
Z. Wahrscheinlichkeitstheorie verw. Gebiete 
59, 4 2 5 - 4 5 7  (1982) 

Zeitschrift fi~r 

Wahrscheinlichkeitstheorie 
uad verwandte Gebiete 

�9 Springer-Verlag 1982 

A Decomposition of Bessel Bridges 

Jim Pitman 1. and Marc Yor 2 

t University of California, Depar tment  of Statistics, Berkeley CA 94720, USA 
2 Universit4 Pierre et Marie Curie, Laboratoire de Catcut des Probabilit6s, 4, place Jussieu 
F-75230 Paris Cedex 05, France 

1. Introduction 

For any d>0,  the "d-dimensional" Bessel process, BES d, is the continuous 
diffusion process, valued in [0, co), whose infinitesimal generator coincides on 
C2(0, oo) with: 

d. 
(1.a) �89 where D=dx 

Recall that, for d > 2, 0 is an entrance (entrance, not exit) boundary point for the 
process; for 0 < d < 2 ,  0 is chosen to be an instantaneously reflecting regular (exit 
and entrance) boundary; for d = 0, 0 is a trap. We are, in fact, interested in the 
square of BES d, which we denote by BESQd; this is obviously again a (positive) 
diffusion process, whose infinitesimal generator, when restricted to C2(0, m), is: 

(1.a') 2xD 2 +dD. 

We define Q~, the distribution of BESQ d starting at x_>0, on the canonical 
space C = C([0, oo); [0, ao)), equipped with the a-field 

Y =  ~{co -+ Xs(co)- o9(s); s>O}. 

The reason for our interest in these squares is the important observation by 
Shiga and Watanabe [19] that for any d, d', x, x' >0:  

(Lb) d d' oe+d' Qx| 
where, for P and Q two probabilities on (C, ~r), p| denotes the distribution 
of (Xt+ Yt, t>0), with (X~) and (Y~) two independent processes, respectively P 
and Q distributed. 

A much deeper result of Shiga and Watanabe [19] is that, up to a trivial 
scale factor, there is a one-to-one correspondance between families, indexed by 
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d>0,  of positive diffusions (Q~;x>0)e> o which satisfy (1.b), and the set of 
real numbers, the correspondance being that, for any fielR, the family 
(PQax; x > 0)d > 0 admits the following operator, as (restricted) infinitesimal operator, 
for the "d-dimensional" process (Po e x > 0): 

(1.c) PAd = 2xD 2 + (2fix + d) D. 

For integer d, (~O~, x > 0) is the diffusion obtained by taking the square of the 
(Euclidian) norm of the d-dimensional Ornstein-Uhlenbeck process with pa- 
rameter ft. However, Girsanov's theorem and some classical space-time trans- 
formations easily reduce the study of the family (PQe, d__>0) to that of (BESQ ~, 
d=> 0), that is to the case fi = 0. These reductions are presented at the end of the 
paper (see Sect. 6). 

We begin a systematic exploitation of (1.b) by determining the laws of the 
"quadratic functionals" ~d#(s)p 2, where (p~,s>=O) is BESd/~, and # is a posi- 
tive Radon measure on (0, c~), with compact support (for simplicity). Indeed, 
one deduces from (1.b) that, if: 

(1.d) ,def I,(co~= ~ dp(s)X~(c~), 
(0, co) 

there exist two strictly positive reals A(#) and B(p) such that: for any d, x>0 ,  

(1.e) Qdx(e-'~ ) =A(g)XB(p) d. 

Moreover, A(#) and B(p) may be expressed explicitly (see Theorem (2.1)) in 
terms of a solution of the Sturm-Liouville equation ~ .  =e-'-~, thanks to the 
celebrated Ray-Knight theorems on Brownian local times. This is a develop- 
ment of work by D. Williams [26], wh o  used the Ray-Knight theorems to 
obtain the well-known Cameron-Martin formula: 

Wo[exp-~iX~2dsJ=(chc~t)-}  (c~ e IR; t_>0), 
0 

where ((X,); W0) denotes BMo, the one-dimensional Brownian motion starting 
at 0. 

The Ray-Knight theorems are now recalled, since they play an important 
part in the paper: let (Itb; beN,  t>O) denote a jointly continuous version of 
Brownian local times, and let To =inf  {t: X,=0},  %=inf{ t :  l~ Then 

(R.K.1) Under Wa, the distribution of BM starting at a>0 ,  the law of 

(lbTo, O<b<a) is Q~. 

l b (R.K.2) Under Wo, the law of ( ~x, b > 0), for given x > O, is QO. 

The appendix of Walsh's paper [20] explains how the appearance of the divers 
Q~'s in (R.K) is being forced by the additivity property (1.b). 

Before discussing some general facts about Besse! bridges, we present the 
following particular formula: for any b, x, y > 0, 
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(2.m) V - '  = e x p ~ - ~ ( 1 - b t c o t h b t )  I v (~ )  

where z = ] / ~ ,  and v = d/2-1 .  
This formula is obtained in Sect. 2, after calculating A(#) and B(/~), for 

b 2 
#=~et+~-l to, , l (s)ds,  for any ~>=0. 

It is the (obvious) remark that the right-hand side of (2.m) splits naturally in 
a product of 4 terms which led us to suspect the existence of some interesting 
Bessel bridge decomposition. This is indeed the case, but we need first some 
definitions, in order to give a precise statement: let d Q~,~,. be the d-dimensional 
squared Bessel bridge from x to y over (the time interval) [0, 1], that is the Q~ 
conditional distribution of (X s, 0 < s < 1), given X,  = y, viewed as a probability 
on C([0, 1], [0, m)), and chosen to be weakly continuous for y > 0  if d>0.  

For d = x = 0 ,  and y>0,  we are led, since 0 is a trap for BES ~ (see details in 
^0 Sect. 5, paragraph (5.3)), to define Qo~ as Qy~o, that is: the image of 0 ~y+0 

under time reversal: t ~ ( 1 - t ) .  This being said, we show in Theorem (5.8), that, 
for all d,x ,y>O: 

o o d ~ 4,, (1.f) |174 ~ b~,~(n)Qo~o, Q~.,,=O_x~O | 
n=0 

where v = d / 2 - 1 ,  z--I/x/~y, and b~,~(n)=(z/2)z"+v/n!F(n+v+t)I~(z) 
((b~,~(n) n~N) defines a probability on N). 

An immediate consequence of (1.f)is the following generalization of (2.m): 
if # is a positive Radon measure on [0, I], 

L(zBo(~) 2) 
(1.g) Qdx~y(e-1- ) =Ao(tz)~Ao@)~'Bo(#) 2 Iv(z) - -  

where/~ is the image of # under the map s ~ l - s ,  and the pair (Ao(p), Bo(#) ) is 
defined by: 

(1.h) Q~- o (e- ;") = A o (#)~Bo (#)a. 

The existence of such a pair is a consequence of the additivity property' for 
any d,d',x,x'>=O, 

(1.b)o ~x~o - ~ + ~ ' ~ o .  Q~_,o | -,~+~' 

It is also proven, at the end of Sect. 5 (see (5.z)), that Ao(/~ ) and Bo(p) may be 
expressed quite simply in terms of A(#), A(fi), B(p) and B(kl). 

As a preliminary to the proof of the decomposition (1.f), we offer in Sect. 4 
a simultaneous construction for all d>0,  x > 0  of processes with laws Q~ as 
sums of excursions in a Poisson point process of the type described by It6 
[6]. This yields also a L6vy-HinSin representation of Q~: there exist two a- 
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finite positive measures M and N on (C, .~-) such that, for any positive Radon 
measure 12 on [0, ~),  

Q~(e-I,) = exp (x M + dN)(e-1~- 1). 

In Sect. 3, it is explained how the measure M can be viewed as an excursion law 
for BESQ ~ despite the fact that 0 is a trap for BESQ ~ Using the same 
notation as for (R.K.2) above, M is the characteristic measure of the C-valued 
Poisson point process ( Q - Q _ ,  x > 0), and there are similar descriptions of N. 

Acknowledgment. The second author would like to thank S. Watanabe for a short, but very 
stimulating, conversation at the Durham Symposium on Stochastic integrals (July 1980). 

2. Laplace Transforms of Certain Bessel Quadratic Functionals 

The main result of this paragraph is the following theorem. 

(2.1) Theorem. Let # be a positive (Radon) measure on (0, oo) such that, for all 
n, 12(0, n) < oo. Then, one has: 

(2.a) Q~[exp-~  X,d#(t)]=[c)~(oo)] d/2 exp [ 2  0+ (0)J 

where 0,(oo) and 0 + (0) are respectively the limit at oo, and the right derivative 
at 0 of the unique solution 0~ of: 

(2.b) !~,, 2~- = 1 2 0  on (0, oo); 0(0)=1,  0_-<0_-<1. 

Notes. 1) Since #(0, a )<  oo (a>0), then 0+(0) exists and belongs to ( - 0 %  0]. 
Also, @u is convex, and decreasing, so 0,(o�9 exists (and belongs to [0, 1]), 

but 0 , (oo )=0  is a possibility. If so, formula (2.a) still holds with the conven- 
tions 0~ e x p ( - o o ) = 0 .  As a consequence of Proposition (2.2) below, 

OO 

0~(oo) > 0  holds iff ~ td12(t) < oo. 
2) If the support of # is contained in [0, a], 0,(o�9 obviously. 
3) Replacing 12 by (~12) gives the Laplace transform of (~d12(t)X,) under Q~, 

and formula (2.a) shows up the infinite divisibility of this r.v., from the 
presence of the multiplicative parameters d and x. 

