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Summary. Locally asymptotically minimax (LAM) estimates are construc- 
ted for locally asymptotically normal (LAN) families under very mild 
additional assumptions. Adaptive estimation is also considered and a suf- 
ficient condition is given for an estimate to be locally asymptotically 
minimax adaptive. Incidently, it is shown that a well known lower bound 
due to H/tjek (1972) for the local asymptotic minimax risk is not sharp. 

1. Introduction 

Elaborating on work of others, Hfijek (1972, Theorems 4.1 and 4.2) established 
a lower bound for the local asymptotic minimax risk of a sequence of es- 
timates (Z,,) under the Condition LAN (cf. our Theorem 2.5) and showed that, 
in the one-dimensional case, a condition close to our regularity (cf. Definition 
6.2) is necessary for (Z,,) to be locally asymptotically minimax (HLAM) in the 
rough sense that, for (Z,,), the lower bound is attained (cf. Definition 3.1). 

Sharper inequalities were obtained by Ibragimov and Has'minskij (1979, 
Remark 12.2, Chap. II), L e C a m  (1979, p. t34) and we give such a sharper 
inequality in Theorem 2.6 below. We shall say that a sequence of estimates 
( Z , )  is LAM if it attains the lower bound given in Theorem 2.6 (cf. Defini- 
tion 3.1). 

The paper begins with three simple results. 
(i) H~jek's inequality is not sharp, i.e., there are cases in which Condition 

LAN holds and no ~Z~) is HLAM. 
(ii) The sharper inequality of Theorem 2.6 involves a bound which is 

attainable: under Condition LAN, there is always an LAM sequence of es- 
timates. 

(iii) Under LAN, if ( Z , )  is a regular sequence of estimates then (Zn)  is 
LAM (Theorem 6.3). 
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Each of these results is easy to prove, nevertheless seems to be proven here 
for the first time. 

Some details were left unexplained above and will be attended to now: for 
the attainability, we consider only bounded loss functions. A sequence of 
estimates ( Z , )  may be LAM (HLAM) at a 0 or at each 0 in O. We shall show 
that Condition LAN at 0 does not imply the existence of an H L A M  at 0 
sequence of estimates (Remark 3.2) but does imply the existence of an LAM at 
0 sequence of estimates (Remark 6.4). Sequences ( Z , )  which are LAM (0) for 
each 0 are constructed under mild additional conditions (Theorem 6.15 and 
Remarks 6.17 and 6.16). 

We have talked about the LAN Condition, but there is a complication in 
that Hfijek's LAN Condition is weaker than the condition considered by 
Le Cam (1960) (see Remark 2.4). The usual sufficient conditions for LAN yield 
the stronger version of LAN (cf. Fabian and Hannan (1980)). We shall refer to 
the weaker of the two LAN conditions by HLAN, and reserve LAN for the 
stronger condition. 

Under certain rather general conditions, Le Cam (1969, proof of Theorem 4) 
constructs a regular sequence of estimates which by our result (iii) is LAM. We 
obtain regular and LAM estimates under weaker conditions than Le Cam; we 
were influenced by the discussions in Le Cam (1974, Sect. 12). 

Particular estimates have been proved H L A M  (and thus LAM) (e.g. Levit 
(1974, 1975), Koshevnik and Levit (1976) and Has'minskij and Ibragimov 
(1979)) by ad hoc arguments showing the asymptotic distribution of the es- 
timate is approached uniformly with respect to the parameter values in a given 
neighborhood. 

The results on LAM estimates are used to reformulate Stein's (1956) heuris- 
tic arguments and to obtain a definition of LAM adaptivity of estimates, a 
necessary condition for the existence of an LAM adaptive estimate and a 
sufficient condition for an estimate to be LAM adaptive. The results are also 
related to the results by Levit, Koshevnik, Has'minskij and lbragimov (cf. 
references above) who use the LAM criterion in a non-parametric situation. 
Our sufficient condition is used in Fabian (1980) to prove the LAM-adaptivity 
of a recursive location parameter estimate and its validity was proved by 
Beran (1978) for his estimate. 

The LAM-adaptivity is a stronger property than the adaptivity hitherto 
considered, since it again involves uniform convergence. As a consequence, the 
result in Fabian (1980) refutes an opinion widely spread in the statistical 
folklore that adaptive procedures converge to the asymptotic distribution non- 
uniformly and are therefore of little practical use (for a written comment of this 
type, see, e.g., Hfijek's (1971, Example 7) remarks on his own adaptive test; it is 
unclear whether Hfijek had a proof of the non-uniformity he claimed). Objec- 
tions can be made that the neighborhoods over which the supremum is taken 
are small but that is true for the LAM considerations in general, not only for 
the LAM adaptive procedures. 

In a paper published after the submission of the present paper, Beran (1980) 
treats a related but different situation and presents an attainable asymptotic 
lower bound. In his conditions, O is not a subset of Euclidean space, but a 
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specialized parameterization is used and the loss function is more restricted 
than in our considerations. 

Some notation will be introduced next. If P, (2 are probabilities on a a- 
algebra X and Q+ is the absolutely continuous, with respect to P, part of (2, 
then any Radon-Nikodym derivative of (2+ with respect to P will be called a 
pseudodensity of (2 with respect to P, and also, a pseudodensity of 5. dO_, with 
respect to 5. dP. We shall talk frequently about expectations using terms which 
make sense when applied to the probabilities. If E and F are expectations on a 
a-algebra X, then dF/dE denotes the set of all pseudodensities of F with 
respect to E which are non-negative and finite valued. 

R k denotes the k-dimensional Euclidean space, B k the a-algebra of the Borel 
subsets of R k, R =R 1, B =B~, ~k is the family of all real valued Borel functions 
on R k, 2k_ = { f ; f e 2 k ,  f > 0 } .  ( )  will be used to denote finite or infinite 
sequences, and, in particular, points in R k. In matrix calculations, points in R k 
are columns. By (d k we denote the set of all orthogonal k x k matrices. 

If P is a probability on X, E = 5 . d P ,  h an ( X , Y )  measurable transfor- 
mation then E h denotes the expectation (on Y) induced by h, i.e., Ehg=Ego h 
= ~ gdPh 1 for each g non-negative and Y-measurable..X, denotes the integral 
with respect to the normal (t, 1) distribution for teRk; 1 denotes the identity 
matrix. We shall abbreviate .A# 0 to .JK. The dimension is not displayed in X 
but will be clear from the context. We define a function Pt on R k by Pt (x) 
= e  t 'x -  I)112/2. Note that pt~d~Af,/d~V'. 

