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Summary. Let (S;) be a lattice r a n d o m  walk, i.e. S j = X ,  + . . . + X ; ,  where 
X ~ , X  2 ....  are independent  r a n d o m  variables with values in the integer 

n--1 

lattice • and c o m m o n  distr ibution F, and let L,(co, k)= ~ Z{k~(Sj(cO)), the 
j=0 

local time of the r a n d o m  walk at k before time n. Suppose E X  1 = 0  and F is 
in the domain  of at t ract ion of a stable law G of index :~ > 1, i.e. there exists a 
sequence a(n) (necessarily of the form n ~/~ l(n), where 1 is slowly varying) such 

, , c O O  
that  Sn/a(n)--*G. Define gntc~,u)=--L~(o),[uc(n)l) ,  where c(n)=a(n/log 

n 
log n) and Ix]  =grea tes t  integer N x. Then we identify the limit set of  
(gn(e), "): n > l }  almost  surely with a n o n r a n d o m  set in terms of the I-  
functional of Donsker  and Varadhan.  The limit set is the one that 
Donsker  and Varadhan  obtain for the corresponding problem for a stable 
process. Several corollaries are then derived from this invariance principle 
which describe the asymptot ic  behavior  of L,(co, .) as n--* oo. 

1. Introduction 

Let X1, X 2 . . . .  be real-valued independent  identically distributed r a n d o m  vari- 
ables on a probabil i ty space (f2, ~ ,  P) with a c o m m o n  distribution function F. 
Let 

S n = X I + . . . + X , ,  n ~ l ,  S o = 0 .  

We assume F to be in the domain  of at t ract ion of a stable law G of index 
~ ,0<c~<2 ,  which has a strictly positive density on IR and satisfies the scaling 
property,  i.e., if y(t), t >0, is the stable process with s tat ionary and independent  
increments and y(1) has distr ibution G then c-I/=y(ct), t > O, has the same finite 
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dimensional distributions as y(t), t>O. If c~> 1 we assume EX 1 =0. Under these 
conditions there exists a function 

a(t)=tl/~l(t), t>0 ,  

where l is a slowly varying function near o% such that 

(1.1) 

Sn 
a(n) ~G (1.2) 

in the sense of weak convergence of the corresponding measures. 
We need to introduce some more notation to describe our results. Let 

M = {#: # is a subprobability measure on IR}. 

M is given the topology of vague convergence, i.e. # n ~#  in M means 
Sfd#,-- ,Sfd# for f continuous with compact support. For  #~M the /-func- 
tional of Donsker and Varadhan [1] corresponding to the semigroup generated 
by G is given by 

I (#)= - i n f  S {~.u / (x)d#(x), (1.3) 
uffO// \ U  ! 

where ~/ denotes the class of strictly positive C ~ functions on ~ which are 
constant outside of a compact interval (which depends on the function), and L 
denotes the infinitesimal generator of the Markov semigroup generated by G. If 
#~M and # has a density f on IR (with respect to Lebesgue measure) then I( f )  
will denote I(#). This functional plays a crucial role in the probability estimates 
and helps in the evaluation of the limit constants. Now define 

and 

 :{   0 u.  o m,ycont nuouso . 
= { f ~ 4 :  I(f)<= 1}. 

(1.4) 

(1.5) 

Assume now that the random walk takes values in the integer lattice 7Z and 
c~>1. In this c a s e  E X  1 exists and equals zero by our assumption, so the 
random walk is recurrent. Let 

r ,={x~TZ:P[S=x]>O for some n > l} .  

We assume without loss of generality that X=7Z; this amounts to relabeling 
the state space [-9]. 

The local time at k~TZ before time n is defined to be the number of visits to 
k before time n, i.e. 

n--1 

L,(co, k)= ~ Z{k}(Sj(co)), ca~f2, (1.6 3 
j=0 

where ZA denotes the indicator of the set A. We also need to introduce 

c(n)=a(n/log log n), n>e, (1.7) 
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and for o ~ 2  

g,,(co, u)= c(n) L,(co, [-uc(n)]), uelR. (1.8) 
r/ 

Here (and later) if z~IR then [z] denotes the greatest integer less than or equal 
to z. 

