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1. Introduetion

Let (X, ®B,m) denote the measure space consisting of the unit interval,
Lebesgue measurable sets, and Lebesgue measure respectively. Let J denote the
class of invertible transformations 7 of X onto X which are measurable and non-
singular with respect to (B, m). This class arises naturally in the problem of in-
variant measure ([2], p. 81). A topology is defined on I by the metric d(z, o)
= m (7 * ¢). Our main purpose is to show that on the one hand the class of trans-
formations with roots of every order are dense in J while on the other hand the
class of ergodic transformations which do not have roots of any order are dense
in the antiperiodic transformations. This possibility is suggested by the situation
in the invariant measure problem where it is known that on the one hand the
class of transformations with a firite invariant measure equivalent to m are dense
in § while on the other hand the class %t of transformations with no ¢-finite in-
variant measure absolutely continuous with respect to m are dense in the anti-
periodic transformations. The former result may be obtained easily from Theo-
rem 2 below and the latter result is proven in [I].

These results imply in particular that an antiperiodic transformation may be
modified on a set of arbitrarily small measure so that the nature of the modified
transformation may vary greatly with respect to existence of roots or an in-
variant measure. However, with respect to the topology defined by d, the class
of antiperiodic transformations are not numerous as we show in Theorem 5.

Theorem 1 below is a decomposition result which we utilize in order to modify
an antiperiodic transformation. Although Theorem 1 of [7] yields Theorem 1 of
this note, we see below that a simple direct proof is possible based on a con-
struction in [7]. Corollary 1 yields a short proof of Theorem 2 which is an un-
published result due to LINDEREOLM that is stated in [5]. The construction in the
proof of Lemma 6 was suggested by the technique in [4].

In what follows all set equations as well as conditions involving transforma-
tions will be understood to hold modulo null sets. All transformations will be in J
either by assumption or construction.

2. Preliminaries
A transformation 7 is (i) measurable and (ii) nonsingular with respect to (B, m)
if (i) B € B implies 7(B) € B and 71(B) € B and (ii) m (B) == 0 implies m (7 (B)) =
m(t~1(B)) = 0. A transformation 7 is said to be periodic with strict period » if
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iz) + 2,1 =1 =n—1, ") =, € X. We say 7 is periodic with period n
if 7 (x) = x, z € X, and » is the smallest such positive integer. A transformation 7
is antiperiodic if 7% (%) + 2 for every positive integer n, x € X. Let P denote the
class of periodic transformations, & the class of strictly periodic transformations,
and U the class of antiperiodic transformations. Given a positive integer 7, a
transformation ¢ is said to be an nth root of 7 if v = o#. Given 7, the measure
m7 is defined as mt(B) = m(z(B)), Be B. Since 7 is non-singular the Radon-
Nikodym theorem implies there exists a function 7’ which is positive and unique
a.e. such that m7(B) = J":’ (x) dm.
B

Definition 1. Given sets 4, BB of positive measure, we say v maps 4
linearly onto B if 1(4) = B, 7 is one-to-one, and 7’ (z) = m(B)/m(4), x  A.

The existence of such a mapping is well known.

Definition 2. For each positive integer # = 2 we let S, denote the class of
transformations 7 for which there exists a set B € 8 such that 7¢(B),0 < ¢ <n—1,

7n—1
are pairwise disjoint and X = (_) 7/(B).
i=0

Intuitively speaking, v € S, implies 7 yields a stacking {¢/(B),0 < ¢ <n—1}
of X of height n. We note that Definition 2 implies 77 (B) = B.

Our starting point is the following lemma, a proof of which is contained in the
construction in the proof of Lemma 4 [1].

Lemma 1. Let 7 € and let k be a positive integer. If v4(x) + z, 0 < 1 < 381,

3k
x € X, then there exists a set By e D such that (1) m(Ey) < 2%, (ii) By = UE’M
i=2¢
where x € By ; implies i is the smallest positive integer such that 1t (x) € By, (iii) the

sets in the collection {v7(Ey;), 0 <7§ < i, 28 < ¢ < 3k} are padrwise disjoint,
8k (-1 3%

X=J U (k) and 771 () = J 7" (Bg,)-
i=2t j=0 §= ot
We also utilize the following result due to LINDERHOLM (see [4]), a proof of
which follows from Lemma 1.

Lemma 2. If 7 € & with strict period n then T € Sy.
Proof. Let k be the smallest positive integer such that 28 < n < 3%, It suffices
to take B = Ey in Lemma 1 in order to satisfy Definition 2.