We proceed to the proof of the theorem by several steps. 
" "X d "def -d~  Step 1. Out , ) = (2xLexp-J d12(t)Xt] satisfies, from (1.c): 

0.(x, d) 0 y ,  d') = 0 . (x  + y, d + d') 

for all x, y, d, d'__> 0. In particular: 

@~(x, d)= @u(x, O)0,(0, d), 

and the functions: x--* 0,(x, 0), d--* 0,(0, d) are multiplicative. 
They are equal to 1 for x = d = 0 ,  since 0 is a holding point for BESQ ~ 

Moreover, they are measurable, as a consequence of the measurability of Q~(A) 
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(x > 0; d > 0) for any A e-~-o~. This last measurability property may be seen from 
the Yamada-Watanabe paper [27]; another proof of this may be obtained 
from the following Radon-Nikodym formula of [16], which will be used again 
below: for t>0,  x>0 ,  d>2: 

d 
where v = ~ - l .  (For our purpose, the condition: d > 2  implies no loss of 

generality, because of the multiplicative property of ~b,.) 
Finally, there exist A(#), B(#)>0, such that'  

(2.d) 40,, (x, d) = A (#)XB (#)d. 

Step2. We fix x=0,  and compute B(#). From Ray-Knight's theorem (recalled 

in the introduction), the law of i d#(s)X,, under Q~, is that of i #(ds)lSro, under 
0 0 

W a, the distribution of linear Brownian motion starting at a, where 1S denotes 
To 

the local time at point s of this Brownian motion until the first time it hits 0. 
Therefore, one has" 

Q.2 [exp - i  #(ds)X,]=4)~(a,a), 

where 
b 

Remark that qb(a, b) is decreasing as either a or b increases. 
So, by dominated convergence, one gets: 

(22 [exp - ~ d#(s)Xs] = lim ~bu(a, a) = lim q~u(a), 
a ~ o o  a ~ o o  

d e f  �9 where qSu(a)= hm (bu(a, b)= Wa[exp-5  d#(s)lSro], 
b + o o  

But, it is an easy application of martingale calculus (for instance) that q5 is 
characterized by (2.b). 

Step 3. We fix d--0, and compute A(#). Again, from the Ray-Knight theorem, 
one has, denoting by (rx) the right-continuous inverse of (l ~ t > 0): 

Qo [exp ( -  5 #(ds) X~)] = W ~ [exp ( - ~ #(ds)l{x)] , 

and the right-hand side is, from martingale calculus again, well-known to be 
equal to exp (~(b~(0)) (see It6-McKean [7], Sect. (6.2), or Jeulin-Yor [9]). [] 

Before applying formula (2.a) to particular measures #, we show, among 

other things, that qS,(oo)>0 iff ~ tdl~(t)< oo. 
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(2.2) Proposition. Let d > O, and x > O. Then, for any positive Radon measure on 
(0, oo), one has: 

a) Qao[ ~ Xtd#( t )<oo]=l  iff ~ td/2(O<oo, 
O +  O +  

b) = td#(t) oo. Qa[~ X,d/2(t)<oo] 1 iff < 

For d = l ,  and /2 absolutely continuous, the results of Proposition (2.2) were 
already obtained by L.A. Shepp ([181, Sect. 19), with a proof  which is quite 
different from the following one. 

Remark that the case (d=0) is of no  interest since 0 is a holding point for 
BESQ ~ One of the ingredients of our proof of a) and b) above is that, from 
Watanabe [21], the law of Xt under Qa is that of (t2Xl/~) under Qa, X, where 
() a'x is the distribution of the square of the d-dimensional Bessel process, with 

drift l /x,  starting at 0 (see either Watanabe [21], or Pitman-Yor [16] for the 
definitions and notations concerning these generalized Bessel processes). 

H o w e v e r ,  s i n c e  d,x a Q0 1~ and Q01~t are mutually equivalent, one gets: 

oo 

Qax[ ~ Xtd#(t)< Go] = Q a [  ~ tZx1/,d#(t)< oc]. 
O +  

Note in particular that the sets (~ (and of course, 
( ~ Xtd/2(t)< oo)) have either 0 or 1 Qa x probability. 
0 +  

Finally, Watanabe's time-inversion result permits the reduction of assertions 
a) and b) to 

oo (3o 

b') Qao[ ~ X,d/2(t)<oo]=l iff ~ td#(t)<,oo. 

Now, since the variables X jr, t>0 ,  are identically distributed under Q a  with 
probability law 2 such that: 2{0} =0;  ~2(dx)x< 0% b') is an immediate con- 
sequence of the following (deterministic) version of a very useful lemma due to 
Jeulin [8]. 
(2.3) Lemma. I f  (Rt),~ o is a measurable positive process such that for every t, 
R~ has the same law 2, such that 2{0}=0 and ~ 2 ( d x ) x < ~ ,  then for every 

k •  ) 

probability 0 or 1. It has probability 1 iff ~ d#(t) < oo. 
1 

Turning to examples of our general formula (2.a), we shall use - for 
notational convenience - C(#) and B(#) instead of, respectively, (-�89 + (0) and 
(q~,(oo)) 1/2. Here are some general remarks about A, B, C: 

(i) As a consequence of the Markov property, one has the following ite- 
ration tbrmulae' 

(2.e) C(#) = C [#[o,t J + C(#t)e,] ; B(#) = B  [#e0 ' tj + C(#r)e,] B(#t) 
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where #Eo,tj denotes the restriction of # to [0, t], and 

#,(c)=#(]~, oo[~(r+O) (/'~(m,+)) 

(ii) The infinite divisibility of ~X,d#(t) under Qo and ()~ implies the exis- 
tence of two positive o--finite measures m, and n, on [0, oe) such that, for every 

>0, 

e - ~ U  (2.I3 C (c~#) -= ~ (1 - )m~(du) 

and, in the case where ~ td#(t) < oo, 

(2.f) B(~#) = exp ~ (e - ~ " -  1)nu(du), 

with f (u/x 1)(m, + nu)(du) < oo. 
(iii) Example O. For #=cos t (~>0, t>0), one gets: 

(2.g) C(:r = 1 + 2cr ; B(ccat) =(1 + 2cr -1/2, 

and it is easily deduced that: 

(2.h) m~(du)=4@exp(-~t)du; 
U 

These results provide a means of obtaining the transition probabilities of 
BESQ~: 

(2.i) qe(t'x' y ) = l  (Y)'/2 exp \ 2t ] Iv ( ~ )  

v = ~ - l ;  remark also, from (2.g), that Q~ - 2 t  . One then 

recovers the transition probabilities of BES e (cf. Molchanov [12]): 

v X; +y2]  I 
(2.i') pe(t,x,y)= I ( y )  yexp ( ~ - ]  v ( ~ )  

(iv) Using (i) and (iii) in conjunction, one gets recurrence formulae for C(#) 
and B(#), with 

n 

#= y, 2is~, (2~>0; O=to<tl <t a ... <t,,). 
i = 1  

Indeed, one has: 

fi (20 c B E 
i-- i = I  

where the sequence ()~i, i= 1, 2, ..., n) is determined by: 

(cf. Shiga and Watanabe [19], p. 40, formulae (1.20) and (1.21)). 



432 J. Pi tman and M. Yor 

We now turn to 

Example i (and applications). In [11], P. L6vy showed that if (X~, Yr) is a IR 2- 
valued Brownian motion, starting from 0, then, for every (x ,y)elR 2, and 
b~lR*: 

E[expibi(XudYu-YudX,)lXl=x,Y~=Y ] 
o 

= E  [exp ( - ~  ipZdu)Pl = P ]  (P=(X2+y2) 1/2) 

_ b - b c o t h b ] ) .  - sh 
We will extend this result by calculating, for every d, x, t > O: 

with the help of formula (2.a). 
To begin with, we show that, for every c~ > 0, b ~ 0, one has: 

b z 
Q~ [exp ( - e X t - ~  i Xfls) ] 

(2.k) xb [1 +2c~b -1 cothbt ]  
=[chbt+2~b-~shbt]-a/2exp 2 [coth(bt)+2~b-1] " 

From Theorem (2.1), we seek ~b: [0, oo) ~ [0, l], solution of: 

(2.1) �89 on (0, t); �89 q~(0)=l 

(~b- denotes the left derivative of q~); having found this (unique) qS, the right 
hand side of (2.k) will be equal to: 

x + 0  @(t))e/eexp[~O ( )]. 

Now, s~sh[bsl; ch[bs] span the solutions of (2.d) on (0, t), and the condition 
~b(0)=l forces ~b(s)=ch [bs]+ksh [bs], where k is determined by the other 
boundary condition: 

b s h ( b t ) + k b s h  [b t] = - 2~ [ch bt + k sh [b t]]. 
This gives (2.k), after some trivial algebra. Using (2.i), one deduces now from 
(2.k), after some lengthy but straightforward calculations, that: 

Q~(exp (-~- i Xsds) X'=Y] [1/~-b ] 
(2.m) bt [x+y "1 btcothbt) )I~ [ ] h ~ - J  

- st; ( ~  exp ~.~-7- t - ; 
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The appearance of a product of 4 terms in the above formula suggested, and, 
in turn, will be explained by, the decomposition of Bessel bridges into a sum of 
four pieces (cf. Sect. 5). Also, a less computational proof of (2.m) is given in 
Sect. 6, with the explicitation (6.3) of the Radon-Nikodym density between the 
Bessel laws and the laws of radial parts of multidimensional Ornstein-Uhlen- 
beck processes. 

