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Summary. This work is concerned with simultaneous estimation of coef- 
ficients and a scale parameter of a pth-ordcr autoregressive process (Xt). 
The observations are }~=V~Z~+(1-~)X t where (Zt) is a contaminating 
process and (Vt) represents the proportion of contamination. If (X~) or (Zt) 
have heavy tails both least squares estimates and ordinary M-estimates are 
seriously affected. Under general conditions we prove consistency and 
asymptotic normality of a general class of M-estimates which contains 
some M-estimates studied by Denby and Martin E6]. 

1. Introduction 

Let (X~) be a p th-order autoregressive process AR(p) with coefficient vector 0 
in R p and suppose that we actually observe a "perturbed" version of (X,), say 
(Y~). This paper is concerned with the estimation of 0 and of the scale of 
innovations when (X~) and/or (}~) have heavy tailed distributions. We show the 
sensitivity or tack of robustness of classical estimates under certain deviations 
from the habitual assumptions. New estimates are studied in order to obtain 
more stability or robustness. We exhibit the performance of some such es- 
timates under both, the usual assumptions and under heavy-tailed alternatives. 
To simplify the exposition in the beginning we assume p = 1. 

Perfectly Observed Autoregressions 

Let (Xt) be an AR(1); that is, a sequence of random variables which satisfies 

Xt+t=OXt+C~+ ~ t=O, +1, +2 , . . .  (1.t) 
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where 0 is an unknown parameter to be estimated and (U,) (the "innovations") 
is a sequence of independent, identically distributed (i.i.d.) random variables, 
with common distribution F. 

The L.S.E. (least squares estimates), based on a sample of size n of (32,) is 
defined as 0,s which satisfies 

n--1 

~, (Xt+ 1 - O*sXt) X t = 0. (1.21 
t=O 

An estimate of a scale parameter of innovations is given by 

n--1 

, ' 2 = ( 1 / , )  • (X~+ 1 - vLSA*2Y~2~, . (1.3) 
t = 0  

It is well&nown (see Anderson [1]) that: 1) If F=N(0 ,  a 2) then the con- 
ditional maximum likelihood estimate of (0, a 2) conditioned on X 0 =c  o (with 

0*  *2  c o known constant) coincides with ( LS, 0-LS)' 2) If F= N( 0 ,  o-2), then 0,s and 
the conditional maximum likelihood estimate of 0 are asymptotically equiva- 

�9 0*  lent. 3) Under the hypothesis EU~=0, 0<EUt2=~2<oQ, r0[<l,' (i.s,O-~s 2) 

converge in probability to (0, a21. 4) I/n(0* s -  01 converge in law to N(O, 1 - OZ). 
We note (Martin [13]) that the property 4) shows a kind of robustness of 

0* s since its asymptotic variance depends only on 0. 
The asymptotic behavior of 0* s under the assumptions: (Ut) are i.i.d, and 

EUt 2 = c~ is analysed in Yohai and Maronna (16). The main result of that work 
is: if (Ut) are i.i.d, with a symmetric distribution such that E log+ IUt] < o% then 

l /n (0*s-0  ) is bounded for probability. Also, Kanter and Steiger [10], and 
Hannan and Kanter [7] have analysed the asymptotic behavior of 0* s under 
assumptions less restrictives than EU,2< oo. Indeed, in Kanter and Steiger [10] 
is proved the consistency of least squares estimates in autoregressive and finite 
moving average processes when F is in the domain of attraction of a stable law 
with characteristic exponent ~. For a such F and for the autoregressive process 
Hannan and Kanter [7] prove rtl/a(O*s--O)---~O a.s. for any 6>c~. 

Efficiences Issues. For finite variance innovations we can easily obtain asymp- 
totic efficiencies. 