The symbol ~ denotes the vague convergence of expectations (i.e., the 
pointwise convergence on the set of all bounded continuous functions). 

If H, is an expectation on a a-algebra Xn, g, an (X, ,Bk)  measurable 
transformation for each n = l ,  2 . . . . .  and if ceR k, then (i) we write g,-+c in 
(H, ) -p rob .  if Hnz{iLg,_cll>e}--~O for every e > 0  and (ii) we say that (g , )  is 
bounded in (H, ) -prob .  if (H~, ") is tight. 

2. Locally Asymptotically Normal Families 
of Expectations and Lower Bounds 

Throughout  the paper we suppose the following assumption holds: 

1. Assumption. k is a positive integer, for each n =  10 2 . . . . .  O, c R  k, X, is a a- 
algebra, E,,~ an expectation on X, for each ~ in O,. 

2. Definition. We shall say that Condition LAN (0, M,, 7,) holds if, for each n 
= 1, 2 . . . .  ,0  is in O,, M, is a k x k positive definite matrix, ~, a k-dimensional 
random vector on X, such that 

E~o~A/" (1) 

and if, for each bounded sequence ( t , )  in R k, (Sn= O+M,  1/2 tn is eventually in 
0, ,  and 

g, ~dE,, ajdE,, o (2) 
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implies 
G/&,~(G)~I in (E,, 0}-prob. (3) 

We shall say that Condition HLAN (0, M n, G) holds if the above con- 
ditions hold but with (t~} restricted to constant sequences (t}. 

3. Definition. l is called a loss function on R ~ if l is in ~s+, I ( x ) = l ( - x )  for each 
xER s and if {x; I(x)~=u} is convex for each u~(0, oo). 

4. Remark. Hfijek (1972) considers Condition HLAN (0, nM, G} with a posi- 
tive definite matrix M and with O n independent of n. L e C a m  (1960, 1969) 
considers Condition LAN (0, nM, G}. Hfijek (1972) gives conditions under 
which HLAN (0, nM, G} holds in the case of independent and identically 
distributed random variables. Ibragimov and Has'minskij (1975, 1979) give a 
sufficient condition for Condition HLAN (0, Mn, G} for the case of non- 
identically distributed random variables. Fabian and Hannan (1980) show that 
a weaker condition is still sufficient for Condition LAN (0, M,,, G}, and give 
additional references to results on sufficient conditions for LAN. 

Theorem 5 below is the lower bound result of H/tjek (1972, Theorem 4.1). 
Hfijek gives the proof only for case k=  1. Theorem 6 gives a strengthening of 
Theorem 5 and will be proved in Sect. 5. Ibragimov and Has'minskij (1979, 
Sect. II.12) prove the case (ii) of Theorem 6 with additional assumptions on 1 
and, implicitly, with an additional assumption of the measurability of 
6,~En. ~ I (M~/z ( z -6 ) ) .  Le Cam (1979, p. 134) obtains a similar result. 

Let ez denote the vector (0 . . . . .  0, 1, 0, ..., 0} with the i-th coordinate 1. 

5. Theorem (Hfijek). Let Condition H L A N  <0, nM, G> hold, let <Z,} be a 
sequence of estimates, I a loss function on R. Then 

l iml iminf  sup E~,~l(]/n e'i(Z~-5))>=.A/'l. (1) 
~ 0  n ~  ]]6--0][ =<e e r l ~  1 el  

6. Theorem. Let (Zn} be a sequence of estimates, l a loss function on R k, (Q~} a 
sequence in cg k. Let either (i) Condition L A N  (0, Mn, 7n} hold or (ii) Condition 
H L A N  (0, M n, G} hold and Qn = 1 for all n. 

Then 
lim lim inf sup En. ~ l(Q, M~/2 (Z n - 6)) > .A r I. (1) 

K~co  n IIM1/2(~-O)I[ <~K 

7. Remark. The assertion in case (ii) may be unsatisfactory if Mn are not of the 
form nM. In such a case, e.g., it may be impossible to choose l such that 
l(M~/2(Z,~-(5))=(Z~,l-~x)2/cn with norming constants G. In this sense, the 
assertion in case (ii) does not give a satisfactory generalization of Theorem 5. 

This difficulty does not arise in case (i), as shown in the following Corol- 
lary. 

8. Corollary. Let (Z~} be a sequence of estimates, 1 a loss function on R, (G} a 
sequence in R k -  {0}, let Condition L A N  (0, M n, G} hold. Then 

lira l iminf sup En6l{  an'(Zn-6) ]~.A/'I. (1) 
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Proof. Obtains from (6.1), applied with the first row of Q, equal to the 
transpose of M 2 1/2 an(a, n M~- i an )- 1/2 and to l(x) = l(e' 1 x). 

3. The Non-Attainability of (2.5.1) 

1. Definition. Let Condition HLAN (0, nM, 7,,) hold, Then we say that (Zn) is 
HLAM (0) (locally asymptotically minimax at 0 in Hfijek's sense) if <Z~) is a 
sequence of estimates for which 

lim lira sup E,,, o 1 (1) 
~0  n~oo it~-011_<_e Ve)M fei/=JV'I  

holds for every bounded loss function I on R and every i. 
If Condition LAN (0, MR, 7,) holds then (Zn) is LAM (0) (locally asymp- 

totically minimax at 0) if ( Z , )  is a sequence of estimates for which 

lim lira sup En, oI(QnM~/2(Zn-6))=Jr (2) 
K~sc n ~  ][M)/2(g)-O)]] <K 

holds for every sequence (Qn) in <gk and for every bounded loss function l on 
e k ' 

2. Remark. That Condition LAN (0, riM, 7n) does not imply the existence of 
an HLAM (0) sequence of estimates (Zn) is almost obvious. Indeed, the 
LAN Condition does not require anything about the large neighborhood 118 
-0[] <e  appearing in (1.1). 

In the following example, for every sequence of estimates ( Z , )  and any loss 
function l, the left hand side in (1.1) is equal to sup l(x). This is larger than Y l  

x 

if 1 is not a constant function. Consequently no HLAM sequence <Zn) exists 
in the example. 

Let k = l ,  On=R, X,=B,  (b , )  be a sequence of positive numbers such that 
bn~O, nl/2bn-,oe. For n = l , 2  . . . . .  let E,, be an expectation on B, let En, ~ be 
the expectation induced by a normal (c5, 1/n) random variable if 6<b~, and let 
En,~=E n if ~>b,,. 