We prove an invariance principle (Theorem 3.5) which says that the limit 
points of {gn(co,.): n > l } ,  in the sense of uniform convergence on compacts, 
almost surely equals the set N. The main tools involved in the proof  are some 
techniques used in [1], some of the main results of [4], and Theorem 2 of [5]. 
The results in [5] deal with the local time of a recurrent lattice random walk 
in a more general situation where F need not be attracted to a limit (stable) 
law; these results in turn depend on some estimates obtained in [3]. In the 
latter more general situation we of course get less precise results. 

Some preliminary results are given in Sect. 2 which are derived under the 
sole assumption (1.2) with G having a strictly positive density and satisfying the 
scaling property. Section 3 contains the main results. Theorem 3.1 is a refine- 
ment of a result in [-4]; we need it to prove the invariance principle (Theo- 
rem 3.5). 

Theorems 3.6 and 3.7 are corollaries of Theorem 3.5 which we shall de- 
scribe now in a special case. Let G be symmetric with characteristic function 
~%(t)=e -ltl~ if 1 < ~ < 2 ,  and ~0G(t)=e -t2/a when ~ = 2 ;  then for k~Z 

cOO c(n) 
lim sup ~ -  Ln(co, k) =l i ra  sup - -  max L,,(co, m) = d~ 

n n 1l meZ 

a.s., where d~ = F(1/~) F(1 - 1/~)/(rc(c~ - 1) 1 - 1/~) if 1 < c~ < 2, and d a = 1/2. If l(t) =_ 1 
in (1.1), then c(n)/n-=nl/~-l(loglogn) -1/~, so for ~ = 2  we have in th~s case c(n)/n 
= (n log log n) -1/2. This result was obtained by Kesten [-6] for c~=2. For  some 
related results see also [8], where the case of a simple random walk is 
considered and the main tool used is the Skorohod embedding. The special 
case of Theorem 3.7 states that for - oo < a < b < oo, j a positive integer, 

c ( n ) J -  1 b 
lim sup n~ ~ L~(co, k) = sup ~fi(t)dr, 

n actn) <= k <= bc(n) f ~  a 

a.s.; the limit constant is positive and finite. 
We would like to note here that a weak invariance principle for the local 

time of a recurrent lattice random walk is established in [7] via the Skorohod 
weak invariance principle. 

2. Some Preliminary Results 

For  the results of this section we assume only that F satisfies (1.2) and G 
satisfies the scaling property and has a strictly positive density on R.  We do 
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not assume that F is lattice. These results are analogues of results in [1], w 
where local times of stable processes are considered. 

Let T~ and So, x e N ,  0>0,  be transformations of the real line given by 

T~(y) = x + y 

and 
So(y)=O1/~y, 

where c~ is the index of G. If peM,  we define p o e M  by 

# o = O p S o  1 , 0 < 0 # ( N ) <  1. (2.1) 

The /-functional on M is defined in (1.3). For  later reference we observe 
that I is translation invariant, i.e. I (# )=I (#T~  -1) for #eM.  Furthermore, the 
scaling property of G is inherited by I in the following form: if # e M  and G has 
index ~, then for 0 > 0 

i (OpSo  l) = Oi(#So 1) = I(#). 

The translation invariance of I implies the translation invariance of the set 
defined in (1.5) in the sense that i f f  is in the set, so is the function f ~ ( . ) = f ( .  
+x), x~lR. 

For  coe~2, x e N ,  and A a Borel subset of N we write 

- x  1 n - 1  j_~zA_v [ sj(•)\ 
L.(co, A)= n ~x + c - ~ - )  ' (2.2) 

and if x = 0  we will simply drop the superscript x. Thus for each ~oc~2, L~(co, ") 
is a probability measure on IR. For  K > 0  and k e 7 l  define 

Ik, . = [(-- g + k - 1) c(n), (K + k + 1) c(n)] 
and 

Tk(") =inf{j > 0: Sj~Ik,~}, 
= 0% if the above set is empty. (2.3) 

We now prove four lemmas which culminate in Lemma 2.4. This in turn is 
used in the proof of Theorem 3.1 which is needed in the proof of the in- 
variance principle. 