Assume (1.1) where (Ut) is a sequence of i.i.d, with common density g(u) 
such that EU~2=a~< oo. Let g(u, 4) be defined by g(u, ~)=g(u-~) ,  for each ~ in 
R; let i(g) be the Fisher information for ~ (i.e. i(g) 
=E{((glogg(U,{)/6~)]~=o)2}); finally, let Io be the asymptotic Fisher infor- 
mation per observation for 0 (i,e. I o=E{ (610g f (Xo ,  X1, 0)/~50) 2} where f is 
the joint density of Xo, X1). A straightforward calculation shows Io=a2i(g)/(1 
-02)  (for p > 2  see Martin [13])�9 Taking 4) into account, the asymptotic 
efficiency of 0* s under g is Eff(O*s;g)=(1/Io)/(asymptotic variance of 0*s) 
= l/(a~i(g)), which may be arbitrarily small when we allow U to have heavy 
tails in arbitrarily small neighborhoods of the Gaussian distribution, while i(g) 
remains approximately stable. On the other hand, under sufficient regularity 
conditions, if VCR is the Rao-Cramer bound (VcR = 1/Io=(1--02)/(a2i(g))) then 
VcR is attained asymptotically by the maximum likelihood estimate�9 
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The latter fact suggests (Martin 1-13]) that one good alternative to 0~s is to 
use M-estimates under (1.1). That is, to use the estimate 0* defined as a ME 
solution of 

n - 1  

tp((X,+~ - O*MEXt)/a* ) X t = 0 (1.4) 
t--0 

where ~:R- -+R  is a convenient function and a* is an estimate of a scale 
parameter of U t computed either before than (1.4) has been solved or computed 
simultaneously with (1.4) from 

n - 1  

E z ( ( X t +  1 - -  O~EXt) 2/(yg 2) = 0 (1.5) 
t - o  

where Z: [0, + oo)--,R is a conveniently chosen function. 
Under appropriate regularity conditions, consistency and asymptotic nor- 

mality of 0* ME is obtained under (1.1) with: EU,=O and EUt2=o-2<oo. Its 
asymptotic variance is (Denby and Martin [6], Bustos [5]): AV(O*ME ) 
=(EOz(u) / (EO' (U))2) ( (1 -O2) /a2) .  Then, the asymptotic efficiency of 0*ME under 
g (the density of Ut) is Elf (0" E; g) = (1/Io)/(A V(O*E) ) = (E tp 2 (U)/(E ~p'(U))2)- i/i(g), 
which is the asymptotic efficiency of the M-estimate defined by 0 in the 
location model when g is the density of the error. Those results suggest that 
using 0* E seems better than using 0* s if we want to control the effects of inno- 
vations' outliers. 

Imperfectly Observed Autoregressions 

Now, in an observation of time series turn up that a certain portion of X's are 
substituted or shifted by other values which correspond to an extraneous 
process (Z,) that is grafted onto the process (Xt), for example, gross measure- 
ment errors or sporadic perturbations of the model. Thus, two realistic ways of 
taking these deviations into account are: "substitutive" outliers as defined 
below and "additive" outliers (Denby and Martin [6]). The following is there- 
fore suggested as a more adequate model than (1.1) covering such cases: 

Xt+ l=OXt @ Ut+ l 
~+ 1 = v,+ lz~+1 + ( 1 -  v~+ 1)L+1 

t=0 ,  + l ,  _+2,... (1.6) 

where Y1, Y2, .-- are the observations and (Zt) is the contaminating process. If 
V~-=l/2 for all t, and Z t has an appropriate distribution then the additive 
outliers are obtained (A.O. model). If V,=0 for all t, we obtain contaminations 
only in innovations (I.O. model). The "substitutive" outliers (S.O. model) are 
obtained with (Vt) i.i.d., Vt=0 with probability (1 -e )  and Vt= 1 with probability 
e. This corresponds to Tukey [15] contaminated normal model. We note that 
another kind of outlier type in time series occurs which is not covered by (1.6); 
namely, the "pure"  process (i.e. (Xt)) is substituted by a contaminating process 
during a short time interval (Huber [9]); more precisely: there exist 
0 < ~ < fi < 1 such that Y~ = Zt if ~ < t/n < fi, Y, = X t otherwise, where 111, ..., Yn are 
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the observations and (Zt) is the contaminating process. This model has been 
studied in Brillinger [4]. The A.O., and I.O. model are studied in Denby and 
Martin [-6] and Martin [13]. They show, in particular, the poor performance 
of 0~E under the A.O. model. 