It is easy to verify- that Condition LAN <0, n, 7n) holds with 7n(x)=nl/gx. 
Indeed E~%--X so that (2.2.1) holds, and if (~n=n-~/2tn with <t,) bounded, 
then, eventually, g)n<b,, and any gn in dEn,~jdEn, o satisfies gn=&,(Tn) a.e. 

(E., o)- 
Let (Zn) and l be as above, Pn the probability distribution of 1/nZn under 

en"  

Notice that if P is a probability on B, [a, b] c R  and 0 <c, then there is a 
2c b - a  

te[a,b] such that P(t -c ,  t + C ) < b ~ a ;  indeed, there are at least 2cc such 

intervals which are disjoint. 
Let c>0.  For 6c[b,, e], E~,~=E,, 

E, l(-~n(Z, - ~))> l(c)[1 - P n ( -  c +1/~ c~, c + 1 ~  6)]. (1) 
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By the preceding remark, there is c5 in [b., e] (alternatively, ] /n6 in []/nbn, 

]/ne]) for which the right hand side in (1) is at least 

/(c) [1 2c ] 
1/~(~_ b. ) . (2) 

Thus the left-hand side in (1.1) is at least l(c), for every ce(0, 00). 

3. Remark. It is possible to construct a slightly different example in which 
Condition LAN holds at every point and yet, for a 0, no HLAM (0) sequence 
of estimates exists. 

4. Preparatory Results 

1. Definition. A sequence (E. ,  F.) will be called quasinormal (t. ,  2.) if E., F. 
are expectations on a a-algebra X., 7. is a k-dimensional random vector on X. 
for n = 1, 2 . . . .  , if ( t . )  is a bounded sequence in R k, if 

and if 

implies 

E~- ~.A/~, (1) 

f,,,edF,,/dE. (2) 

f~/pt.(7.) ~ 1 in (En)-prob. (3) 

2. Lemma. Let (E  n, F,) be quasinormal (t, ,  7,). Then 

(E , ) ,  (F , )  are contiguous (1) 
and 

F ] , - t , ~ j ~ .  (2) 

Proof Without loss of generality, assume tn-+t. Let (1.2) hold and z , = l o g s  
a.e. (E,) on {0 <f,}. The Slutsky theorem gives 

E.~o~w ~o~ (3) 
and 

E~ z"' ~" ~">~W <l~ . . . .  '> (4) 

with ~ the identity function on R k. 
We apply now Theorem 2.1 in Le Cam (1960) with its six conditions s to 

s By (3) and since JV'pt=.A/~tl =1, ~ 5  and thus (1) hold. Since (4) holds, 5('6 
implies F, <z"' Yn-l'n>:=g>.~t<l~ . . . .  t> which in turn implies (2). 

3. Lemma. Let (u , ) ,  ( v , )  be bounded sequences in R k, let Condition L A N  
(0. M,,, 7~) hold and let 

En--~En, o+M~l/2u~, Fn=En, o+MT~/2v~,. 
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Then (E,,  F~) is quasinormal ( v , -  u~, 7~- u~). 

Proof. From the definition of Condition LAN, we obtain that (E,, o, E,) is 
quasinormal (un, ?n)" By (2.2), 

E ~ - ~ Y  (1) 

and by (2.1), (E~,o) and (E~) are contiguous. 
Let e,~ ~ dEffdE~, o, fn ~ dFn/dE~, o. Since (p~ffp~) (7~) = p~_ ,~(7~ - u,,), we obtain 

(fffe~)/p~_ ~(7~ - u~) --, 1 in (E~)-prob. (2) 

If g~edF,/dEn then g,4:fffe~ on A u2B~ with En, oXA +E,~zB =0. By the con- 
tiguity, E~ Z A ~  ~ 0  and (2) gives 

g,/P ........ (7~- un)-* 1 in (En)-prob. (3) 

This and (1) imply the assertion of the lemma. 

5. The New Lower Bound 

1. Remark. The proof below is close to that of Ibragimov and Has'minskij 
(1979), except that we avoid integration which would require measurability 
properties we do not assume. The slightly more general loss 1 and the inclusion 
of Qn in the LAN case do not cause any problem. 

2. Proof of Theorem 2.6. 

Write (5=O+MT, t/2Q'nt in (2.6.1) and denote QnMln/2(Zn-O) by Z,,, E~,~ by 
/~,,t. It is straightforward that (/~,,t) satisfy Condition LAN (0, 1, Q,~/~) in 
case (i) and Condition H L A N  (0, 1, ~ )  in case (ii). The asymptotic normality 
of/~a.~n follows easily by an application of the Slutsky theorem to convergent . 0  

subsequences of (Q~). 
Since QnM~/2(Z~-8)=2~-t ,  it is enough to prove (2.6.1) with E,~,~, 

Zn, M~, Qn replaced by E~,t, Zn, 1, 1. Simpler yet, it is enough-to prove (2.6.1) for 
case (ii) with 0 = 0, M~ = 1. 

For x e R  k, denote maxlxil by [xt. For M > 0 ,  qe{1, 2 . . . .  }, denote the cube 
{x; x~R k, ]xL<M} by C M, its indicator function by Z~ and the grid {x; xEC~, 
the qx~ are integers} by CM, q. 

Assume K, d are positive numbers, d <K,  denote by q/q and q,/ the expec- 
tations with respect to the uniform distributions on C~,q and C~. 

Relation (2.6.1) will be proved when we have proved 

l iminfl iminfqlqEnol(Z,-(5)> JV(X~ ~l). (1) 
q n 

//i 2 

Since l>h~=m -~ ~ X~m~ei} and Y(XK_jhm)--,~A/(;% jl), it is enough to prove 

(t) assuming l=  1-XA with A a convex Borel subset of R k, A = { - x ;  xeA}.  
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We shall call a function f on R k quasiconcave if { f > c }  is a convex set for 
every c in R. For an a~(0, c~), let d be the family of all quasi-concave 
functions on R k into [0, a]. 