3. Main Results

Theorem 1. If 7 € U and ¢ > 0 then there exisls a positive integer N and o € Sy
such that d(z, 0) < ¢ independently of how o maps oV~ 1(B) onto B (where B
corresponds to o in Definition 2).

Proof. Since 7 is non-singular there exists 6 > 0 such that m(4) < § implies
m(z71(4)) < e. Since 7 U it follows that Lemma 1 holds for each positive
integer k. Let k be so large that 2-* < §. Utilizing Lemma 1, let By, denote the
subsets Hy,; such that m(Hy;) >0, 1 £j=J, where J =< (3% — 2%) is the
number of such sets. We define ¢ (x) = t(x) for x ¢ v-1(Z}), hence Lemma 1 (i)
implies d(t, o) < ¢ independently of how ¢ is defined on tv1(#g). Let ¢ map
6% 1(Ey,;,) linearly onto Hg,,, , 1 =7 < J — 1. We complete the definition of
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J
o by letting ¢ map ¢ (Ey,,) onto By, Let B = Hp; and N = > 4. It is
j=1
easily seen that ¢ has the desired properties with respect to N and B.
Corollary 1. & is dense in .

Proof. Let e % and & > 0. Let o be as in theorem 1 and define ¢ (x) = ¢ =¥ +1(x),
x € 0¥ ~1(B). Therefore ¢ has strict period N and d(z, 0) < e.

Theorem 2. (Linderholms approximation theorem) B is dense in .

Proof. The result follows from the well known decomposition of a transforma-
tion into antiperiodic and periodic components and Corollary 1.

Lemma 3. If v € € then t has roots of every order.

Proof. Let 1 have strict period » and let B = 7i(B), 1 <4 =< n — 1, where
B is the set corresponding to 7 in Lemma 2. Let » be a positive integer. We de-
compose B into pairwise disjoint subsets B;, 1 < j =< r, each of measure m (B)/r.
The sets By = 79(By), 1 = j <r, induce a decomposition of Bi; 1 <i <n — 1.
Let # map B; linearly onto Bjy1, 1 < § < r — 1. Assume 7 is defined on B; such
that 9(B;) = By+1,1 =1 < k. We define 5(z) = 7(57+1(x)), € Bg41, hence by
induction we define 9 on B;, r <1 < rn. Furthermore the strict periodicity now
implies 7 (x) = 7(n "+ (x)), x € By, 1 = § < r — 1. Therefore it is easily seen that
n(x) = 1(2), xe X.

Lemma 4. If v € %3 then 1 has roots of every order.

Proof. Apply Lemma 3 on each of the strictly periodic components of 7.

Theorem 3. The class of transformations with roots of every order is dense in 3.

Proof. By Lemma 4 and Theorem 2.

Lemma 5. If 1 € Sy and v is ergodic then t has no nth root.

Proof. Assume n”® = 7. Let B be the set in Definition 2 corresponding to 7.
Then for some ¢, 1 <4 =< n — 1, either 5(B) = 7¢(B) or 0 < m(5(B) N 7¢(B))
< m(7*(B)). We note that 7 = v#. In the former case we have ##(B) = 7% (B)
= (t")! (B) = B since t*(B) = B. This contradicts the assumption that #» = 7.

n—1
In the latter case we let K = 5(B) n7!(B) and F = U v/ (£). We then have
i=0
0<m(F)<1 and 7(F)=F since 1%(E) = 5(z"(B) n 7*(z*(B))) = E. This
contradicts the assumption that 7 is ergodic.
Concerning Lemma 5, see Theorem 4 [3].

Lemma 6. There exists an ergodic measure preserving transformation v which
does not have roots of any order.

Proof. We will construct 7 so that 7 does not have a pt2 root for each prime
p > 1. It easily follows that v cannot have an rth root for each integer r > 1.
The transformation 7 will be defined inductively in stages so that at the nth stage
T € Sp(ny Where p(n) is the n'h prime greater than one. The complete definition
of T will imply that 7 is ergodic, hence by Lemma 5 7 will have the desired property.
Let Ip = (0,1]. We decompose Iy into subintervals o ; = (0,1/2] and Iy 2 =(1/2,1]
and let T map Iy linearly (ordinary meaning) onto Iy2. We will define 7 in-
ductively so that 7(ly,2) = Ip,1, hence 7€ 85. Let Ng =1 and N; = 2. At the
nth stage we have a positive integer N, such that N, = N,_;p(n) and intervals