The following example shows the behavior of 0* s and 0~E under the S.O. 
model. Assume (1.6) with the following specifications: (Vt), (Zt) and (Ut) are 
jointly independent, each one is a sequence of i.i.d, random variables such that: 
Vt=0 with probability 1-~,  Vt=l with probability ~; Z t is normal with mean 0 
and variance ~2 and U t is normal with mean 0 and variance 1. Now, we obtain 
0* s and 0* E respectively from (1.2) and (1.4) with Yt instead of Xt. We note that 

0*S~0LS where E{(YI-OLsYo) Yo}=O, and ]~(O*s-OLs)-+N(O, VA(O~s)) for 
some VA (0*s) > 0. Moreover, 0LS = (1 -- e) z 0/(1 -- ~ + ~ r 2 (1 -- 02)) which shows that 
0i~ s - 0  (the asymptotic bias) can be considerable in a small neighborhood of 
(Xt). On the other hand, we deduce that there exists OME such that OME~OME 
and I/n(0* E - 0 ME) ~ N (0, VA (O'E)). 

In a Monte Carlo study with samples of size 30 and 500 replications, we 
obtain the following table 

Table 1 

0=0.5, e=0.1, z2=12 0=0.9, e=0.1, ~2=47.4 

0s 0.24 0.43 
V(0LS ) ̂  1.53 2.67 
0~e 0.26 0.52 
V(OME) A 1.36 2.55 
0~ 0.33 0.69 
V(O~) ^ 1.26 1.30 

500 (5~o 
where if T is an estimate, then T A= y, Tj500 and V(T)A= (T i 

i = 1  ~ 1 

--TA)2/499) l / ~  (T~ is the value of the T estimate obtained in the /-the 
/ 

replication). We define the 0~ estimate later. The 0 of (1.4) and the )~ of (1.5) 
were Hubers' favorite 0 and • (1964) defined by 0(x)=min([x], k)signx, X(x 2) 
= 0 2 ( x ) - f i  with/~=E{02(U)} (note that U is N(0, 1)) and k=  1.5. We note the 
similarity of the behavior for both 0* s and 0* E in this case, in particular, the 
bias of 0* E (defined as 0~E-0) is almost as large as the bias of 0* s (which is 
defined as 0~s-0). 

To deal with this problem we naturally wish to control the outliers both in 
the innovations and in each observation. Building on what Maronna and 
Yohai [11] have already done for regression, and what Martin and other 
authors have done for the I.O. and the A.O. models, we studied the behavior 
of a very general class of estimates for 0 and a scale parameter of Ut, which for 
convenience we will call O-estimates. These estimates are solutions 0", o-* of 
the equations 
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n i 

,~(~,(~+ ~-  o; y)/~;) ~ = o  
~=o (1.7) 
n -  1 

t = 0  

where q): R x R ~ R  and ;/" [0, + 00)-+R are conveniently chosen. 
Note that if we define ~P and ;/ appropriately, then we obtain several 

important  examples, i.e.: ~0*LS, a*~LSj if #P(y,u)=u and Z(u2)=u 2 - 1; ~0"~ Me, 0-*~j if 
r  U)= ~(U), with 6 as in (1.4) and Z is as in (1.5). 

We performed the above mentioned Monte  Carlo study with r 
= ~(u)w(y) where ~ was as before and w(y)=min(1,  k/lyl). The results are given 
in the last two rows of the Table 1, they indicate that the performance of 0~ 
will be better than both 0* s and 0* E under the S.O. model. 

For regression Maronna,  Yohai and Bustos [12] demonstrated the good 
performance of another 43-estimate, defined by ~b(y,u)=O(lylul)/lyl where ~ is 
as before. 

The origin of the above t w o  estimates will be pointed out later, in the 
general AR(p) setting. 

For  these reasons, we considered an important  issue to study consistency 
and asymptotic normality of @-estimate in the general situation exposed in 
Sect. 2. 

1.2. Notation. We denote the s-dimensional euclidean space by R s. Let M be a 
m x n-matrix with entry Mij in the i-th row and the j-th column (i-~1, . . . ,m; j 
= 1, ..., n); wc also write M as [Mij], its transpose as M'  and its norm as [Me. 
If A is a set, then A c is the complement  of A. If v=(v0,  . . . , v J  is in R p+I let 
v~_ l=(v  o . . . . .  vp_,)'. Let F: R ' ~ R  m and F~: R'--+R for i = 1  .. . .  ,rn such that 
F(x)'=(F~(x), ...,F~(x)) for all x, then DjF~ is the j-th partial derivative of F~, for 
j =  1, ..., n; and DF= [DsF~] the total derivative. If P is a probability then Ep 
(or simply E when this causes no confusion) is the respective expectation 
functional. If  S~, ..., S, , . . .  is a sequence of m-dimensional random vectors, P is 
a probabili ty and v is in R ~, then S ,~ v (P ) ,  n--, oo means that (S,) converge in 
probabili ty to v under P; if (S,) tends in law to m-variate normal with mean 0 
and eovariance matrix M, then we set S,--+N(O,M)(D), n--* oo. Finally, we set 
the symbol = for definition. 