We shall show that, as q ~ c~, 

~ q ~ '  uniformly on so'. (2) 

That (2) holds with ~4 replaced by the family of all indicator functions of 
convex sets follows from results on uniformity of vague convergence; see, e.g. 
Theorem 4.2 in Ranga Rao (1962) or Theorem 4.1 in Fabian (1970). Hence, (2) 

a 

follows by the representation f =  ~l Z(T >=~ d c for f in d .  
o 

For b in R ~, let ~G, lb denote the translates of (p, the standard normal 
density on R k, and of l by - b ;  e.g.o ~ G ( x ) = ( p ( x - b ) .  With a=(2~) -k/2, (1 - l~)(p~ 
and q0 are in s~' for every 7, z in R k and, by (2), 

q, lq(o~l~qlcp~l~ uniformly in ?, z. (3) 

But (2K) k q/q)~l~=~A~)~lz>.AP;(A i~1/~ ~ (interpret)~M as 0 for M<0).  By 
Theorem 1 in Anderson (1955), the last term above is at least ~4/'Z~ i~lI and 
thus, for all z~_R k, 

~o~, l z >(2K) -k -JZx_ Ivl 1. (4) 

Write a pseudodensity of E~,~ with respect to En, o as pa(G)(l+e,,,a). On 
Ca, pa < exp (kY2/2) for every 3, and thus 

E,, ~ l (Z,  - 6) > E,, o ZJ(G) Po(G) l(Zn - 3) - e kJ2/2 E,, o(G~) -. (5) 

Since the pseudodensities are non-negative a.e. with respect to E,,o, we 
obtain (Go) < 1 and, by Condition HLAN, the q/q expectation of the last term 
in (5) goes to 0 as n--* oo. The 4'q expectation of the second term in (5) is 

E. ZJ(G) qdq ~o~, I z . (6) ,o c G )  

By (3) and (4), if ~/e(0, 1) then for q large enougK on {7,~Cj}, 

q/q qo~, Iz, => r/(2K) -k ~ Z a  _j I. (7) 

ZJ(7"~))-*(2J)k. Thus the By Condition HLAN, E~,%~.~/' and E"'~ (P(G) 

lira inf lira inf of the second term in (5) is at least the right hand side of (1), (1) 

ho~ds and"the proof is completed. 

6. Locally Asymptotically Minimax Estimates 

The following assumption will be assumed in w167 6.2 to 6.16. 

1. Assumption. Condition LAN (0, M n, 7n) holds, 

2. Definition. A sequence (Z~) of estimates is called regular (0) if 
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Mnl/2(n__O)__?nZ -+0 i n  (En, 0)-prob. (1) 

3. Theorem. Let ( Z , )  be a sequence of estimates. Then the regularity (0) of ( Z , )  
implies 

E M~/2(z" ~")~J~ (1) 

for every sequence (3~= 0 + M~ 1/2 t, such that (tn) is bounded; the latter proper- 
ty, in turn, implies that (Z~) is L A M  (0). 

Proof Let ( t , )  be a bounded sequence, 2,=M~,/z(zn-o) ,  8n= O+ M,  1/zt~, so 
that M 1/2 (Z, - (5,) = 2,~ - t~. 

Let (2.1) hold, i.e., 2 , - 7 , - + 0  in (E~,0)-prob. By Lemmas 4.3 and 4.2, 
E~,o"~A# and (E , ,~ )  is contiguous to (E~,o), which implies (1). 

Let (1) hold, let (Q , )  be a sequence in %. From (1) we obtain 

Ee~(~. ~.)~ A; (2) n,On ~r 

by an application of the Slutsky theorem to subsequences for which (Qn,) 
converges. From (2), if I is a bounded loss function, 

e,,, ~,~ l ( Q . ( 2 . -  t ) )  - ,  y l, (3) 

since the discontinuity set of l is covered by the boundaries of the convex sets 
{x; l(x)<y} with y rational and is therefore ~A/'-null (cf. Eggleston, 1958, proof 
of Theorem 35). (3) implies (3.1.2) and therefore the last assertion of the 
theorem. 

4. Remark. According to Theorem 4.1 in H~jek (1972), for k =  1 the regularity 
(0) of (Z~) is necessary, under the H L A N  (0, nM, 7,) Condition, for the 
H L A M  (0) property of ( Z ) ;  we have proved it sufficient for the LAM (0) 
property of ( Z , )  under the LAN (0, M,,  7,) Condition. 

It follows from Theorem 3 that (0+M2~/27 , )  is an LAM (0) sequence of 
estimates. This is non-trivial since (0 )  is not an LAM (0) sequence of es- 
timates. Next we shall study estimates which do not depend on 0. 

5. Definition. A sequence (U~) will be called an auxiliary estimate if (U~) is a 
sequence of estimates and if (I]M*,/2(U,-0)11) is bounded in (g, ,  0)-prob. 

A sequence (m,)  will be called a rate estimate if each m, is an X,,- 
measurable function with values k x k  positive definite matrices and if 
( I] M ,  1 m, II + I[ m2 1 M,  ][) is bounded in (E,, 0)-prob. 

A sequence (IV,) will be called a consistent estimate of ( M , )  if W, are 
positive definite matrix valued random variables on X, and if 

Mn~/2W, M , ~ / 2 ~ I  in (E,0)-prob. (1) 

6. Definition, A sequence (U, )  of (X, ,Y,) -measurable  transformations is 
called discrete if for every positive number ~ there is an integer q and sets C, in 
X, such that liminfP,, 0 C , , > l - e  and such that for each n, U,[C,]  has at most 

tl 

q elements. 
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7. Remark. Discrete auxiliary estimates, discrete rate estimates and consistent 
estimates of ( M , )  will be used to construct regular and LAM estimates. 

Of course, to be practically useful, these estimates should not depend on 0, 
which can be formalized by asking that they have the required properties for 
every 0 in 0,  not only for one point 0; see more in Remark 17. 

Auxiliary estimates are easy to obtain in many practical situations and we 
shall not concern ourselves with their construction here (see, e.g., LeCam, 
1956). 

Similarly, in many situations, rate estimates are easy to obtain. For exam- 
ple, in the i.i.d, case Mn=nM and ( n l )  is a rate estimate (cf. Remark 11). 

If Condition LAN (b, M,(3), 7,,a) is satisfied at each 3, M,(O)=M,, M, are 
Bk-measurable, and (U,)  is an auxiliary estimate then (W,,)=(M,(U,)  ~ is a 
consistent estimate of (M, ) ,  provided that M#l/2~/i ,(3,)M;l/2~l if 1/2 M, (3, 
-0) is bounded. If (U,,) is discrete then so is (W,). 

8. Remark. Discretization of auxiliary estimates was suggested and used by 
LeCam (1960, Appendix 1 and 1969, Theorem4, Chap. III) to extend con- 

M, (U,-O) with (U,)  an vergence (4.1.3) to the case of t, replaced by 1/2 
auxiliary estimate. 

We shall use the discreteness in Lemma 12. If condition LAN holds in a 
strengthened form (as in Proposition 3 in Le Cam, 1970), the assumption of 
discreteness can be omitted in Lemma 12 and thereafter. 

9. Assumption. Let g,, a,, a2~dE~,a~/dE~,a2 for all n and all 31, 32 in O,. Let (Un) 
be a discrete auxiliary sequence of estimates, (m,)  a discrete rate estimate. 