Lemma 2.1. With lk, , and Tk (n) defined as above, we have 

~ V[Tk(" )<n]=O(log logn) ,  as n ~ .  
k~Z 

Proof  For given K, co, j, and n, Sj(oo) can belong to at most 2 K + 3  intervals 
Ik,,,. Therefore we have 

2n --1 

(2K+3)2n_-> ~ ~ ZE~:s~(o~>~,.l(co) 
keZ j = 0  

2n 1 

k 
X[~: sj(o~)exk, ~] (co). 

j= T~)(~) 
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Now taking expectations and using the Markov property of the random walk 
we get 

2 n - 1  

( 2 K + 3 ) 2 n > ~  ~ P[T~")=p] ~ P[SFIk.,ITk(")=p] 
k p = O  j = p  

2n  - - p - -  1 

> ~  ~ P[Zk(~)=p~ inf ~ P[Sj-t-x~Ik,~] 
k p = O  XElk,  n j = 0  

n - 1  

>~P[T~)<n] inf ~ P[Sj+X~Ik,~] 
k x e l k ,  ~ j = 0 

> inf ~ P{S~[-zc(n),(2K+2-z)c(n)]}~P[T~")<n] 
0 < ~ z - < 2 K + 2  j~Fn k 

where F,= [n/(21oglogn), n/loglogn]. Since G has strictly positive density, for 
j~F, it is clear that 

inf P{S~s[-zc(n), (2K+2-z)c(n)]}>c>O. 
0 _ < z ~ < 2 K + 2  

Therefore ~ P[Tk (") <h i  =O(log log n) and the lemma is proved. 
k 

For A c M ,  let 

c(~4) = { v e M :  ~, = (/~T i % = Or 1So 1 

for s o m e / ~ A ,  some x, and some 0 < 0 <  oo}. (2.4) 

Lemma 2.2. If ZmM then given e>0  there exists a vague neighborhood N of Z 
such that 

inf I(/~) > 1(2) - e. (2.5) 
~ C ( N )  

Proof. By the lower semicontinuity of I (see [1]) there exists a vague neigh- 
borhood N of 2 such that 

I(/~) > 1(2) - e, flsN. (2.6) 

Let v denote the left side in (2.5). Then there exist 0,, x, and /? , eN such that 

lim I(O, fi, T~ l S~,~l)=v. 
tl ~ (30 

By the scaling property of 1 we have I(O, fl, Tx~lSol)=l(fl, Tx~l), and since 1 is 
translation invariant this last quantity equals I(fl,). Therefore by (2.6) 

v = lira I (/3,) > 1(2) - e. 
n 

If V c M ,  let Vx={flTx-l: fleV} and let Dv= ~ Vx. 
x 

Lemma 2.3. Let 2eM and e>0  be given. 7hen there exists a neighborhood V of 
2 such that 

1 
limsup ~ n  log P[L,~Dv] < - 1(2) + ~, (2.7) 

where L, is defined in (2.2). 
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Proof If 2(IR)=0 then I(2)=0 and there is nothing to prove, so let 2(N)=a>0.  
Let N be a neighborhood of 2 such that 

inf I(fl) > 1(2)-  e, (2.8) 
,SeC(N) 

where C(N) is defined by (2.4). Such a neighborhood exists by Lemma 2.2. 
Then we can find 

W={fi: I~f~dfl-Sf~d2[<26, i=1, ...,r} 

where ~<a/8 and the f/ are continuous functions with supports in a compact 
interval [ -K,K]  (neighborhoods such as W form a base for the vague to- 
pology) such that 17V c N and without loss of generality we may assume that 

Let 
0 < f ~ < l ,  SfldR>_3a/4. 

V= (fl" [ S f~d fl-  ~ f~d2[ < 3, i=1, ...,r}. 