1.3. Contents of the Paper. In Sect. 2 we give the full definition of the model 
and ~b-estimates, and give the main results. In Sect. 3 we give the technical 
details of proofs of the results in Sect. 2. 

The results of this paper are generalized in Bustos [5], but we preferred to 
present some what less general results here for the sake of clarity. 

2. Definitions, Assumptions and Results 

2.1. The Model 

Let (f2, J , P )  be a probability space; S: g2--, f2 is a one-to-one map, measurable 
with measurable inverse (S-1), P-preserving (that is: P(A)=P(S - I (A ) )  for all A 
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in ~-), and P-ergodic (see Breiman [3]). For each t =  1,2, . . . , S t=S  �9 S t-1 where 
S o is the identity map and S- t=(S-1)  t. 

We assume that: 

M 1) (d,.)~ = 0, _+ 1, _+2 ... .  is a sequence of real numbers such that 

k = t  ]r 

M2) U, V, and Z are real random variables defined in ~2 such that g[gl, EIV], 
and Ell[ are finite; for each t=0,  +1, _+2 ... .  let U~=U.S  t, V~=V.S ~, and Z~ 
=Z.S t ;  also, we suppose that the processes (Ut), (Vt), and (Z~) are jointly 

independent and each one is 4-mixing with ~ q~(n)l/2<~ (see Billingsley 
[2]). ,=1 + co 
M3) X" ~?~R is a random variable defined by X =  ~ drU_r; X t = X . S  t 

-}-oo r~  -oo  

for all t (therefore Xt=  ~, d rUt_ ~ for all t) (we understand that the con- 
vergence is in L I (f2, P)). r=-  

M4) Y: ~--+R is a random variable defined by Y = V Z + ( 1 - V ) X ;  Y t=Y .S  t 
for all t (therefore Yt= VtZt+(1 - Vt)X t for all t). In practice, (Y~) will represent 
the observed process. 

M5) P(aYp+Y~'_IO=O)=O for all a in R, 0 in R v such that lal+101>0. 

The following results are well-known (see Anderson [1]). Let (X*) be an 
AR(p), that is 

X* - ~ * ~ '  O+U*+p t = 0 , + l , + 2 ,  (2.1) 
t + p  - - ~ t + p - -  1 - -  - -  " " " 

where O'=(Oo,...,Op_t) is in R p and (U~*) is a sequence of i.i.d, random 
variable having finite variance. If all the roots of the polynomial equation x p 

p - 1  ~ ,  

- ~ OjxJ=O are less than 1 in absolute value, then X* = d r U*~ for all t 
j = 0  r = O  

(convergence in L2(~, P)) where (dr) ~ = 0, 1, 2,... satisfies M 1). From this remark 
we derive that an AR(p) is a particular case of (X~) defined in M3). Also, 
Moving Average and Mixed Process (ARMA) are particular cases of (X~) (see 
Billingsley [2], p. 191). Finally, note that (U~) is more general than (U*), since 
a sequence of i.i.d, random variables is ~b-mixing with q~(n)~-0. 

We note that I.O., A.O., and S.O. models are obtained if V~ is defined 
appropriately, as was indicated previously. 

2.2. The O-esrimates 

Let ~b: R P x R ~ R ,  ~: [0, + oQ) ~ R  such that: 

El) For each y in R p, u-~cb(y,u) is odd, uniformly continuous and ~(y ,u )>0  
for u>0.  

E2) (y ,u )~cb(y ,u )y  is bounded and there exists a constant k* such that 
Jeb(y,u)y-~(z,u)z] _-<k*ly-zl for all u. 
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E3) For each y, u--+~(y,u)/u is non increasing and there exists u o such that 
�9 (Y, Uo)/uo>O for all y. 
E4) u ~ O~(y, u)/c~u is continuous a.e. y and (y, u) ~ yOdb(y, u)/c~u is bounded. 

E5) E{sup{u(Sdb(Y~_l,u)/Su)lY/'ll: u in R}}<c~. 

E6) X is bounded, increasing on {x: -a<z(x)<b}  where b=supx(x), - a  
=X(0) 0< a ,b ;  is differentiable with x + x D z ( x  2) continuous and bounded. 
Also z(ug) >0. 