For the moment, we remark that formula (2.m) allows the computation of 

the joint law of the stochastic (Paul L6vy) area 9X t = ~ (XsdY , -  Y~dX,), and the 
0 

total (continuous) winding number 0 ' - 0 ~  ~ iZ,i 2 �9 for the complex 

Brownian bridge ( Z , , 0 < u < t ) ,  starting at z0+0 (we note a=lz01 ). Since 
Z, =Pt ei~ (P,- I Z, 1), all amounts in fact to calculating 

Ja~-fE [exp i{~I ,  +fl(O,-Oo) } IPt =P]. 
- -  z o  

ao,'  x / r , -   dXs 
Now, 7, = J  ' ( t>0) is a real valued BM which is independent of 

o Ps 
(p,, t > 0), whence: 

J = Ezo [exp i i {o: ,o s + fi/P s} dG P, =,o ] 

=E~o [exp - l/2 i {o:Ps+ fi/Ps}a ds p~ =P ] 

=exp (-o:fl) Q:, [exp- l/2 i {o~2 Xs+ fl2/X,} ds X,= p '] 
0 

where a '=  a 2, p '=  p2. Now, from formula (2.c), one gets: 

where dr 1), and the last equality originates from ([28], formula (4.9)). 
Finally, one gets, from formula (2.m): 

B(0,- 0o)}i,, =p] ] 
(2.n) o:t ~ aa+p2 [1-c~t coth ~t]} I//~1 \shc~t] 

= exp ( -  c~fl) s h ~  exp ~ 2t i0 (aTp) 

Before embarking on other examples, it may be worthwhile to set up an 
algorithm for the "practical" computation of the constants q~u(oo) and ~bu+(0 ) 
which appear in (2.a). 

The most convenient presentation is to assume that the support of /~ is 
compact and that the supremum a,  of this support is 1. 
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(The case where a~ < oo is then obtained by rescaling, and cr = oo by a limit 
procedure.) 

Let q50 and qS~ be two linearly independent solutions of: ; z "  2w = # ' 0  on 
(0, 1). Then, r is equal, on the interval (0, 1), to: ~r  where the con- 
stants ~ and fl are computed from the boundary conditions: 

G ( 0 ) =  1; ~-(1)  =0. 

It is now easily deduced that: 
1 N 

(2.0) Ou(~) = Ou(1)=~ W(Oo, CO(D; r  

where: 
W(q5 o, 0~)(1) = qSo (1) q~i (1) - (~1 (1) q~() (1) 

the algorithm (2.0) and (2.p): 

c(#) =5- 
(2.q) 

TC " V 2 v  

where 2 = v =  i, and G-v(F(v))2 sin (wz)" 

; ~-(~)= l-v)(kv)vI u 

(2@) i , t i t l D = r162 (1 ) -  r (0), N = q~o (0)r  r (0). 

We are now ready to take up examples 2 and 3, which are extensions, in two 
different directions, of example 1. Our final aim, in these examples, is to 
compute Q~(exp-  I~] X1 = y), for suitable #'s. 

It is shown, in paragraph (5.7), that we need only calculate Q~(e -I.) and 
d - I ~  Qx(e ), where fi is the image of r under t -* (1 - t ) .  We feel free to, and will, 

rely on this result, since example 1 has been dealt with in a bare-handed 
fashion. 

k 2 
Example 2. Here, we tak e #(ds)=-~s 2p-21[0 ' l](s)ds, where k>0,  and 2p > 1, so 

that # is a bounded measure on [0, 1]. 

Denote v = 1/2p, and 2 =k-xp. In agreement with our previous notations, we 
P 

may take (Petiau [13], p. 306): 

r and 01(x) : l /YL (x). 

Using the classical recurrence relations between Bessel functions (cf. Watson 
[22], or Petiau [13]), one gets: 

2 2 
q~(x)= 2vlfl~K~_l(2),  and 0'1(x)=2v]fffI~_,(2). 

Finally, one obtains, after some straightforward, if tedious, calculations, from 
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Here are some comments relative to the formulae (2.q): in the following, P~ 
will denote the Wiener measure of real-valued BM (B,, t>O) starting at x, and 
T~. = inf {t/B, = y}. 

(i) The expression B2(#) appears in Getoor-Sharpe ([43, Proposition (5.14), 
(b)), where it is shown that: 

E, (exp k 2 TO -~- ! ~-~,o,,,<)~) =~ , ,  
the explanation for this equality being again the Ray-Knight theorem (R.K.1). 

(ii) Also from (R.K.1), we get: 

[e k2 T* ] 2~ ~ =~2(~). E o x p - ~ -  o dsBs l(Bs~(0'l)) 

The expression/~2(#) also appears in [4] (Proposition (5.14), (c)). 
(iii) Using the same notation as in (R.K.2), we get, after rescaling, the 

following interpretation of C(#): 

Eo[exp{-~iXdsB2~ p (Bs~(o,a))}] e x p [ ( - - x ~  k2~) I1 ~ P 

to hand  ide 

that the process dsB2p-21(B>=O); x>O is the one-side stable process with 

exponent v, and rate T 1G, a fact which is found in It6-McKean ([7], 
p. 226). [] 

Using now the same notations as in Proposition (5.10), we get: 

and 

"def2C(] ~) . . . . . .  l+vr 

sin (v~z) 

From formulae (5.u), we now get (somewhat complicated) expressions for 
B2(/~), Co(//) and Co(g), and, are therefore able to write down, from corollary 
(5.9) expressions for Qfx(e-I, IX1 =y). 

Example 3. We generalize now example 1, in another direction, by taking 

2 
~(dx) =~ (/~2 e2p~ +.~2) dx. 

From Petiau ([13], p. 308), we may take: 
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Using again the notations of the algorithm (2.o)-(2.p), we get: 

W(Oo,  0 1 ) ( x ) =  [(I ~K'  x - K ~ I'~)(fieVX)](fl pe  "x) = - (1~ f i e  px) ripe px = - P. 

Consequently, 

where: 
0u(1) = - p / D ;  O ~ ( O ) = N / D ,  

D = [I~ (fl)K'~ (fie p) - K~ (fi)I'~ (fi eP)] (fl p eP), 

N = [I~(fl)K'~(fie p) -K'~(fi)I'~(fieP)](fi2pZeP). 

Changing ~ in/2 amounts to changing p in ( -p )  and fi in (fie p) in the previous 
formulae. Therefore, we get: 

/5 = [14 (fie p) K~ (fi) - K;.(fl e p) I~ (fi)J ( - tip), and f = - N. 

Finally, we obtain: 

C(#)= - N / 2 D ;  (~(#) =N/2/ ) ;  B2(#) = - p / D ;  /~2 (~)=p//5, 

DO 
.~(#)(=£(#))=N/p; a(#)- p2" 

In the case where 2=0,  the previous formulae simplify, since: Io=11 ,  and 
K ~ = - K  1. We get: 

D = ( - tip e p) [I  o (fl) K1 (fie') + K o (fi) I~ (fi eP)], 

N = ( - fi2p2 e p ) [I1 (fl)K1 (fl ep) - I1 (fleP)K~ (fl)], 

= (tiP) [Io (fi eP) K1 (fl) + Ko (fl eP) I~ (fi)] 

and, to conclude this section, we note that: 

[ E0 k exp - 2 -  o 

3. Excursion Laws 

We consider in this section a diffusion process - to be called the 0-diffusion - 
on the interval [0, ~), which is regular on (0, oc), with 0 as an absorbing 
boundary. We assume that the 0-diffusion has infinite lifetime, and take it to 
be defined on the canonical path space C = C ( [ O ,  oo), [0, oo)) by laws 
(Px,0<x<oo),  where P~ governs the co-ordinate process (Xt, t>0)  as the dif- 
fusion with starting point x. 

Let Ty be the hitting time of y. We assume also that Px(To<oo)>O,  x>0.  
This last assumption is that 0 is an exit point for the 0-diffusion, following the 
classification of boundary points on p. 130 of It6-McKean [7] as exit or non 
exit, entrance or non entrance. 

Our purpose here is to describe a certain a-finite measure A on C, to be 
called the excursion law o f  the O-diffusion. Under A, the trajectories come in 
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from zero according to an entrance law, then move according to the 0- 
diffusion. If 0 is an entrance boundary point, that is to say if there exists a 
diffusion which moves as the 0-diffusion up to time T o but then reenters (0, oo) 
instead of being absorbed at 0 (see (3.g) below), then the measure A we 
describe is simply a multiple of the It6 law for the excursions away from 0 of 
any such reentering diffusion, and our descriptions in this case are just variants 
of well established results due to McKean [10], It6 [6] and Williams [23, 24]. 
But we take pains here to bring out the fact, which is important for our 
applications, that these various descriptions still make perfectly good sense 
(and agree) even if 0 is not an entrance point for the O-diffusion. 

Let s(x) be a scale function for the 0-diffusion. Since we assume the 
absorbing boundary point 0 can be reached with positive probability from 
x > 0 we can take it that 

s(O)=O, s(x)>O for x>0, 

and then s is defined uniquely up to a constant factor by the identity 

P~(T <c~)=s(x)/s(y), 0<x<y<oo. 

The excursion law A can now be described in a preliminary way as 

(3.a) A = lim s(e)_ 1 p~, 
~ O  

where the limit indicates weak convergence of finite measures on C away from 
neighbourhoods of the trajectory which is identically zero (denoted 0 below). 
To establish the existence of this limit and give much more precise descriptions 
of A, we follow Doob [2], McKean  1-10] and Williams 1,23], by considering 
now the diffusion on [0, oo) obtained by conditioning the 0-diffusion never to 
hit 0. 