10. Notation. If Assumption 9 holds, the following notation will be used for 
a6Rk: 

2,, ~ = log g,, v,+ ma ~'~. v, (1) 

if the argument of the log in (1) is defined and in (0, oo); set 2, ,~=0 for the 
other cases. 

Finally, with ej~R k, (e j) i =Z{j}(i), set 

")~n ~- ( ~  . . . .  - -  ~ n ,  - e a '  . . . .  )b . . . .  - -  ~ . ,  - e k ) "  ( 2 )  

11. Remark. It may be useful to consider now the special i.i.d, case in which O, 
= O, Ea are expectations on a common a-algebra f2, I11, I12 . . . .  are independent 
and identically distributed generalized random variables (with values in a 
measurable space) under each E a. Let X, denote the a-algebra generated by 
(Y1 . . . . .  Y,) and E,, ~ the restriction of Ea to X,-measurable functions. 

Suppose that for an integral J, each E~ ' has a density fa with respect to J, 
that the function 3"-'*L 1/2 has a derivative q in L2(J ) at 0 and that M =  4Jqq', is 
non-singular. Then Condition LAN (0, nM, y,) holds for a sequence (7,)  (due 
to Le Cam, 1970, Lemma 4; cf. also Fabian and Hannah, 1980, Theorem 4.8). 

1 _ 1 ~  Write , , a -  n logfa(Y/) (set l , ,a=0 on the set where [If6(Yi) is not in 
(0,  oo)) .  i= i=  1 
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If ce(0, co) then ( cn l )  is a discrete rate estimate, 

2n, a=n[l~,v.+(cn)-l/2a-l.,vJ, (1) 

and the i-th coordinate of )o. is 

n [l., v.+ (c.)-~/= ~,-  l., v.-(c.)-,/~ J .  (2) 

If, additionally, the matrices f;,  (logf~) of second order partial derivatives 
exist and are continuous in a neighborhood of 0, and dominated, respectively, 
by a function in L~(J) and a function in L~(Eo), then as a well known and easy 
result we obtain 

if,, v. ~ - M in E0-prob. (3) 

12. Lemma. I f  Assumption 9 holds and 

a6R k, Q. = m2 1/2 ]~//1/2 Un = i/2 ~... , M. (U.-O), (1) 
then 

2..a-a'Q.(7.-(J.)+�89 ~ ' z I[Q.alk ~ 0  in (E.0>-prob. (2) 

Proof By Lelnma 4.3 

g., o+Mz ~/~.., 0+M. ~/~.. = P,,._..(7. -u . )  k.(u., v.) (4) 
with 

k.(u., v.)--. 1 in (E..0)-prob. (5) 

for all bounded sequences (u.>, (v.).  This holds (cf. Remark 8) even with U., 
g. substituted for u., v., where 

V.=U.+mVl/2a, f/.=M]/Z(V.-O) (6) 
so that 

I/.= (J. + Q'.a. (7t 

Take logarithm in (4) to obtain (2). 

13. Remark. Consistent estimates of (M.) .  There are various possibilities of 
choosing a consistent estimate (W.)  of <M.>. 

Note first that if I41. are symmetric k x k matrices then (i) M 2 1 W.--*I 
implies (ii) M2 1/2 W.M 21/2--,1. Indeed, the non-zero roots of M 2 1 W  n and 
M2 1/z WnM2 1/2 are the same, (i) implies that they all converge to 1, and for 
the symmetric matrices in (ii) this implies (ii) holds. 

Consequently (5.1) is a weaker property than M f  1 Wn--*l in (E.,0>-prob, 
for symmctric valued I41.. 

Secondly, suppose W. are symmetric valued and satisfy (5.1). Then a simple 
change of ( W  n) to (W~) yields a consistent estimate of ( M . ) :  Set W.=W~ on 
the set where W. is positive definite and W. = 1 on the complement. Indeed 

x 'W.x 1 
] ~ n  x ~I lM;1/ZW.Myl /Z- lH for x # 0  

and the assertion follows easily. 
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In view of these remarks, we shall describe W, symmetric valued but not 
necessarily positive definite, and satisfying My 1 W,--, 1 in.(E,, 0}-prob. 

In the i.i.d, case, if (11.3) holds, we can set W n - - - n l , , v .  Another possible 
choice of W, is mentioned at the end of Remark 7. 

Finally, we shall describe a choice of W n which does not need any assump- 
tions additional to Assumption 9. Define the k x k-matrix A, by 

2A,. i j  ~-  - -  2 . . . .  + e.i - -  "~n, - ei - e j  -]- "~ . . . .  -1- An, - ei -~  An,  e j  -t- An, _ e j  ; ( 1 )  

then we may choose 
1/2 An m~/2. (2) W n = m  n 

Indeed, by Lemma 12, with A, = Q, Q,', 

An, ij = �89 [(ei + e j)' A,,(e i + e j) - e i A n e i - ej A, ejJ + qnij = el A, ej + t/,ij 

with r/,--,0 in (E,0}-prob. Thus 

Mn 1W,=M;*  1 / 2  , 1/2 1 1/2., ml/2 m, Q,Q,m n + M  2 m, , I , ,  �9 

The first term on the right-hand side is 1, the second converges to 0 in (E,,0} 
by properties of m n and r/,. 

I4. Remark. Under similar but stronger conditions than Assumptions 1 and 9, 
Le Cam (1969, proof of Theorem 4, Chap. III) proves that an estimate, similar 
to the one described in our Theorem 15, is regular (0) and thus, by our 
Theorem 3, LAM (0). 

Le Cain's proof is, however, inadequate for the theorem, unless an assump- 
tion is added in the theorem that A, have the property described in Le Cain's 
Proposition 1. 

15. Theorem. Let Assumption 9 hold, let (W,} be a consistent estimate of (M , }  
and let 

Z n = U n - ~ - l W n  - 1  m nl/2.) ,  n .  ( 1 )  

Then (Z , }  is a regular (0) and LAM (0) sequence of estimates. 