In Maronna and Yohai [11] it is proved that under conditions weaker 
than El) to E6), given a non singular p x p-matrix M o there exist 0 o in R p and 
a o in (0, + oo) such that: 

E {~(MoY2_ ,, r)Yp_ ~} =0, (2.2) 

E{z(r2)} =0 (2.3) 

where r=(Yv-Y~JlOo)/a o. In practice, M o represents a well-chosen scatter 
matrix of YT_ 1. 

Finally, let (V3) be a sequence of non-singular p • such that 
l/~*---, M o a.e., n ~ oc. 

The ~-estimates of (00, %) form a sequence (0", a*) with values in R p • (0, 

+ m) such that: 

n - - 1  

(l/n) ~ q~(J(t,n),r(t,n))Y~+p_l--*O a.e., n ~ o o ,  (2.4) 
t = 0  

n - 1  

(l/n) ~ )~(r(t,n)2)--,O a.e., n ~ o o  (2.5) 
t = O  

where r(t, n)= (Yt+p -Y,+v-  1 On )/Gn, J(t, n)= v2 Y,;p_ ,. 
Two examples of such ~b-estimates are: (we can see the reasons for their 

names and how they work in regression in Maronna, Yohai and Bustos [12]). 

Mallows Estimates. They are defined by ~b(y, u)= O(u)w(y) where w is a positive 
function. In order to obtain El)  to E5) it is sufficient to assume: O(u)>0 for 
u>0 ;  there exists u o such that O(u0)>0; ~ is odd, bounded, uniformly con- 
tinuous, continuously differentiable, and uDtp(u)<O(u) for all u; finally, g(y) 
=yw(y) is bounded and Lipschitz. We can modify these hypothesis for obtain- 
ing asymptotic normality (see Remark at the end of this Section). 

Hampel-Krasker Estimates. They are defined by: cb(y,u)=O(Lylu)/Iyj if ly[>c, 
qS(y,u)=O(cu)/c if [y[<c, where e > 0  is a constant to be chosen conveniently. 
To obtain the conditions El) to E5) it is sufficient to require: ~ is odd, 
bounded, non decreasing in [0, +oo) with O(Uo)>0, uniformly continuous, 
continuously differentiable and uD~(u)<t)(u) for all u; finally, we require that 
(y,u)+lDtp([y[u)lly[ is bounded (this condition would not be necessary if 
E[y21< oo). 
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2.3. Consistency 

Theorem 2.1. I f  (0o, O-o) which 
(0", a~) ~ (0 o, Cro) a.e., n ~ oe. 

O.H.  Bustos  

satisfies (2.2) and (2.3) is unique, then 

2.4. Asymptotic Normality 

F r o m  now on we assume V~* = M 0 = I where I is the identity p x p-matrix. This 
restriction would not  be necessary if ELY]2< oQ. Also, we drop the condit ion 
E3). 

Theorem 2.2. Suppose A=D2(Oo, ao) is non singular, where 2: RPx(O, 
-+- o0) --~ R p+ 1 is  defined by 

2(0, o-)' = ( E  {~(u 1, r*)}', E(z(r*2)}) (2.6) 

with r*=(Y~-YT/~O)/~r. I f  in addition (2.4) and (2.5) hold with ]/n instead of n 
and 

(0", a*) ~ (0 o , O-o) (P), n ~ ~ (2.7) 

Then: a) For each i = 0  . . . . .  p - l ,  j = 0  . . . .  , p - 1  the following series are all ab- 
solutely convergent: 

t --1 

~ =  F, E{~(Y;_~, r)z(r(O 2) ~), 
t = l  

s~ = ~ E{~(Y~;,_ 1, r(0) z(r 2) ~+,}, 
t = l  

~= ~, E{z(r2))~(r(t)2)} 
t = l  

where r is as in (2.2) and (2.3), and r(t)=( Yt + p -  Yt~+'v_ l Oo)/Cro for all t = 0 ,  1, 2, ... 

b) 1~ ( (0  , a , )  - ( 0 0 , % ) )  ~ N(O,A-1FA'- I ) (D) ,  n -~' oo. 

where 

with 
G =  [E {e(V;_ 1, r) ~ ~ ~} +S,j+Sjl], 

V = [E {~(Y/_ 1, r) z(r  2) ~} + Si + ~ ]  and 

N=E{z2(r2)}  + 2?. 