This diffusion, which will be referred to as the T diffusion, has semi-group 
(P~*, t>0)  obtained from the absorbing semi-group (Pt, t>0 )  by the formula 

(3.b) Ptt (x, d y) = s (x) -  1 pt (x, dy)s (y), 

and generator G T given in terms of the original generator G by 

(3.c) G t = s - l G s .  

We shall write Pxt for the probability law of the T-diffusion started at x. 
Though it will not occur in any of the applications in this paper, we note that 
the semi-group of the T-diffusion may be strictly sub-Markovian, indicating 
that the T-diffusion reaches oc in finite time a.s. Thus strictly speaking, we 
should define PS (note the slight change of notation!) on an enlarged trajectory 
space allowing such explosions, but we won't bother to do this as we shall only 
consider Px ~ probabilities of events which are determined by the ~-diffusion 
before the time T b for some b >x,  and this can be managed within our space C 
by simply stopping the paths at time T b. Then for F ~ r b  (i.e. the o--field of 
pre-T b events in C), for x > 0 ,  one has simply 
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(3.d) P~; (F) = Px(F I Tb < To), 

a prescription which is consistent for varying b by the strong Markov property 
of the O-diffusion. 

Because we assume that 0 is an exit point for the 0-diffusion, 0 is an 
entrance but not exit point for the T-diffusion, regardless of whether 0 is entrance 
for the O-diffusion. Indeed, the T diffusion started at its entrance boundary 
point 0 and run up to the last time it hits a level y>O is described by 
Theorem2,5 of Williams [23] as the time reversal back from T O of the 
diffusion started at y, where the ~ diffusion is the 0-diffusion conditioned on 
(T o< oo). It follows that the distribution at t ime t of the %diffusion started at 
its entrance point 0 is 

(3.e) P' ~ (0, dy) = lira pt ~ (e, dy) 
~ 0  

where the limit exists in the sense of convergence in distribution of sub- 
probability measures on [0, oo). 
(3.1) First description of the measure A on C. 

(i) A ( X  o 4=0)=A({0})=0, where 0 is the zero function in C. 
(ii) A(X  o =0, T~. < oo) = 1Is(y), y >0. 

(iii) Under the probability At (X0=0 , Ty< oo), 

the processes (Xt, O<t< T~.) and (XT,+s, s>O) are independent, the first being a 
T-diffusion started at its entrance boundary point 0 and run until it hits y, and 
the second being a 0-diffusion started at y. 

Here for a measure M and a set B with 0 < M ( B ) < o o ,  MIB is the con- 
ditional probability measure 

A ~ M(A  [B) = M(Ac~ B)/M(B). 

That such a measure A exists and is a-finite on C is obvious once it is 
verified that the prescriptions of AI(X o =0, T < oo) are consistent for different 
values of y, and this is a consequence of the strong Markov property of the T 
diffusion and (3.d). 

That A so defined is unique is trivial. 

Note. As an embellishment of this description, it may be observed that for 
each t > 0 the A conditional law of (X s, O< s<  t) given X t =x  is identical to the 
PoT conditional law of (X,, O<s<t)  given X , = x  (cf. McKean [10]). 

(3.2) Second description of the measure A on C. 

(i) A(Xo,O)=A({O})=O. 
(ii) Under A, the process (Xt, t > O) is Markovian with the O-diffusion tran- 

sition probabilities and entrance law 2t(dy)= A (X  r e dy) defined by 

2t(dY)=Pt~(O, dy)/s(y), t>0 ,  y > 0  

2t{0} = oo, t > O .  

That (2t) defined above is an entrance law for the semi-group (U) of the 0- 
diffusion is immediate from the definition of the semi-group (UT), but it is not 
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obvious, until after matching with the first description, that (L~) brings the 
trajectories in continuously from zero. Still, it is clear that at most one 
measure fits the second description. We now take A to be defined by the first 
description, and offer a 

Proof that A fits the second description. The only thing about which there is 
really any doubt is whether we have found the right entrance law in the second 
description. But, from the first description, if we take f bounded and con- 
tinuous with compact support contained in (0, oo), and e below the support of 
J; t 

A (fo X,)= j" Po~. (T~ e du)P~ ~(~, f)/s(e) 
0 

= i Po*(T~ e du) pt ~t(a,f/s). 
0 

Letting a--* O, this last integral tends to pt, (0, f /s)=2t(f)  because the fact that 0 
is an entrance boundary point for the ~" diffusion makes (a, t) ~P~t (a, g) jointly 
continuous in (a,t)e[0, oo) 2 for bounded continuous g, and T ~ 0  as a~0,  
Pot a.s. 

These two views of A would suffice for the applications in later sections, 
but it would be a pity to pass on without recording what is surely the most 
beautiful description of A, due to Williams [24] (Sect. II.67). He describes A for 
the case of a BM absorbed at 0 (giving the It6 law for excursions away from 0 
of a reflecting BM) but his description extends immediately to our setting by 
virtue of the first description above and the path decomposition at the maxi- 
mum of Williams [23]. The reader may consult Rogers [17] for details in the 
Brownian case which are readily transferred. Here is 

(3.3) Williams's description of A. (i) The A distribution of M = s u p  X t is con- 
centrated on (0, oo] with 

A(M>y)=l/s(y), 0 < y < ~ .  

(ii) Under A, conditional on M =y,  for 0 < y < o% the maximum is attained 
at an a.s. unique time R, 0 < R < T  o a.s., and the processes 

(Xt, O<t<R) and (Xro_t,O<t<To-R) 

are independent ]'-diffusions started at 0 and stopped when they first hit y. 
(iii) Under A, conditional on (M = oo) (a possibility which can be ignored 

iff s(oo) = oe), the process X is the 1" diffusion started at 0 and run forever. 

(3.4) Remarks and Interpretations. If the 0-diffusion admits an extension after 
time T o which reenters (0, ~),  it is immediate from the first description of A 
that A is some constant multiple of the It6 excursion law for the extension (see 
e.g. Rogers 1-17], paragraph 3), the constant being determined by the norma- 
lisation of local time at 0 for the extended diffusion and the choice of scale 
function s. In this case, the A distribution of T o is a multiple of the L6vy 
measure of the subordinator which is the inverse local time process, whence 

(3.f) A ( 1 - e - ~ r ~  oo, c~>0, 
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where this condition for some c~ is obviously equivalent to the condition for all 
~. (See It6 [-6] for details). Conversely, if (3.f)holds, then from a Poisson point 
process of excursions with characteristic measure A one can make an extension 
of the 0-diffusion after time T o by sticking these excursions together. Thus, (3.1) 
is seen to be the necessary and sufficient condition for the existence of an 
extension after time T O . On the other hand, by starting from the first description 
of A and arguing as in Sect. 4.10 and 6.2 of I t6-McKean [-7], one finds that 

(3.g) A(1 - e -~T~ =l im s(e)-1 [,1 - P~(e-~ T~ 
e ~ 0  

which shows that (3.t) holds and the 0-diffusion admits an extension after T O iff 
0 is an entrance point for the 0-diffusion according to the criteria of Table 1 on 
p. 130 of I t6-McKean [7]. 

If 0 is not an entrance point for the 0-diffusion, one can still make a 
Poisson point process of excursions with characteristic measure A, but the 
excursions cannot be stuck one after another to form a reentering diffusion 
because between every two such excursions in the point process, the total 
length of the excursions which should go in between is a.s. infinite. 

(3.5) Examples .  Consider a Bessel process on [,0, oe) with index v (dimension 
d = 2v + 2), so the generator on (0, oe) agrees with the differential operator 

2 v + l  
� 8 9  -D, 

where D =d/dx .  We assume v = - #  < 0 so that 0 is an exit point, and take the 
0-diffusion to be the Bessel process with this negative index and absorption at 
0. It is well known that s ( x ) = x  2~ serves as a scale function, and that 0 is an 
entrance point iff v > - 1. For  all v < 0, one finds from (3.c) that the "~ diffusion 
is simply a Bessel process with positive index / ~ = - v .  Taking v = - � 8 9  the 0- 
diffusion is ordinary Brownian motion on [,0, oo) with absorption at 0, and the 
]'-diffusion is the Bessel diffusion with index # = +�89 (dimension 3). This is the 
case considered by Williams ([,23], Sect. 3), and one has the interpretation of A 
as the It6 excursion law of reflecting BM. Taking v = -  1 (dimension 0) for the 
0-diffusion, the ]'-diffusion becomes a 4-dimensional Bessel process. There no 
longer exists any reflecting extension of the 0-diffusion. But, starting from a 
p.p.p, of trajectories in C governed by A, if, instead of vainly attempting to 
stick these trajectories one after the other, one squares the trajectories and 
adds them, one obtains something interesting, as will be seen in the next 
section. 

4. The Levy-Ito Representation of BESQ~ 

Following Shiga and Watanabe [,19], we consider a family of diffusions on 
[-0, co) {(Q~, x_>0), d>0} indexed by a parameter d, and satisfying the additivity 
property 

(4.a) o d ~ ,oY - t~d+J" d, f >_ O. 
.'.'x2.x W--" ".~y - -  ~ . x  + y , x ,  y ,  _ _  
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Here Qd x is the law on C = C([0, co), [0, co)) of the d-diffusion starting at x, and 
for two distributions P and Q on C, P |  is the law of the sum of two 
independent random processes, respectively P and Q distributed. According to 
Theorem 1.2 of [19], a family of diffusions admits this additivity property iff the 
d-diffusion governed by (Q~, x > 0) has generator of the form 

(4.b) 2otxD2+(2fix+Td)D, (D =  d )  

acting on twice differentiable functions on (0, zo) with compact support, where 
:~, fi, 7 are real valued constants, ~, 7 > 0. 