~ 1 / 2  1 / 2  - l Proof Set Z , = M ,  (Zn-O), Vn=M n W, Mnl/2 so that Vn~l in (E,,0}-prob. 
From Lemma 12, using its notation, 

2.-T.= n-vn+�89 1 

with e , ~ 0  in (E,,0}-prob. Because (0n}, (7,}, (Q;1}  are bounded in (En, o}- 
prob., we obtain that Z, -7 , - -*  0 in (En,0}-prob., the regularity (0). Theorem 3 
then implies the LAM (0) property. 

i6. Remark. Under Assumption 9, Theorem 15 allows for any choice (W~} of a 
consistent estimate of (M,}.  But by Remark 13 there always exists such a 
(W~} (cf. 13.2); with that choice, (15.1) becomes 
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Tr -a- 1 m -  I / 2 A -  1 2n (1) Z n =  ~n - -  2 n "In 

(replace A, by m 21 on the set where it fails to be positive definite). 
Consider the i.i.d, case (cf. Remark 11) with k = l .  We can choose m,=cn 

with any c~(0, oc) and, if no simpler choice for W,, is available than (13.2), we 
may use (1) with 

1 1 A. = )~., 1 +2,,, _ 1 -~)o., 2 --2An, - 2 ;  (2) 

the 2., ~ and 2. are given by (11.1) and (11.2). 
We see that the estimate Z.  is quite explicit and fully determined by U. and 

the densities fa. In particular, a computer program may be written which 
would calculate Z given in (1), based on the values of Y~, U. and a subroutine 
evaluating fa. 

17. Remark. Of interest are estimates which are LAM (0) at every 0 in O (let O 
= O .  for all n). If Condition LAN (O,M.(O), 7.,o) is satisfied for every 0 in O 
and if (ran), (U.)  are discrete rate and auxiliary sequences for every 0 in O 
then such ( Z . )  are described in Theorem 15 and Remark 16. So if the LAN 
(O,M.(O),7.,o) holds for every 0, under mild conditions there are what may be 
called global locally asymptotically minimax estimates. 

7. On Adaptive Estimates 

1. Introduction. Stein (1956) discusses conditions under which so called adap- 
tive estimation may be possible. The discussion is heuristic in some parts. 
Related to Stein's paper are results on adaptive estimators of a median of a 
symmetric density (see Stone (1975) for a rather general estimate of this type 
and for bibliography) or of other parameters (e.g. Weiss and Wolfowitz 
(1970a. b)). Pfanzagl (1976) showed non-existence of adaptive estimators of a 
quantile in case of asymmetric densities. 

We shall reformulate some of Stein's (1956) results in terms of LAM 
estimates. This is rather easy since Stein's arguments concerned mostly proper- 
ties of the Fisher information, with which the LAM criterion (in contrast with 
the classical theory) is solidly tied. 

As Stein did, we base our considerations on subproblems of the original 
problem (cf. Definition 3), and define LAM adaptivity in Definition 6. Theo- 
rem 9 then gives a necessary condition for the existence of an LAM adaptive 
estimate and Theorem 10 gives a sufficient condition for an estimate to be 
LAM adaptive. (As mentioned in Sect. 1, Fabian (1980) obtains from Theo- 
rem 10 the LAM adaptivity of a recursive estimate of the location parameter 
with an unknown symmetric density.) Example 12 reformulates a result due to 
Pfanzagl (1976) which shows that, in estimating a quantile of an unknown 
density, and if the class of the densities is rich enough then no translation 
invariant, asymptotically uniformly median unbiased sequence of estimates is 
asymptotically more concentrated around the quantile than the sample quan- 
tile. In our reformulation, with the LAM risk used, the assertion is true for 
every sequence of estimates. 
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In their studies of non-parametric problems, Levit (1974. 1975), Koshevnik 
and Levit (1976), Has'minskij and Ibragimov (1978) also combine the LAM 
concept and Stein's approach, but they use larger neighborhoods than ours, 
arriving that way at a stronger LAM property. They prove their LAM proper- 
ty for some estimates. However, at our level of generality, it is impossible to 
obtain our results with their LAM property. Indeed, specialized to an LAN 
situation, their LAM becomes the HLAM property and it follows from our 
Sect. 3 that there are cases in which no HLAM estimates exist. 

The mathematics of the results below is very simple and we treat the 
questions with some restrictions to retain the simplicity. In particular, we treat 
families satisfying the LAN (0, M~, 7n) condition with M~=nM and we do not 
include parameters which make the problem more difficult in the sense of 
Stein's remark following his Lemma in Sect. 3. 

We consider (local) adaptivity at a point & because this simplifies the 
treatment; statements about global attainability follow immediately (see also 
Remark 11). 

In this section, a sequence (Zn)  of estimates will mean m-dimensional Z~, 
unless specified otherwise. Subscripts will be used to indicate coordinates or 
elements of matrices. If M is a k 1 x k 2 matrix with ki>m we shall partition M 

Ml l  M l l  an m x m we M12] 
as M21 M22] 

with matrix and shall denote 

[ M i l l  
M1. = [M11, M12], M.1 = [M2a j �9 

In the subsequent assumptions and definitions the motivation is to estimate 
01, a component of the unknown parameter (0 z, 02). Roughly speaking, a 
sequence of estimates is adaptive if it is asymptotically as good as a sequence 
of estimates in case the nuisance parameter 02 is known. Various possible 
definitions of adaptivity are discussed in Remark 5. 

We shall consider subproblems obtainable by restricting the nuisance pa- 
rameter to a subset which can be reparametrized as a subset of R k-". The 
nuisance parameter fi2 in the subset is then labeled fl(62), and the parameter 
((~1' (~2) is labeled ~@1, ~2)=(bl , /~(62)) '  

2. Assumption. Assumption 2.1 holds with O n = O  independent of n, but not 
necessarily a subset of R k. The set O satisfies 0 = 0 1  x 0 2 for some sets 01, 
O;  with O~cR m for an integer m. 0=(01 ,  02) is a point in O. 

3. Definition. If k is an integer, k>m then by a k-dimensional subproblem we 
mean a pair ( O  o, ~) with the following properties. 

O o is a subset of O, containing D=O~ x {02}, c~ is a one-to-one function on 
O o into R k. If k=m then O o =D and c~=(~ci) v, the restriction to D of ~1- For i 
=1,2,  the function ~i is ((~l,~)2)eO1XO2v'~(~i. If k>m, then c~=((~1)0o, 
fl~ with fi a function on ~2[O0] to R k- ' .  

A subproblem is a k-dimensional subproblem for some k. The m-dimen- 
sional subproblem is called singular. 
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A subproblem (O o, ~) is LAN (nM, 7n) if, with/~,,~=E,,~_~0), the family 
(/~n,~; 3e~[Oo])  satisfies Condition LAN (c~(O),nM, y,). A subproblem is 
LAN if it is LAN @M, ~)  for some M, 7,- 

The following is assumed for the rest of this section. 