Remark. In the part icular  case of the Mallows estimates we can obtain asymp- 
totic normal i ty  of (0", ~*) without  the restriction imposed on V* and M o at the 
beginning of this subsection. More  precisely: let Z: [0, + o o ) o R  be as in E6) 
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not  necessarily increasing; let 0" R-- ,R  and w: RP-+R such that:  w is a 
positive function, ~ is bounded,  differentiable with cont inuous and bounded  
derivative, g(y)=yw(y) is bounded  with coordinates g l , . . . , gp  such that 
y~Djg~(y) is bounded  and Lipschitz for all i,j; there exist (00,%) in R p • 
+oo)  and a non  singular matr ix M o such that  E{O(r) g (J )}=0 ,  
g {0 (r) Yi- 1 Yk- 1Djw (J)} = O, E {X ( r 2 ) }  = 0 for all 1 -<_ i,j, k < p, where r is as be- 

_ o.,, V, ) be a sequence of estimates of fore and J = M o Y  ~ 1. Finally, let (0", * * 

(Oo,o-o,Mo) such that  ( ] / n ( v * - m o ) )  is bounded  in probabil i ty and V,* is a 
non  singular p x p-matrix. 

Theorem 2.3. Theorem 2.2 holds with ~b(y,u)=~(u)w(y) and MoYp_ 1 instead of 
Yp_~. 

We obtain the proof  by reducing this case to Theorem 2.2 by first proving 
n - - 1  

that  (1/l/n) ~ ~(r ( t ,n))g(MoVt~ p ~)-~ o(e), n-~ oo. 
t = 0  

3. Proofs 

For  the sake of simplicity let 7 j the (p + 1)-dimensional vector defined by 

7'(y, (0, o.)) = (~(y~_ ~, (yp-  yp_ 10)/o.) Y ~ I ,  z((yo - yp_l 0)2/~ 

for all Y=(Yo, �9 "',Yp-l,Yp)' in R p+I, 0 in R p and o->0. Also, let r'_n =,-,(0", o.*) for 
all n. 

Let  ~U = ~K(P) the family of all the sets W of the form 

W = {Q in Z (R p+ 1): Ea  [f/I < oo, lEa f  / - Epfi] < e; i = 1, ..., k} (3.1) 

where: Z(R p+t) is the set of all the probabilit ies over R p+I, k is a positive 
integer, e > 0, f~ . . . .  ,fk are P-integrable functions and P denotes, by an abuse of 
notat ion,  the distr ibution of Yo =(Yo, ..., Yp)' over R p+ 1. 

3.I. Proof of Theorem 2.1 

Let J ( t ) = M o ' ~ + p _  ~ for all t = 0 ,  1,2, . . . .  F r o m  E2) we have 

n - - 1  

(l/n) t~o ( ~(J (t, n), r(t, n)) J (t, n ) -  ~b(J (t), r(t, n)) J ( t)) 

n - - i  

<k* IV.*-Mo[(1/n) ~ [Yt;p-ll 
t = 0  

n - 1  

from where ( l / n ) ~  ~.b(J(t),r(t,n))Y~+p_l~O a.e., n ~ o o .  This allows the re- 
t - - 0  

duct ion of p roof  of Theorem 2.1 to the following: 
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Under conditions El) to E3), and E6), the Theorem 2.1 holds 
with V,*=--I for all n and M o = I  
(where I is the identity p • p-matrix). (3.2) 

In the remainder of this subsection 3.1 we drop the hypothesis M1), M2) 
and M3), and we replace M4) by: Y: f 2 ~ R  is a random variable; Yt= Y.S  t for 
all t. Finally, we replace E2) by: 4a(y,u)y is bounded. 

It may be easily checked that Huber's [9] conditions (B-l) and (B-2) are 
fulfilled. From the hypothesis of Theorem 2.1 there exists a unique (0o,~o) in 
RPx (0, + ~ )  such that 2(0o, O-o)=0. From the proof in Sect. 6 of Maronna and 
Yohai [11] there exist: W in ~/~ and C a compact set in RPx(0, +oo) such 
that: 

inf inf max IEo{7"(Y,(O,a))'zi(O,~r)}l>O 
Qe W (O,(y)r i= 1, 2 

w h e r e  2' 1 (0,  (7) = (0,  0)/101 if 101 =4= 0, z~(0, ~) = (v, 0) with v q= 0 and z 2 (0, or) = (0, 1). 
From this fact and the ergodicity there exists L > 0 such that P(~2*)= 1 where 