By a trivial rescaling of x and d, the study of such a family is reduced to 
the case ~ =?  = 1, which will be assumed henceforth. [We ignore the determi- 
nistic case c~=0, and note that the case 7 =0  appears within the case ? = 1 at 
d = 0.] The law of the diffusion obtained in this case with generator 

(4.b') 2xD 2 + (2fix + d)D 

starting at the point x will be denoted ~Q~. We note that ~Q~ is the law of the 

square of a diffusion started at 1/7 with generator 

2 d - l \  
(4.c) �89 f iX+~x  )D. 

For fi=O this is the usual Bessel process on [0, co) with dimension parameter 
d>=O. If d is an integer, for arbitrary fi this is the radial part of a d-dimensional 
Ornstein-Uhlenbeck process with generator 

(4.d) �89 ~ + f i  xi o , 
i ~  1 " i ~  1 O X i  

which is a process in which the d co-ordinates perform independent one- 
dimensional Ornstein-Uhlenbeck motions governed by the generator 

(4.e) 1Da + fixD. 

For f i=0  the process generated by (4.e) is just Brownian motion, while f i<0  
corresponds to the usual O - U  process with a restoring drift toward 0 of fi 
times the distance from 0. In the case f i>0  this one dimensional motion is 
transient with trajectories going off either to + oo or - o0 at an exponential rate. 

We focus now on the family of diffusions (eQdx, x <0, d >0) with generator 
(4.b), where fi is a fixed real number. We note that, regardless of the value of fl, 
the formula (4.b) for the generator implies that the boundary point 0 is 

exit not entrance for d = 0 

entrance and exit for 0 < d < 2 

entrance not exit for d > 2. 

Thus for d = 0  or d>2,  the laws ~Q~ are completely specified by the generator 
(4.b) above, but for 0 < d < 2 it must be stipulated that 0 is an instantaneously 
reflecting boundary. 
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Our object here is to firstly provide a LOvy-Hin~in formula in C for the 
infinitely divisible laws ~Q~, and secondly to show that for each fixed /~ one 
can construct a C valued process with nice sample paths which has these laws 
as its marginals and independent increments in x and d. It would certainly be 
possible to do this by a double application of a general theorem asserting the 
existence of a L0vy-Hin~in formula and a nice process corresponding to any 
suitably regular infinitely divisible law on C. We shall encounter such laws in 
our study of bridges in the next section, but will not take up here the question of 
just how regular is "suitably regular". Doubtless this is known, but we do not 
know the reference. What interests us most is the specific form of the L0vy 
measures ~M and ~N which appear. 

(4.1) Theorem. Let ~ be a f ixed real number. 

(i) There exist unique measures BM and ~N on C, each with zero mass on the 
trajectory O, such that for every random variable I on C of the form ~ Xdx(dt ) 
for a positive Radon measure # on (0, oo), and every e > 0 :  

(4.t) ~O a e - ~  - exp {(x PM + d ~N)(e-~Z _ i)}. ; . . - , x  - - -  

(ii) PM is the excursion law for the zero dimensional difJusion (~Q~ 
normalised so that its entrance law is given by the formula 

(4.8) ~M(X~ e dx) = dx [Cp (t)] 2 exp [ - e -~t C~(t)x], 

where CB(t ) = (/~/2) cosech//t, /~ > 0 

= 1/2t, fl--0. 

(iii) ~N = ~ ~M, du, 
0 

where ~M u is the ~M distribution of (X(t_,)+, t > 0). 
ye (iv) There exists a C-valued process (x,x>=O,d>O) such that Yx e has law 

t~ d 
Qx, 

(4.h) Y f =  Yx+ Ya, x>O, d>O, 

where Yx = yo, ya= yj, and (Yx, x>O) and (ye, d>O) are independent processes 
with stationary independent increments, each of them having trajectories which 
are increasing and right continuous with left limits in C. 

Moreover, a process (Yf) has these properties iff 

Y~(0)=x, L =  y~ A~, on (0, oo), 
(4.i) ~'--<~ 

y~= y~ ~b on [0, oo), 
b<=d 

for all x>O and d>O a.s., where (A~,v>0) and (Ab, b>0) are two independent 
C-valued Poisson point processes with characteristic measures PM and ~N 
respectively. 
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We shall prove this theorem first in the case fi =0. This will be done in this 
section, in which the superscript fi will also vanish in the notation. The case of 
general fi will then be treated in Sect. 6 by a simple reduction to the case fi =0  
using a transformation of space and time. 

Proof of the Theorem. Taking s(x)=x as the scale function of BESQ ~ it is a 
trivial matter to check from (3.b), (3.e), (3.2), and the formula (25) for the 
transition probabilities of BESQ ~ that one obtains the entrance law (4.g) for 
the excursion law M of BESQ ~ It is now immediate from (2.h) that M and N 
defined by (iii) satisfy (4.1) for # = c ~ ,  ~>0,  t>0 .  The extension of the formula 

n 

(4.f) to a measure /~= ~ aie, with finite support now follows easily from the 

recurrence formula (2.j) and the fact that M is Markov with the BESQ ~ 
semigroup. The uniqueness of M and N is already evident, and the extension 
of (4.1) to general # is an immediate consequence of part (iv), which we now 
proceed to establish. We start by showing that the process (Yd) defined by (4.h) 
by adding the points of independent p.p.p.s with characteristic measures M 
and N has the desired properties. 

It is clear from our finite dimensional form of (4.1) that Y~ has the same 
finite dimensional distributions as Q~, but it must be argued that the trajec- 
tories Yx and ya defined by (4.i) are a.s. continuous for each x > 0  and d>0.  
Once this has been done, it is easy to see that these processes in x and d are in 
fact increasing and right continuous with left limits in C. To see the a.s. 
continuity of Y~, note first that for each t>0,  this function on It, oo) is the 
sum of the restrictions to It, oo) of the continuous functions A~ for O<v<x. 
But one only has to add those A~, with 3~,(s)>0 for some s>t. From the 
definition of M in (ii), one finds that M(X~>0 for some s> t)=M(X~>O) 
- -1 /2 t<  c~, so the number of terms to be added is a Poisson random variable 
with parameter x/2t, hence a.s. finite. Thus Y~ is a.s. continuous on (0, oo), and 
since it has the finite dimensional distributions of Q~, and Y~(0)=x by defi- 
nition, the a.s. continuity of Y~ for each x is established. 

The a.s. continuity of ya for each 'd is more delicate because the formula 

dx 
N(X~dx)=2~xe-~/2t, x > 0  

shows that N(X~>0)=oo,  so for each t > 0  and d > 0  there are a.s. infinitely 
many strictly positive terms in the sum for Ye(t). Still, yd is a.s. uniformly 
continuous on bounded intervals of rationals because it has the finite dimen- 
sional distributions of Q~, and letting !Td be the continuous extension to [0, oo) 
of ya on the rationals, we have 

y d < ~  a.s., 

because ye is a limit from below of continuous functions. Also, for each fixed 
rational s>0,  we have the decomposition: 

Y%+.)= uy(.) + W~(.) 
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where 

O<_b<_d 

vd(')= Ab(s+')l(Ab(s)=O), 
O~b<_d 

and the processes U a and V a are independent. 
A glance at the definition of N reveals that in terms of finite dimensional 

distributions this is a decomposition of the BESQ a process Yoa(S+ "), starting at 
Yoa(S), into the sum of a BESQ ~ process starting at Y~(s) and an independent 
BESQ a process starting at O, in keeping with the additivity property (4.a). But 
the argument used earlier to prove that Yx has continuous paths now shows 
that the BESQ ~ process U~ has continuous paths, whence 

OK yd(s+ . ) -  Ya(s+ .)<= ~d(.), 

where Vs d is the continuous extension to [0, oo) of V a, so ~d is a BESQ d with 
trajectories in C. Now taking s = kin for k = 1, ..., n - i ,  one finds that for 6 > 0, 

(4.j) P [  sup (fe(t)-Y(t))>c~]<P sup P~.(u)>6 . 
O ~ < t - < l  \ k=O (O<=u<l/n 

But another look at the definition of N and the processes ~a shows that the n 
events in the union on the right are independent with equal probability 

Q~( sup X .>3)  
O<u< l/n 

which is less than 

4(d+ 1) 1 
exp/- -L c~2 n2), 

2 

by an obvious reduction to d = l ,  followed by a standard estimate for the 
maximum of one dimensional Brownian motion using the reflection principle. 
Thus the probability on the left of (4.j) is less than 

C z n 

where c=c(6, d) is a constant, and this tends to 0 as n ~ oo. The conclusion is 
that ~ e =  y~ a.s. on [0, 1], hence too on [0, t] for any t>0 ,  proving that ya~ C 
a.s. It is now a trivial matter to verify that the process Y~ in (4.h) has the 
stated properties. To complete the proof of (iv), it only remains to be seen that 
every process Yx d with these properties comes from adding the points of two 
independent C-valued Poisson point processes with characteristic measures M 
and N. But the points are recovered as the jumps of Yx d, these form Poisson 
point processes by a theorem of It6 [-6], and the finite dimensional distri- 
butions force the characteristic measures to be M and N. [] 
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Interpretations with Brownian Motion 

By virtue of the Ray-Knight theorem, much of the structure of the above 
results can be seen embedded in the local times of Brownian paths. Indeed, the 
reader who is familiar with local time and excursion theory will be able to 
rederive virtually everything above from within this framework. Let Po govern 
a reflecting BM on [0, oo), and let l(s, t) be a version of the local time at s > 0  
before time t > 0  chosen in accordance with Trotter's theorem to be Po almost 
surely jointly continuous in (s, t), and normalised as occupation measure. Let 
(~x,x>0) be the right continuous inverse of (l(0, t), t>0), and let (Yx, x>0)  be 
the C-valued process defined by 

YA.)=I(-, ~). 