We will show that (2.7) is satisfied by this V. We have 

and 

(2.9) 

(2.10) 

P[L, eOv]< Y P[L,~ U v~], (2.11) 
keZ Ix-kl-<_-~ 

P[L,s U V,,] 
l~-kI<=�89 

=P{l,-k~_-<~[! i~=i~i(--X+c@n)) -yf~d2 < ~ , / = 1  .... , r ]}.  (2.12) 

Let Tk(n) be defined as in (2.3). Then since the fi have support in [-K,K], 
Tk(") > l implies 

( - x + - ~ , ] = 0 ,  O<j<l, Ix-kl<�89 l<_i<_r. (2.13) 
\ ctn) l 

Therefore, if Tk(")> n (1--2) and fx-kJ =<�89 then 

n-1 (_x_b Sj]  <1  ( n - l - n ( 1 - 2 ) + l )  
! j~=of~ \ c(n)]l=n 

a 

2' 
(2.14) 

where 0__<f1<1 is used. Since (~<a/8, by (2.9) and (2.14) the event in (2.12) 

cannot occur if 7~(n)=> n ( 1 - 2 ) .  Therefore 
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E,(1- ~7)] 

e[L,e U V~-l<= ~. P{ U ,[L,sv~3~[T} ")=l]} 
Ix-kl_-<-~ l=O Ix-kL<~ 

~ll .- lf ,  l z sJ x -S~a~  <a, 
- ~ ~ l < i < r  = g  x ,  ,=, = - - ,  

Z E  J 'k ,  n 

[x-kl<=~, T~")=l, Sl=z], (2.15) s o m e  

where the summat ion  on l is for the same values as above and S~=Xz+ ~ + . . .  
+ X~. Now by the independence of S~, 1 < r < l, and Sj the last quant i ty  equals 

2 P[T~"=I,S,=z? 
1 : e l k , ~  

t "P fi - x +  - ~ f i d 2  < & l ~ < i < r ,  some l x - k ]  <�89 . 
~= c ( n ) !  - = 

(2.16) 

if Ix - k l < �89 and z e Ik,,, then - x + c ~  e [ - K - 3, K + 3]. Therefore  

e[L,e U Vx]_~Z Z P[Tkt')=l,S,=z]P,,, (2.17) 
I x - k l  <-~ t =dk,,~ 

where 

pn = u+ -Sf~d)~ <5, l <_i<_r, max P n j= - -  
o_<,_< [,,(1-})1 

some u~[-K-3, K + 3]]. (2.18) 

Summing on z first, then on l in (2.17) gives 

P[L,~Ix_~ Vx]<P,P{T~')<[n(1-2)]}" (2,19) 

N o w  summing on ke2g and using L e m m a  2.1 we get 

P [ L , e D v ]  <p,q,, (2.20) 

where q,=O(log logn). It follows that  

1 1 
l imsup  log log~  log P [L, eDv] < l imsup log log n logp, .  (2.21) 

Let  ? denote  the right side in (2.21). Then  there exist sequences of non-negat ive 

integers(ns) and(ls),l~<[n~(1-2)],suchthatns~oQ and 
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limloglog--~ logP E f [ u +  S, ~ 

l <_i<r, some u ~ [ - K - ~ , K  + ~]]-=7. (2.22) 

Along some subsequence (again denoted by ns) we have 

~s - -  ls a 
ns '0~ 2 <  0~ < 1. (2.23) 

This implies that c(ns-l~)/c(n~)~O~/~ as s--,c~. Since the fi are continuous with 
compact support, we get 

7< l imsup  loglog(ns_l~ ) logP ~ f~ u+ 0o ~/~ = s n~l~ j=0  c(ns-ls) 

- ~ f f l 2  <2a,  1 <iN, ' ,  some u e [ - K - } ,  K + { ] ] .  (2.24) 

Therefore 

7< l imsup  1 [ ~ . - 1  ( + Sj 0~ /~)_ , fd2<26 ,  = loglog-----~logP j~=ofii u c(n) = 

1 <_i<_r, some u ~ [ - K  3 ,  K+23]]. (2.25) 

With 0 o as in (2.23), let 

F= {fisM : ]Oo ~ f~d fi r~- ~ S~ l - ~ f~d2[ < 2(~, l < i <=r, 
s o m e u e [ - K  3, K + }]}. 