o_1 ) 
liminf ( inf m ,(o,~),~ ax (1/n)~=o ~ 7"(Z,(o, ol)'z,(O,~) >c  

For each n = 1 , 2 , . . ,  we define C,={oJ in f2: T,(co) in C}. Noting that 
(2*=(f2*calim, infC,)u(f2*c~(lim, infC,) 9 and by using (2.4) and (2.5), we 
see that P(lim, infC~)=l.  We achieve the proof of (3.2) by using ergodicity 
instead of strong law of large numbers as in Huber [9]. 

Remark. Iff~'s are restricted to be bounded and continuous, then the W's of (3.1) 
generate the weak topology on Z(R  p+ 1). 

3.2. Proof of Theorem 2.2 

First we state some intermediate results in the lemmas below. 
Let f f = R  e x (0, + c~) and r o =(0o, ao). We denote a general element of S by 

r. Finally, 7"1 ... .  ,7',+ 1 are the coordinates of 7'. 

Lemma 3.1. a) For each 1 < i, j, < p + 1 integers, the following series is absolutely 
convergent 

s*= F, e{~(Vo,%) %(vt, ~o)}. 
t = 0  

n - 1  
b) (1/]~n,n) y, 7"(Yt,zo)--+N(O,F)(D), n ~  o% where F=[F/ j ]  with 

t=O 

llj = E { 7"i(Yo, to) ~(Yo, %)} + Sz*. + S j*. 

Proof. Let (~)t= o, • 1, • .... the process taking values in R 3 defined by: 

~(i) ~(3 h r t , ~}~), ~ , = ( v , , z ,  G) t = o ,  _+1,... (3.3) 
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where V~, Zt, and U~ are as in Sect. 2. For  each i =  1, 2 , . . . , p  + 1 and t = 0, _+ 1, 
_+ 2, . . .  we define: 

~I i ) :  ~ (Yt ,  ~o) = ~ ( L  . .- ,  ~+p,'~o) 

from the hypothesis  M2) to M4) and (3.3) we have: 

+oo 
?]}i)__ (1) v(2) �9 

~ r  "~t--r~ " " ,  "~t + p "~t + p 
r= --oo 

+oo 

+ ( 1 _ ; (  1)~ ~ 3~(3) . 

then each r/} i~ is a function of the entire process (~t)~_ o, • t, _+ 2 .... . The  random 
variables t/} ~) have approximat ions  

k - p  
t/~i]=~.(~(1)~(2)+(1_~11) ) ~ ~(3) ?(1) ?(2) 

t', t t d r ~ t - r ,  . " ,  ~ t + p  ~ t + p  
r-- - - k + p  

k - p  

~(1) r (~(3) + ( 1 - % + p )  ~, %) 
r= k + p  

for all t = 0 ,  _+1, +_2,..., and k=p,p+l, ...; then each tl~] is a function depend- 
ing only on finitely many  of the ~t- By using the definition of ~, (2.2) and (2.3) 
we have: 

Et /~)=0 for all i = l ,  2 , . . . , p + l  (3.4) 

from E2) and E6) we can deduce: 

Et/~)2< oo for all i = 1 , 2  . . . . .  p + l .  (3.5) 

For  each k=p,p+l,.., and i = 1  . . . .  , p + l  if: 

~(i) = E I ~  ) -  ~i;I ~ 

then, by using E2), E4) and E6) we can show that there exists a constant  c 
such that:  

vl/2(i)<=c( ~ Id~l) ~/2 
l~l>k 

then, M 1) implies 

v~/Z(i)< oo (3.6) 
k = p  

for all i=1 ,2 ,  . . . , p + l .  
Now, we notice that M2) implies (~t)t= o, • 1. +2 .... is a p-mixing process with 

~ q0(n)l/2< oe. F r o m  this, (3.4), (3.5), and (3.6) we can show the Lemma  3.1 by 
n = l  

applying the multivariate version of Theorem 21.1 of Billingsley [-2] to the 
process ~/t = (r/f1), ..., ~/}P+ 1))= T(yt  ' %). 
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o "~" 1 function such Lemma 3.2. Let C be a compact set f ~,  let g: R p+ x C ~ R  a 
that: for  each y in R p+I, r--*g(y,z) is continuous," for each z in C, y ~ g ( y , r )  is 
measurable and there exists a neighborhood U~ of z such that 

E{sup[lg(Yo,z*)-g(Yo,z)[" 'c* in Cc~U~}}<oo. 
Then 

sup g(Yt, z ) -E{g (Y , z ) } "  z in C } ~ 0  a.e., n--* oo. 