By the Ray-Knight theorem, Y~ has law Qo, and by the strong Markov 
property of Po and continuity of / ( . ,  .), the process (Y~, x>0)  has independent 
increments and trajectories which are RCLL. We thus obtain a complete 
Brownian local time representation of initial half of the decomposition (4.h). 
Since the jump Ax = Y~ - Y~_ is given by 

~A.) = l(., ~ ) - l ( . ,  ~_), 

the p.p.p. (A~, x>0)  with characteristic measure M may be identified with a 
transformation of the It6 point process of excursions away from 0 of the 
reflecting Brownian motion; Ax is the local time process in the space variable 
of the excursion between times ~ _  and z x. It follows that, if A is the It6 
excursion law of the reflecting BM (for our present normalisation of local time, 
which means that one should take s (x )=2x  in the formulae of Sect. 3), one has 

(4.2) Theorem. M is the A distribution of a A a.e. continuous version of the 
local time process 1(., To). 

The dimension half of the decomposition (4.h) seems to be much less well 
represented in the Brownian local time process, and we can only see fragments 
of the full decomposition with d an even integer. Still, these fragments are 
important clues to the structure of BESQ d processes for arbitrary d, as will be 
seen in the next section. 

The Ray-Knight theorem (R.K.1) gives us a BESQo 2 run up to time 1, and, 
starting at s > 0  instead of 1 gives a BESQ 2 run up to time s. But, to get, in the 
Brownian set-up, a BESQ 2 run forever, you have to reverse time from To, 
which turns the BM 1 into a BES 3. Thus we have the following variant, due to 
Williams ([-243; Theorem 65, p. 38) of the Ray-Knight theorem: 

(4.3) BESQ 2 is the BESS distribution of a continuous version of the local time 
process l(', oo). 

Let Lr=su  p {t:Xt=r},  F~=infXs, so (Lr, r>O ) is the right continuous in- 
s > t  

verse of the continuous increasing process (Ft, t>0). As shown in [14] (see also 
[17]), the BES3o law of ( X - F ,  F) is the same as the BES~ law of (X, �89 l), where 
l ( . )=l( . ,  0) is the local time of X at 0 considered above. Put together with (4.2) 
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and (4.3), this gives an explanation of (4.1) (iii), and one finds that for BES 3, 
one obtains a p.p.p, with expectation measure 2N from the random measure 
which puts mass 1 at each of the countable number of non-zero trajectories 
among l(', L~) - l ( . ,  L~_), r >0. (Since the trajectory (point) indexed by r leaves 
0 at time r if it is not identically zero, the points in the p.p,p, have been listed 
in order of their departure times from zero.p 

5. Bessel Bridges 

Motivated largely by the desire to understand the remarkable product form of 
the conditional Laplace transform (2.m), we explore in this section the additive 
structure of squared Bessel bridges. To see where we are headed, the reader 
should look ahead at Theorem (5.87 after a glance at the definitions below. 

For  d, x, y, t > 0, let Q ~  ~, be the d-dimensional squared Bessel bridge from x 
~oy over time ~. thal is the (2~ conditional distribution of (X~,O<s<t) given 
X~=y, viewed as a probability on C([0, t],[0, ze)), and chosen to be weakly 
continuous in y wherever possible (that is to say for y > 0  if d>0 ,  but only for 
y > 0  if d = 0 :  see the special discussion and definitions for the case d = 0  in ~5.3) 
belowl. Thus Q~Qr governs an inhomogeneous diffusion process with transition 
probabilities which could be written down using (2.i). Since ()~ is the Q ~  law 
of (tX(u/t), u > 0), at a, 1 Q~/t,,,~ u > 0), Q~'2,y is the law of (tX(u/t), which reduces the 
study of the bridges over an arbitrary time interval t to the case t = 1. We write 
simply Q ~  instead of d, 1 Qx~,, and call this the standard d-dimensional squared 
Bessel bridge from x ~oy. 

(5.1) Representations in Terms of Unconditioned Processes. For x, d>0 ,  Q~oo is 
the Q~ distribution of the process 

( u ) ,  0 < u < l .  (5.a/ ( 1 - - H ) 2 X  1 ~  = 

More generally, for d.x .y>O lexcept if d = x - O ,  y > 0  - see (5.c) below), Qx~d ~, 
is the law of the process m (5.a) when X is the square of a d-dimensional Bessel 

process started at ] fx  with drift t y, as defined in [16] following Watanabe 
[21] - see Theorem (5.87 of [16] for a proof. 

(5.2) Reversals. Let /~  be the P distribution of ( X ( 1 - t k  0 <  t <  1). It is easy to 
see that for d > 0 

~d (5.bl Q ~ ,  = Q y ~ .  

We now define QOy as Q ~  for v>0. and then 15.b) will hold for all d,x,y>O. 

(5.3~ The special case d=0.  The case d = 0  differs from the case d > 0  in that 
the bridge 0 Q~oo, which plays a fundamental role in the sequel, is not the weak 
limit as y+0 of the bridges QOy, but rather the elementary conditional proba- 
bility la w of QO given the event (X~ =0), which, from (2.g), has QO probability 
e-X/z > 0. Thus, under o Qx~o, the trajectory hits 0 strictly before time 1 at a 
time T o with distribution 
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( L ~ o ( T o e d t )  x x = d t ~ e x p ~  1 -  , 0 < t < l ,  

and after To, the trajectory stays at 0. 
Because BESQ ~ may be described as BESQ 4 conditioned to hit 0 in the 

sense of Sect. 3, the ( ) ~  conditional law of the process (X~, O<s<t) given 
To=t is *" O~-o, the 4-dimensional bridge from x to 0 over time t. Similarly, 
one finds that 

(5.c) o _ Q.x~y-Qx~., x,y>O, 

so for x > 0  the limit of o Qx~0 Q~y as y~,0 is [under which the paths arrive at 
0 0 at time 1], and not (2x~o [-under which the paths arrive before time 1 in the 

manner made precise above]. 
We note that the law ( ) ~  has no sense as a conditional probability except 

for y =0, when it is the trivial law with mass one on the zero trajectory. This 
entitles us to make the arbitrary definition ( ) o y  *o = (2~.~ o for y > 0, and together 
with the property (5.c), this ensures that the reversal property (5.b) holds 
without exception. 

(SA) First Additivity Property. From the representation (5.a), it is obvious that 
the bridges to zero inherit the additivity properties of the (Q~) family: 

c ( ~ l ' ) d  i ' ) c + d  (5.d) Q~,.~o ' ~ x - O = Z w + ~ o "  

It follows easily that an analogue of Theorem (4.1) obtains for the laws 
e x>__0}, with the measures M and N replaced by M o and N o. Thus Qx~o, d>0 ,  _ 

for a measure/~ on [0, 1], I=~Xd#, 

(5.d') (2~  o exp ( - ~I) = A o (~)x B o (c~) d 

where Ao(c~)=expMo(e-~X-1) and B o is obtained in the same way from N o. 
By time reversal, (5.e) holds also for the 0--~x bridges instead of the x ~ 0  
bridges, the only change on the right side being that Ao(c Q is replaced by Ao(c0, 
the Ao(~ ) for fi, the reversal of # (i.e. the image of/~ under the map t ~ l - t ) .  
More explicit methods for calculating Ao(c 0 and Bo(~ ) will be given later in 
(5.7). 

(5.5) The Ray-Knight-Williams representations for d=0,2 ,4 .  While not logi- 
cally necessary for our eventual proof of the main decomposition theorem of 

d the Q ~ y  bridge, (5.8) below, these representations were the key to our dis- 
covery of that theorem, and they provide striking illustrations of the decompo- 
sition in terms of Brownian local time. Let l~(t) be a bicontinuous version of 
the local time at s before t for a BM (B~, t >0) started at B o = 1, and governed 
by probability/ '1. 

We are only interested in s with 0 < s_< 1. If R and T are two random times 
R<T,  we write 1.(R) for the process l~(R), 0=<s<l,  and I.(R,T) for the process 
l.(T)-l.(R). By the Ray-Knight theorem (R.K.1), for all b<0,  we have 

(5.e) 2 Q~y is the conditional law of l.(Tb) given Io(7~)=x and ll(Tb)=y , where 
Tb= inf {t/B~=b}. 
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Let L I be the last passage time of (B~, t>0)  at 1 before T o. Then 

(5.f) a) 11 (LI) is exponentially distributed with rate 1/2. 
b) QO+~, is the conditional law of l.(L1) given Ii(Lx)=y. 
c) Q ~ o  is the law of l.(L1, To). 
d) the processes I.(L1) and l.(L1, To) are independent. 

Here, a) is quite trivial, c) is a consequence of (5.e), while d) is a consequence 
of the last exit decomposition at L1, and b) is forced by the reversal of the 
additivity property (5.d) in view of c), d) and (5.e) with b = x = 0 .  But, here is a 
more illuminating proof of b) which should put the reader in the right frame of 
mind for further developments: simply put the Ray-Knight presentation of Q0 
as in (4.1) together with the consequence of It6's excursion theory that, con- 
ditional on ll(To)=y, the process of excursions below 1 before 11(7o) has the 
same law as the process of excursions below 1 before ~y=inf{t: l i ( t )=y } 
conditioned on none of these excursions reaching zero, which means con- 
ditioning on lo(ry)=0. (The It6 theory also yields the last exit decomposition 
required for d)). 