1*
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No—1
(0,ba) = I = In11, (1 — by, 1] =Jp=1Y""1(I,), and X = Jvi(I,). We
i=0
will define 7 on more than one-half of J, which is the set on which 7 is not yet
defined. Automatically 7—1 will be defined on more than one-half of I,. In the
Na-1—-1
subsequent stages we will obtain 7(J,) = I, hence letting B = (_J 7#2™ (I,,)
i=0
we see that 7€ 8pm). Let bpiyr = bu/p(n + 1), In; = ((j — 1) bus+1, jbasal,
Jpj=1"""1(Ipn;), 1 =j=pn-+1). We note that the subintervals J,,;,
1 <7< pn+ 1), generate a decomposition of J;, each with length b,41, and
In, pe1y = (1 — byyr, 1]. Let 7 map Jy,, 7 linearly onto I 511, 1 < j§ < p(n + 1)
— 1. Let 141 = In,1> Jn+1 = Jn,p(n+1), and Nyi1 = Nyp(n +1).
It follows that v will be defined inductively everywhere except for 0 and 1.

Moreover 7 is one-to-one and measure preserving since this is fulfilled at each
Nﬂ_]
stage. We have X —|_)v!(I,) for each positive integer » and it is easily seen
i=0
that the collection of subintervals {7i(I;), 0 <i =N, —1, n=1,2,...} are
dense in (B, m). It therefore follows that 7 is ergodic.
We remark that it is not difficult to construct a transformation with no roots
that is not ergodic but which would consist of a countable number of ergodic

components.

Lemma 7. If m(B) > 0 then there exists an ergodic measure preserving trans-
formation £ on B which does not have roots of any order.

Proof. This follows from Lemma 6 via an isomorphism.

Theorem 4. The class of ergodic transformations whick do not have roots of any
order is dense in .

Proof. Let v Y and ¢ > 0. Let ¢ be as in Theorem 1 and let  be a transfor-
mation on B as in Lemma 7. We define ¢(z) = ({0~ V" (2)), ze oV} (B). It
follows that ¢ is ergodic, o cannot have a root of any order, and d(z, 0) < e.

Corollary 2. The ergodic transformations are dense in U.

We will now show that U is nowhere dense in J. It will follow as a corollary
that the class 9 mentioned in the introduction is also nowhere dense. We will
need the following result which is known for the measure preserving case ([2],
p- 75). The proof consists in first appropriately reducing to the measure preserving
case and then utilizing the technique in [2].

Lemma 8. The class of ergodic transformations is nowhere dense in 3.

Proof. Let S be a sphere in 3. Tt will suffice to show that there exists a sphere

8* c 8 such that S* contains no ergedic transformations. By Theorem 2 there

exists 0 € f N S. Let » be the period of o. We select ¢ > 0 such that the sphere

{r|d(z, 0) < e} c 8. If Fy = {®| ¢’ (x) = r} then it is easily seen that m (Fy) < 1/r.
n—1

Let y = > mat. Since ¢ is non-singular it follows that there exists 6 > 0 such
i=0
that m(B) < & implies u(B) < £/2. We select r such that 1/r < 8. Let {(x) = =,
n—1

xe O ol (Fy), and { (x) = o (z) otherwise. It follows that d (o, {) < &/2, { has period

t=0
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n, and ' < r. The measure y =1 /nnilméi is a finite invariant measure for { and
equivalent to m. It is obvious that ';(=Zg) = m(B)/n. Furthermore it is easily seen
that m (£*(B)) < rim(B), hence nilrim(B) = ny(B). Let « = min {¢/2, [n%ilri]—l}
and let S* = {7|d(r,{) < oc}i.l}=1§nce S*cS. Let te8* and let £ = l{?r(; 3,
e

hence m(E) < «. If B* ={_J{{(E) then [(E*) = E* and m(E*) < ny(E*) <
i=0
n—1
ny(B) < nzrim(E) < 1. If xe X — E* then 7(2) = {(x), hence (X — E¥)
i=0
= X — E*. Since m(X — E*) > 0 T can be ergodic only if m (E*) = 0. However
this implies m (E) = 0 and hence 7 cannot be ergodic.
Theorem 5. U is nowhere dense in .
Proof. By Corollary 2 and Lemma 6.
Corollary 3. R is nowhere dense in 3.

Proof. 1t is easily seen that 9t c ¥, hence the result follows from Theorem 5.
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