Proof Is an immediate consequence of Theorem 6.2 of Rao [-14]. 

Remark. The hypothesis over A of Theorem 2.2 implies that there exist a > 0  
and b o > 0  such that: if Iz-zol <bo then 12(z)l >al'c-zol. 

Lemma 3.3. Let 

c={v  in •: Iv-~ol~bo}; Z.(T)- "~lZ*(t)t=o/(l/~+nl,~(~)l) 
where Z*( t )=T(Y~,r ) -2( 'c ) -TJ(Yt ,  ro), for all n = l , 2 , . . ,  and z in C. Then 
supZ,(z)--*0 a.e., n~c~.  
r ~ C  

Proof Let n > l  be an arbitrary integer. From the Remark above and the 
t l - - 1  

Mean Value Theorem applied to r--* Y, (T(Y,z)-2(z))  there exists L <  +oo 
depending only on p such that t= o 

sup Z,(z) < Lmax sup IA,(i,j, z)l/((l/n bo)- i + a) 
z ~ C  ij  zEC  

+ L max In, (i,j)l/((]/n bo)-i  + a) (3.7) 
ij 

where 

n - 1  

A, (i,j, "c)= (i/n) ~ (D~ %(Y~, z ) -  D~ Tj (Yt, "Co)) 
t = O  

-E{D~ Tj (Yo, z ) - D ,  Tj (Yo, "co)}. 

n - - 1  

nn(i,j ) = (l/n) ~ D~ ~j(Yt, "Co) - E {D~ T/(Yo, z)}. 
t = O  

The proof follows by using ergodicity in the second summand of (3.7) and by 
using Lemma 3.2 with g(y,z)=Di~Pj(y,z)-DiTJj(y,%) for each i = l , . . . , p + l  
and j = 1,..., p + 1 in the first summand. 

Corollary 3.4. ,~1 (T(Yt, %) + 2(T,)) / ( ] /~  + n [~L(T,)[) -+ 0 (P), n -~ ~ .  
t ~ 0  
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Proof It follows from (2.4), (2.5), (2.7) and Lemma 3.3 taking into account that: 
if [ % - r . [  <bo then 

_<sup Z.(z) + , . c  n~lt= o (f (Yt, T.) / ] /n .  

n - - 1  

Lemma 3.5. ( l / l /n) ~ T(Yt,zo)+]/n2(T,)  ~ O(P), n ~  oo. 
t = 0  

t l - 1  

Proof. For each n = l , 2 , . . ,  let G ,=  ~ (T(u Let 5>0  be an arbi- 
t = 0  

trary real number. From Lemma 3.1 there exists a constant M <  oo such that 

P(A.)<~ for all n, where A . =  (1/l~n M ; let B. be the set 

defined by B. = {IG.I/(l/n + nl;L(r,)l) > 1/2}. A straightforward calculation shows 
that: 

IG.I/]/~ <= 2(1 + M)IG.I/(]/~ + n I),(T.)I) 

on A~ ~ B~, since 

1/~ I~(T.)I - I ~ .  - .  ;,(To)I/V~ <= I c . I /1 /~  _-< (~ + 1/~ I;.(T.)I)/2 

on B~. From Corollary 3.4 we see that lim sup P(IG.I/]/~> d)<a for all d >0. 

To complete the proof of Theorem 3.2 note that: 

l /~  A ( T  n - Zo) = - 1/~ (.~ (T,,) - "~(~o) - A ( E  - ~o)) + ~ ( ; . (5)  - "~ (%))- 

and 
n - 1  

]ff~(A(T.)-).(%)) = - ( 1 / ] ~ )  ~ ~(Y~, %) 
t = O  

n - 1  

+(1/1/~)  Z (~ ' (~ ,  ~o) + ;,(T.)). 
t = O  

Now, it suffices to show that ] /n(2(T . ) -2(%)-A(T. -%))~O(P) ,  n-~ ~.  This 

is easily proved since ( ] /n IT . -%D is bounded in probability (see the last 

Remark and take into account that (]/n~().(T.)-2(%))) is bounded in probabili- 
ty. 
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