Parts c) and d) of (5.f) were stated by Williams in Theorem 4 of [26], 
together with a much deeper decomposition of the process 1.(LI) than that 
provided by a) and b) above. According to Williams, if R is the (a.s. unique) 
time that (Bt, O<t<_L1) attains its minimum value V,, then V is uniformly 
distributed on [0, 1], and conditional on V =v  the processes l.(R) and I.(R, LI) 
are independent with identical law which is the Q2 law of x ( ( . - v ) + ) ,  (see 
Williams [23] for the idea of the proof). Thus, given V=v, the law of lo(L1) is 
the Qo 4 law of X(( . -v)+) ,  where V is uniformly distributed on [0,1], a 
description of the process l.(L1) which is readily seen to be equivalent to the 
description of (5.f) a) and b) above, by virtue of the characterisation of 0 Qy~0 in 
terms of 4-dimensional bridges given in (5.3). Now fix a number b<0,  and 
consider the downcrossings and upcrossings of the interval [0, 1] by the BM B 
started at 1, up to the time T b. Let D > I  be the (random) number of 
downcrossings of the interval, and U = D - 1  the number of upcrossings. We 
declare that, for l<_k<_D, the k-th downcrossing begins at time /~1 a t  the start 
of the k-th excursion away from 1 which reaches 0, and ends at time 7o k, the 
first instant this excursion reaches 0. Similarly, for 1 _<k< U we declare that the 
k-th upcrossing begins at time/}o at the start of the k-th excursion away from 0 
which reaches 1, and ends at time 7~ ~ when this excursion first reaches 1. By 
convention, T ~ = 0, and L~ is the last time at zero before the first hit of b < 0. 
Thus 

O-= Zi~ < gll < Zol < L1 o < Tll < L~ < To2 < . .. 
first first second 

downcrossing upcrossing downcrossing 

< f i <  T? <r o 
last la's 0 

downcrossing before T~ 

where the superscripts indicate the number of the crossing, the subscripts 
indicate the position of the motion at the time in question, and crossings start 
at times L and end at times T 
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D=2 

r~_~ L11 T11n .... L2~ 

1 1 2 2 
, o Lo 

We now have a decomposition of the local time process into four components 

To , 
k k = l  

where the first component represents the contribution of excursions away from 
zero which fail to reach 1, the second component corresponds to excursions 
away from 1 which fail to reach 0, the third component comes from the first 
downcrossing, the fourth component from subsequent upcrossings and 
downcrossings. Now the reader who is familiar with excursion theory will quickly 
see, using (5.f), that conditional on lo(Tb)=x and lj (Tb)=y (when l.(Tb) has law 
(2~y by (5.e)), the four component processes on the right are mutually in- 
dependent, with respective laws: 

0 0 ~ in', t'~4n Q~-o, Q2 o and Qo~y, ~ P~,yt ) V~o~o 
n = O  

where the probability distribution (p~,y(n)) on N appearing in the final mixture 
is the conditional distribution of the number of upcrossings U given lo(Tb)=x and 
ll(Tb)=y. An application of (5.j) below reveals that p~,y is in fact the Bessel 

distribution with parameters v=0  and z = l / ~ -  , to be defined in the next 
paragraph (5.6). It was this decomposition of Q 2 y  into independent com- 
ponents which led us to the general decomposition of (2~y in Theorem (5.8) 
below. The reader will find that the case d = 0 of this Theorem (and part of the 
case d=4)  can be interpreted in terms of Brownian local time almost exactly 
as above, but we do not know of any such interpretations for other d's. 

(5.6) The Bessel distribution on N = {0, 1, 2,...} 

Recall that the modified Bessel function Iv(z ) may be defined by the series 

oo 
(5.h) L(z)=~!z~ ~ V (z/2)2" 

~2 J .=oZ~ n ! F ( v + n + l ) '  

where the index v is a fixed real number. 
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(See Watson [22], p. 77). For v real, z>0,  we define the Bessel (v,z) 
distribution on N, b .... to be the probability obtained by normalising the terms 
of this series by their sum. That is 

(5.i) b~,: (n) = (z/2) 2" + ~/n ! r(n + v + i) g (z). 

We define b~, 0 to achieve continuity at z=0 :  by, o is the unit mass at zero. The 
appearance of this family of distributions here is a consequence of the following 
elementary fact (cf. Feller [33, p. 58, example II.7(a)) 

(5.j) For c~, 2, y > O, v > - 1, z -  2 1 / ~ ,  the Bessel (v, z) distribution is the con- 
ditional distribution of U given 

X . + X  I + X  2 + . . . + X  v = y  

when X .  has gamma (v+ l , e )  distribution, X1 ,X2 , . . .  have gamma (1, c~) (i.e. 
exponential (~))  distribution, U has Poisson (2) distribution, and U, 
X . , X ~ , X2, ... are mutually independent. 

Recall that the gamma (m, ~) law has density at y equal to 

(5.k) ~mym-le-~Y/F(m), 0 < y < o o .  

From formulae (5.h) and (5.i), the generating function of the Bessel (v,z) 
distribution is: 

(5.1) ~ b~,z(n ) x " - x  w2 I~(z]/x)/I,(z). 
n=O 

We note also that, for all v and z, this distribution is not infinitely divisible. 
Indeed, if p(n) is an infinitely divisible distribution on the positive integers, it is 
easy to see, by decomposing jumps of the associated compound Poisson 
process according to whether or not they are jumps of size one, that: 

p(nl>e-m#~/n!, n=  1,2, ... 

where m, the total mass of the L6vy measure, must be finite, and #, the mass of 
the L6vy measure at 1, must be strictly positive if p(1)>0. Now. the Bessel Iv. z~ 
law obviously fails to have this property. In view of the next theorem, this 
suggests, though it does not prove, that the law Q ~ y  is not infinitely divisible 
when both x and y are non-zero. 

Recall that P | Q is the law of the sum of independent P and Q distributed 
processes, and that Q O  is, by convention, the reversal of Q~o.  

(5.8) Theorem. For all d, x, y >= O, 

Qx~y 0 0 b~.( )9-o-0 
n=O 

where v=�89  z = ] / ~ ,  and the last term on the right is the mixture of the 
laws 4n QO~0, n=0,  1, ... with weights given by the Bessel (v, z) law. 

Before the proof, we state the following corollary, which results from (5.1): 
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(5.9) Corollary. Let I = y X d g  where # is a measure on FO, 1], let Ao(c 0 and 
Bo(~) be as in (5.e), and let Ao(~) be the Ao(c~) for the image of p under the map: 
s -~ l - s. Then 

Q ~ , ( e - ~ ) =  Ao(a)C, to(CO' Bo(cQ2 I~ ( ] /~  Bo(cC)2)/I~,(~xy) 

where v =�89 - i. 

Proof of Theorem (5.8). Note first that if xy=O then both the Bessel mixture 
and one o r  the other  of 0 Qx~0 and QO , are trivial, and, after a reversal if 
necessary, the theorem then reduces to the first additivity property (5.4). As- 
sume therefore that x,y>O. Let Yd=(Yd(s), 0 < s < l )  be a process with law Q~ 
constructed as in Theorem (4.1) as: 

y d=yO+y~,  

where (y~o, v>0)  has independent increments with L6vy measure M, and Y0 ~ is 
independent with law Q~, where all laws are restricted to [0, 1] in the obvious 
way. Then we have the further independent decomposition 

(5.m) y d = yo ~ + yo+ + yo d 

where 

(5.n) yo+ =Z~ + Z2 +... + Z v 

is the sum of the jumps of the process (y~o, O<_v<_x) which are in the set 
(X: >0) of trajectories that are strictly positive at time 1, there being an a.s. 
finite number U of these jumps which is Poisson distributed with parameter 
x/2 by (4.g), while Y~ o is the sum of the infinite number of jumps which are 
zero at time 1. Since Y~ o has law 0 Q ~ o ,  by the description of 0 Q ~ o  in terms of 
M o in (5.4), the first term of the decomposition (5.8) has appeared already 
without yet conditioning on Yf(1)=y. It thus only remains to be seen that 

(5.o) the law of Yx~ + Yo a on [0, 1] given 

Y~ Yoe(1)=y is no @r~d ~ n ~o~,. ~o~o |  b~,:()Qo~o.4-~ 
n = O  

Now, conditional on U = n > 0 ,  the trajectories ZI ,  . . . ,Z  n are independent with 
common distribution M conditional on X 1 >0, and if we condition further on 
Zi(1)=z i for l<_i<_n, we find from the note below (3.2) and the fact that 
BESQ 4 is BESQ ~ conditioned to never hit zero that the processes Zi have laws 

4- _ _  0 Qo~z,- | Q~O~z i 

by the reversal of the additivity property (5.d) and the definition of Q~ v as 
(~~ Thus, by another application Of this additivity in reverse, 

(5.p) the law of yO+, given U = n and yO+ (1)= z, is r~o ~ r~4n ".~O~z ,,a,, "~O~O.  

Similarly, 

(5.q) the law of Y~, given U = n  and Yoa(1)=w, is d o 
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Since Yo a is independent of U and Z1,..., Zv, we find that 

(5.r) the law of Y~ + Yo a given Y~ Yoa(1)=y and U=n is 

| eO. 5o. 
Finally, to obtain (5.o) and complete the proof, it thus suffices to see that the 
conditional law of U given Y~ Yoa(1)=y is b .... and this is a consequence 

of (5.j), since Y0a(1) has a gamma ~, ~ law, independently of yo+ (1) and U, U 

is Poisson with parameter x/2, and, given U=n, Y~ is the sum of n 
independent gamma (1, �89 variables by (5.n) and (5.j). 