4. Assumption. Assumption 2 holds, the singular subproblem is LAN (nM, 7,) 
and ~4 is a family of LAN subproblems. 

5. Remark. The adaptivity property. A sequence (Z,> of estimates is LAM for 
the singular problem, if (cf. Definition 3.1) 

lim lim sup E~,<~l,o2>l(Q~(nM)l/2(Z~-g)l))=~#l (1) 

for every sequence (Q~) in ~m and every bounded loss function 1 on R ~. Call 
the property (1) of (Z~), property ~2(0). This property can be weakened to 
.~(0), the classical asymptotic efficiency, by changing c~ to 01 and omitting 
lim and sup in (1). Property ~2(0) can be strengthened to property ~3(0) by 

K-* oo 

enlarging the neighborhood over which the supremum is taken to include 
points @1, ~2> with c52#02. This will be clone in Definition 6 below. 

If a sequence of estimates has property ~i(O) for all 0eO, we say it has 
property ~ .  

The adaptivity considered by Stone and others (ref. above) was ~1- A 
strengthening of that property is ~2, but we shall consider the strongest of 
these properties, N3. 

Properties ~ and ~2 are of interest because it is not easy to construct 
estimates with property ~z(0) (or ~2(0)) for all 0; there is no problem if ~ ( 0 )  
or ~2(0) are required for only one 0. In contrast, even the local property ~3(0) 
is of interest, since (cf. (6.1)) it reflects on the behavior of the estimate with the 
nuisance parameter close, rather than equal to 02. In this sense ~3(0) is an 
asymptotic robustness property at the point 0. 

We shall study property ~3 by studying .~3(0) (cf. Remark 11). 

6. Definition. A sequence (Z , )  of estimates is locally asymptotically minimax 
sJ-adaptive at 0 (LAMA (sO, 0)) if, for any subproblem (O0, ~) in sJ, 

lim lim sup E~,~l(Qn(nM)l/2(Z~-c31))=~Arl (1) 
K~oo n~co 6eOo 

l l~ (O)-~(O) l l  <=K/Vn 

holds for any sequence (Q,)  in ~g,~ and every bounded loss function 1 on R'.  
(Z , )  is called LAMA (0) if it is LAMA (s~r 0) and if sr is the family of all 

LAN subproblems. 

7. Lemma. I f  ( 0  o, ~) is an LAN (n)~/l, ~ )  subproblem then 

M=~/ll, ?n-M 1/2()~/I1/2)1.~)n--->0 in (E~,0)-prob. (1) 

Proof. Let t~R", 6~=01 +(Mn) 1/2 t. g, edE~, <~, o~>/dE~, o. By the LAN proper- 
ty of the singular subproblem, 

g,/P~(7~) -~ 1 in (E~, 0>-prob. (2) 
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Next. set 0 =  cff0), c~, = c~(c5 , 02) = (~,~ fi(0z) ). Then 3, = 0 + (.g/n)- 1/2 { with 

{= (~/n) a/2 ( ( M n ) -  i/2 t, O) = (]~1/2). 1 M -  1/2 t. 

By the LAN condition for the subproblem 

g,/PT(9,)-~ 1 in (E,, 0)-prob. (3) 

This and (2) gives 

( t 'G- �89  in (En, 0)-prob. (4) 

Thus, a comparison of the limiting normal distributions of the two terms in (4) 
gives rlt'[I = ][tl[ and then 

t'(7.-M-1/2(~ll/2)1.~.)--~O in (E,, 0)-prob. (5) 

The first property, valid for all tcRk. implies 1 =M-1/2(~I1/2)1.(~I1/2). ~ M -~/2 
=M-1/2_g/11M -1/2. This and (5) imply (1). 

8. Condition. For every L A N ( n M ,  9,) subproblem in d ,  Ml2 =0. 

9. Theorem. Condition 8 is necessary for the existence of an L A M A ( s d ,  O) 
sequence of estimates. 

Proof Let ( Z , )  be an L A M A ( d ,  0) sequence of estimates, (Oo,  @ a k- 
dimensional LAN(n.g/,  7,) subproblem in d ,  l a bounded loss function on R m. 

Apply (6.1) with the loss function l(M -~/2 Ira), z s the identity function on R s, 
and then use the lower bound given by Theorem 2.6 for the subproblem 
(Oo, @ with the loss function l(z~M-1/2tk) and the estimate (Z , , 0 ) .  Use tilde 
in ~47 to refer to R k. We obtain 

~ "  I(TC 1 j~f-  1/2 lk ) ~ ,/~ l (M- a/2 G). (1) 

Applied with l(x)= Ha'x[12/x c, e~oo,  this yields 

(M-~),, _<_(M~0 -~ (2) 

since M=J~ll and in the sense that the appropriate difference of the matrices 
is positive semidefinite. Thus 

implying 57/12 =0. (We are indebted to Professor Peter J, Bickel for a comment 
which lead to a shortening of this proof.) 

10. Theorem. Let Condition 8 hold. Let ( Z , )  be a sequence of estimates which is 
regular in the singular problem, i.e., which satisfies 

nl/2(Z-O1)-M 1/27n----~0 in (E,,0)-prob. (1) 

Then (Z~)  is L A M A  (sr162 0). 

Proof Let ( O  o, ~.) be an LAN (n~/. 9,,) subproblem in J .  Set 

Z , = ( Z  . Zca[O+n-1/zdf1-1/2 7,3). (2) 

Then the part of the regularity condition for 2", which refers to the second (k 
- m  dimensional) components is automatically satisfied and the regularity 
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condition holds if 

nl/2(Zn-O1)-(J~I 1/2)l.~n--+0 in <E~,0)-prob. (3) 

By Condition 8. (~/1/2)12=0 and thus (~/+1/2)1.9,=(~/11)+-1/29,1. Then, by 
Lemma 7, 7 , -7 ,1  n 0  in (E,,0)-prob. and (3) follows from (1). 

11. Remark. Global adaptivity. Of main interest are sequences of estimates 
which are LAMA ( d  0, 0) for each 0 in O. Of course, a necessary condition for 
such a global adaptivity is obtained directly from Theorem 9, while Theo- 
rem 10 gives a sufficient condition. 

Note that if the whole problem satisfies Condition LAN (0, nM o, 7~,o) and 
if there exist an auxiliary, at each 0, sequence of estimates then there exists a 
sequence of estimates which is LAM (0) at every 0. That sequence of estimates 
is then LAMA (0) at every 0 if and only if (M0)12=0 for each 0. 

Whether Condition 8, satisfied for all 0, implies the existence of a globally 
adaptive sequence of estimates in general, without assuming Condition LAN 
for the whole problem, is an open question (analogous to an open question in 
Stein (1956)). However, Theorem 10 gives a simple sufficient condition which 
has given the desired result in a case considered by Fabian (1980). 

