E*) 
i = 0  

n - 1  

n27(E) < n ~ r i m ( E )  < 1. I f  x E X  -- E* then ~(x) = ~(x), hence v(X -- E*) 
i = O  

~- X --  E*. Since m(X -- E*) > 0 "c can be ergodic only if re(E*) = 0. However  
this implies m (E) = 0 and hence ~ cannot be ergodic. 

Theorem 5. 9~ is nowhere dense in ~. 

Proofi B y  Corollary 2 and Lemma 6. 

Corollary 3. ~ is nowhere dense in ~. 

Proof. It  is easily seen that ?~ c 2 ,  hence the result follows from Theorem 5. 
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