(5.7) Calculating Ao(a) and Bo(~). Making some slight (but obvious) change in 
the notations used in Corollary (5.9), we may write: 

Q~oy(e-Z.)=Ao(lO~do(#)YBo(#)2 I~(]fx-yy Bo (#)2) 

for any positive and finite (for simplicity) measure # on [0, 1]. Using now the 
explicit form of the transition densities of BESQa: 

�9 

I (Y)~/Zexp_(X+Y ~ 
(2.i) qa(t'x'Y)--~ \ 2t ]I~ , 

d 
where v = ~ -  1, we get: 

A x 

~ t  , = ~ ~  exp(-2)~dyy~/Zexp 

where Go(#) = 1 + 2 Co(#) , and Co(#) = - l o g  Ao(#). We define t = Go(p)- 1, and 
I/-ffX/X ~ 

x' by the formula' ~ = ] / x S o 2 ( # ) .  From the fact that" ~qd(t,x,y)dy=l,, we 
obtain: t 

d I 1 Qx(e- ") = 2~z~-A0 (#)XBo(#) 2 exp ( -x/2)(2t)(x )~/2 exp (x'/2t) 

=exp ( - 2  Go(#))Bo(#)a(Go(l#))a/2 exp (2 B~ 
J 

On the other hand, we noted, in (2.d), that there exist A(#) and B(#) such that: 
Q~ (e- ~u) = A (#)x B (#)d. 

Identifying the coefficients of x and d in these two expressions for Q~(e-Z,), 
we obtain, after dropping the notation #: 

Bo (5.s) 2 C = G o - ~ -  ~ 
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and: 

(5.t) B = Bo/(Go) 1/2. 

We write (5.s) and (5.t) in the more convenient form: 

(5.t') do=B~/BZ; (5.s') 2 C G o = - d o G o - B  4. 

Of course, there are duals to these two relations, when replacing # by ft. In 
particular, one gets: Go=/~2/B a. However, since ( 2 ~ o = ( ~ 0 ,  the identity: 
B0 --/~o follows. 

Now, if we denote: 2 = 2 C / B  2, and a =  1/B21~ z, (5.s') transforms into: 

)~B 2 =B4(a - 1), 

finally yielding: 

B~=2/ (a-1) ,  and 1+2Co=2C(77~_1  ) (5.u) 

(remark that, as a by-product of (5.u), we get: ).=s 
These results are summed up in the following 

(5.10) Proposition. Let # be a positive finite measure on [0, 1], and fi its image 
under the time reversal: t -+ (1 - t). 

Define the constants C and B through the equality: 

Q~(e-I*') = exp ( - x C). B d, 

and their duals C and B associated with ft. 
Put 2 = 2 C / B  2, and a = I / B Z B  2. Then, 2 = s  and: 

(5.u) B2=2/ (a -1 ) ;  1 +2C0  = 2 C  ( ~ - ~ ) ,  

where the constants B o and C O are defined through: 

Qe ~ . -  I, ~ _ e - xC~ . Bdo . 
x ~ O \  ~ ] - -  

b 2 
As an example, we take # (= f i )=  2-dx (on N[0, 1]). Then, from formula 

(2.k), one gets: B=(chb) ~ and C=b/2  coth b, which yield, using (5.u): 

B2=b/(shb), and G o = l + 2 C o = b c o t h b ,  

in agreement with formula (2.m). 

(5.8) More remarks about the Bessel bridges. (i) For integer d, the squared 
Bessel bridges are, of course, the squares of the radial parts of d-dimensional 
Brownian bridges. In particular, for d = 1, Qo~ o is the law of the square of the 
standard one-dimensional Brownian bridge - see e.g. Billingsley ([1], p. 65). As 
noted by Williams [24], the bridge Q3 o is the law of the square of the 
standard Brownian excursion of I t6-McKean ([7], p. 79). In terms of the It6 
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excursion law A for reflecting Brownian motion described in Sect. 3, this is to 
say that A conditional on (T0=t) is the 3,t Qo~0 bridge. More generally, if A is 
the excursion law of BESQ 2 " (a>0), then A conditional on T o = t  is the n2+a,~ k ; 0 ~ 0  
bridge. 

(ii) Fix x, y>0 .  Then, from formula (2.c), the probabilities (Qx-~r, d>2)  are 
mutually absolutely continuous, and the same formula enables us to obtain an 
expression for the joint Laplace transform, under 

1 

Q ~ y  of I u and C l - ~ d s / X  ~. 
0 

Indeed, one gets, denoting 5 = 2 - 1 :  

2 x ~ y 2 I~(zBo(:~#)2) 
Qa~y(exp { - ~ I  u - (v  /2) C1})=Ao(~ #) Ao(ct#) Bo(C,.#) "" Io(z) 

where z = l / x T ,  and .~=(V2+62) 1/2. 
(iii) From (5.1), one easily obtains a decomposition - similar to that pro- 

duced in Theorem (5.8) for d Q ~ y  - of the distribution yQa x of the square of the 

d-dimensional Bessel process, started at ] ~ ,  with drift l ~ .  

6. Ornstein-Uhlenbeck Processes 

Let ~ d ( Qx, x => 0) govern the diffusion with generator 

(6.a) 2xD 2 + (2fix + d)D, 

where fi is real, d => 0. 
There are two methods for reducing the study of this family of diffusions to 

the case fl = 0 of BESQa: transformation of space-time and change of law. 

(6.1) Transformation of space-time. For all real fl:#0, x_>0, d>0,  ~Q~ is the Q~ 
law of the process: 

(1 - e -  2fit t 
(6.b) e2~*X \ 2fi ]' 

as well as the d Q2t~lx law of the process: 
e 2  fl t 

(6.b') - -  X(le -2~*- lJ). 
21l~l 

Proof. For d =  1, (6.b) follows at once from the resolution of the O-U (stochas- 
tic) differential equation: 

dU~=dSt+flUfl t ;  Uo =I /x ,  

where (B,) is a real valued BM o. This yields: 

( ' ) VT=e ' e- SdB, , 
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from which (6.b) is deduced, using time-substitution. (6.b') is then deduced 
using a second time-rescaling. 

The result for general d > 0  now ensues from the additivity property and 
continuity of the laws eQ~, as in the proof of Theorem (3.1) of Shiga and 
Watanabe ([19]). 

From the formula for the transition probabilities of BESQa: 

qe (t, x, y) = ~- exp I_ 2 t J I,, , 

one obtains immediately from (6.1) the corresponding formula for fi=#0: 
 ee'+ye-e'] (fil/TY] 

(6.c) ~qa(t,x,y)=2s~fit (Y)W2expfi[(1-v)t-~ ~shfitt JI~\shflt ]" 

We now complete, for fi 4= 0, the" 

(6.2) Proof of Theorem (4.1). Let T e now denote the transformation of the 
trajectory space C defined by 

e2 fi~ 
e 2fl, 1[), reoo(t)=  o(I 

d so (6.1) just says that the O21ekx law of T e is eOe x. Let M and N be as in (4.1) for 
fi=0, let Y• be defined as in (4.h) using (45), except that (A~, v>0)  is now a 
p.p.p, with characteristic measure 21fi] M, but ( Ab, b>0)  admits, as before, the 
characteristic measure N. Then Y~ has law Q~lr and we find that 

eYd= re o Yd= Z reoaL,+ E reo A', 
v<=x a<d 

where ~u has the same regularity properties as Y~. It follows that (4.1) (iv) and 
(i) hold with ~M, the 21filM distribution of Tp, and ~N the N distribution of T~, 
and finally parts (ii) and (iii) are easily checked. 

(6.3) Change of law. Let ~ = ~ ( X ,  O<s<t). Then 

d~Q~ [X~-x-dt] o X~ds on ~ .  dO~ =exp ~ - 2 - o  

Proof It6's formula tells us that, for any real fl 

/-fl clef {~ /~2 i } e~= exp [ X , - x - d t ] - ~  o X ds 

is a local Q~ martingale. For fi<0, (L{) is uniformly bounded on compacts of 
[0, ac), and therefore, is a martingale. This last assertion is equally verified, for 

Qx (E,) = 1, fi ~ 0, since one easily checks, as an application of formula (2.k), that a 
for any t >_ 0. 

Now, (6.3) follows as a routine application of the Cameron-Martin-Gir- 
sanov theorem. [] 
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Using the fact that the density in (6.3) is the exponential of an (explicit) affine 
functional of X, the reader will easily verify the following 

(6.4) Corollary. 

dM - dN - e x p  ~ X , - 2 I  3 X~ds on ~,~. 

We note also that formula (2.m) is an immediate consequence of (6.c) and 
(6.3), though this derivation hides the significance of each factor as brought out 
by the deeper structure of the Bessel bridges in Sect. 5. This structure in turn 
extends easily to the O-U case by the change of law formula (6.3). Indeed, 
from (6.3), one gets: 

exp \ - ~ -  0 
( 6 . d )  ' 0  d'' 

Q ~ .  e x p - ~ -  Xsds 

where ~0 d't denotes the bridge for (X,, O<u<t) obtained by conditioning 'Qa x x . ~ X ~  y 

by (X~=y), and the denominator is given explicitly by formula (2.m). From 
(6.d), one deduces that Pod't~x-y is the law of tX('/t) under ,~g)d~x/~.y/~, where we 
write ~ a ~O e, Qx-~. for ~ . , , .  

Finally, (6.d) also implies that Theorem (5.8) and Corollary (5.9) hold for 
/~ d d Qx_y instead of the only change being that z = ] / T y  is modified into Qx~y~ 

2-- 
shp 
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