12. Example. For symmetric unknown densities, adaptive (classical sense) es- 
timates of location parameter have been constructed by several authors (see 
w 1). It is rather easy to see that in this situation the symmetry of the densities 
implies Condition 8. On the other hand, if symmetry is not required, the 
densities involved may be chosen in such a way that Condition 8 fails. Then 
there is no LAMA (0) sequence of estimates by Theorem 9. 

Pfanzagl (1976) has shown that if the family of densities is rich enough 
then, in fact, one cannot obtain estimates asymptotically better than the 
sample quantile. Pfanzagl's result is limited to a certain class of estimates (cf. 
w Here, as an example, we reformulate his result in terms of the LAM 
property for all possible estimates. (The densities ga in the example are chosen 
essentially as in Pfanzagl (1976).) 

Suppose ~ is a number in (0, 1), (p a density with respect to the Lebesgue 
measure 2 on R. We shall make mild assumptions about (p later. 

We shall construct a two parameter family of densities gd, A such that ge, 0 
=~o(t-d)  and show that, roughly speaking, no estimate of the ~-quantile can 
be better than the sample c~-quantile (above, i is the identity function on R). 

Denote by r the ~-quantile of ~0, by /3 the value q0(r), by q~ the distribution 
function corresponding to (p, by q)e the pseudodensity q0 o (z-d)/~o of q~ ; (~- d) 
with respect to ~b. 

We assume cp(x)>0 for all xeR,  q)(r) is the derivative of ~b at r, d~Od has 
an L2(~b ) derivative ~ at 0, and ~) o( , -d)--@ in L2(~b ) as d~0.  

If Y, is the sample c~-quantile of n independent random variables, each with 

density q), then l /n  (Y,,,- r) is asymptotically normal (0, 0 -2) with 

0 - 2 -  
~(1 - c  0 (1) 

this follows from the assumption on (p(r). 
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We shall construct a family of densities go for ~=(d ,  A)ER x ( - 1 ,  1) with 
the following properties: (i) g<d, 0>=CP~ - d )  for all d, (ii) the ~-quantile of 
g<d,A> is r + d  and (iii) if E,, o is the expectation induced by n independent 
random variables, each with density g6 then for every sequence ( Z , )  of 
estimates, and every loss function 1 on R, 

lim liming sup E.,~l(]/-n(Z"~-r-d))>,X'l. (2) 
K~ce n 11611 <K/W \ o !  

Let I[ I[, (,) refer to L;(~). Denote II~)ll z by M. Consider the subspace Lr 
generated by {Z, 1-Z},  where Z=)~(_~,~), and the orthogonal complement 5r 
to 5~ o. We have 

II)~ll 2 = c~, II1 - z l l  2 = 1  - 0 r  (z, ~))= - f l ,  (1 - z ,  i~) = fi; (3) 

the first two relations follow from the meaning of ~ and r, and the last two 
relations follow by using x = r and x = oo in 

1 
(Z( . . . .  ), ~)) = lira ~ (Z( . . . .  ), 0h -- 00) = lim 1 h--O h~O h [q~(x-h)-q~(x)]. 

Let A~(-1 .1) .  If A4=0, set K =  21A[ 1 + ~ +  ; i r A - - 0 ,  set K 

= oo. Denote by ~)i~ the truncation (~ v ( -K)) /~  K and by ka the projection of 
~)a on 5e~; abbreviate ko to k. Because of (3), 

(G, Z) (G, 1 - ) 0  kA=r Z (1--Z). (4) 
l--c~ 

We shall show that 

]A k3] <�89 for all A ~ ( -  1, 1), (5) 
and 

IIkAo(z-d)-kll---,O as (d, A) ~0.  (6) 

Relation (5) obtains from (4) since [ (~0 )0 ]<K IrZ]l, ](0K, l -Z ) [  < K  III-zN 

and the right hand side is bounded, in absolute value, by K 1 + ~ +  

which is ]d I- 1/2 if A + 0. 
To prove (6) note that I I g ) K - g ) r l ~ 0  and therefore N k A - k l l ~ 0  as A->0. 

On the other hand, by (4), and since (~)K,X)-->(~),)0, (~)sc, l - z ) - - , ( t~ , l - z ) ,  we 
obtain 

IG o (~ - d ) -  G I <= I O o (z - a ) -  ~bl + CZar i,'i,,'+ ~"l~ 

with a constant C. Thus (6) follows from the assumed L2(q~) continuity of 
and the continuity of ~. 

Define, for 6= (d ,  A)eR x ( - 1 ,  1), 

go = [rp (1 + d G ) ]  ~ (z - d). (7) 
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By (5) we obtain g0(x)>0 for all x; since k A is in 2~a, and 1 ~  0, we have 
(k a, 1)=0 and ~gad2= 1. Thus each ga is a density; the mass it gives to ( - o e ,  r 
+d) is (1 +A kA, X)=c~ so that go has properties (i) and (ii) promised above. 

Consider now the pseudodensity 

qa = Od( 1 + A k a o (t - d)) (8) 

of El, a with respect to El, 0. 
Express Oe as 1 - d e ( d )  with l[e(d)-t~ll ~ 0  as d- ,0 .  Then 

q a -  1 = 6 ' (  - e(d) ,  k~ o (t - d ) )  - d A  ~(d) k a o (t - d) 

so that r a = qa - 1 - c5' ( - 0, k) satisfies 

r o = b' ( ~  - e(d) ,  k a o (l - d) - k )  - d A  g(d) kdO (l -- d) 
and 

II~IL -1  Ilrall < [10-e(d)]l + lbkA o 0 - d ) - k l l  +IAI Ile(d)l[ [Ik~ o(,-d)[I 

with the right-hand side converging to 0 as ~ ~ 0  by properties of e(d)  and by 
(6). 

We have shown that qa has at 0 an L 2 ( E a , o )  differential C)o---(- ~, k). By 
Remark 2.5 and Theorem 4.8 in Fabian and Hannah (1980), the family (E, ,a)  
satisfies condition LAN (nAT/, ~,) with AT/=El, o0o(c)0)'. An application of (3) 
and (4) with A = 0 gives 

[l~_k[12= _3_~ Z+ fil_~ (1 -Z)  2=a2. 

and thus I[ki[ 2= ]J~)H 2 - a  2 = M - a  z. 

Consequently, 
~/_[ M -M+a ~] 

- M + a  z M - a  z J '  ( /~/-1)11=a-2 

and (2) follows from Theorem 2.6 applied with Z , - r  instead of Z,.  The proof 
of (i), (ii) and (iii) is now complete. 
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