The set F is closed and (2.25) is the same as 

1 logP[L.eF]. (2.26) 7 < limsup log log n 

By Theorem 3.2 in [4] we get 

7 < - infI(fi), (2.27) 
fief 

and since FcC(N )  (if fieF, then v=(fig;-1)OoSWfor some u~[-K-5 ,3  K + } ] ,  
but then fi=(vT-~or so fi~C(fV)c C(N)) we have 7 < -  inf I(fl)< -1(2) 
+~ by (2.5). This proves the lemma. ~c(s) 

Lemma 2.4. I f  A is a closed subset of M, then 
1 

lira sup - -  logP[L, eD A] < - inf I(fl). (2.28) 
, log log n ~ A  

Proof Let e > 0  be given. Then by Lemma 2.3 each 2 in A has a neighborhood 
N~ such that 
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1 
- -  log P [L,~DN~.] < - 1(2) + 8. (2.29) lim~sup log log n = 

Since A is compac t  in the vague topo logy  a finite n u m b e r  of such neigh- 
bo rhoods  N 1 . . . . .  N~ (corresponding to 21,.. . ,)~,, respectively) cover  A. Thus  

P[L, EDA] <r max  P[L,~DN~ ]. 
1<=j<=r 

Therefore  

1 
l imsup  log log n log P[L,eDA] < - l <=j<=~min I(Lj) -I- 8 

< - inf I(Z) + 8. 
2 e A  

This proves  the lemma.  

(2.30) 

3. The Main Results 

T h e o r e m  3.1 below is a ref inement  of T h e o r e m  5.1 [4];  it is p roved  under  the 
assumpt ions  of Sect. 2. Below /1 denotes  the closure of  A with respect  to the 
vague topology.  

Theorem 3.1. Let CG={fieM: I ( f i )< l} .  Let L~(o),') be defined by (2.2). Then 
for almost all o3 

and 

( •  
U -x {L,(co, "): x~lR} c C a (3.1) 

m =  1 n > m  

U {L,(o), ")} m C o. (3.2) 
m=l  n>_m 

Proof. We need only prove  (3.1) since (3.2) is conta ined  in T h e o r e m  5.1 [4]. Let  
N 1 be  an open ne ighborhood  of C G. Since I is lower semicont inuous  on M, we 
have inf 1(2) = 0 > 1. Let  0 < 7 < 1 be such that  07 > 1 and  let j ,  = [exp(n~)]. Let  

;.~N~ 
e > 0 be such that  7 ( 0 - 8 ) >  1. By L e m m a  2.4 we have 

P [L%aN~ for some x alP,] < exp { - (log logj ,)(0 - e)} (3.3) 

for all n sufficiently large. The right side in (3.3) equals n-~(~ so 
s u m m e d  on n it converges.  By the Borel-Cantel l i  l e m m a  

Therefore  
P[f~'~eN~ for some xelR,  i.o.] =0 .  

m = l  jn>=m 

(3.4) 

Now,  if j,,_1< p, <j,, then pn/j,~l and c(p,)/c(j,)~l; consequent ly  for any 
cont inuous  f with compac t  suppor t  [ - z , z ] ,  x , e~ ,  y,=X,C(jn)/C(p,), and c0EQ, 
by subtract ing and adding terms it is easily seen tha t  
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IfdL :(co, . ) -  Yfd  4:(co, ") 

p. (y. +S (co) + ~ 

as n~oo.  We also have 

(3.5) 

c(p.)l \ c(j~ ~ I' 

Let e > 0 be prescribed and 6 > 0 be such that if Ix-y[ < 6 then I f ( x ) - f ( y ) l  < e. 
Pick n o such that 2zfc(p,,)-c(j,,)I/c(p,,)<6 and Ic(p.)-cO'.)l/c(p.)<�89 for n > n  o. If 
Ix.+(Sj(~)/cfL))l > 2 z  and n >no, then the corresponding summand on the right 
side in (3.5) is zero because each argument of f is then strictly bigger than z; 
on the other hand, if Ix,,+(Sj(o)/c(L))l<=2z and n>no, then the two arguments 
of f differ by less than 6, so the summand is less than e in absolute value. It 
follows that the left side in (3.5) tends to zero as n~oo.  Therefore {L~: xslR} 
and {L~: x e ~ }  have the same vague limit points and 

u x {L,. xelR} cN1] = 1. (3.6) 
m =  1 n > r a  

Since we can pick N ~ N j + I ,  N i open, j > l ,  such that ~ N~= Co, (3.6)implies 
(3.1). J 

Assume from now on that (S,) is a lattice random walk. The next theorem 
is proved under more general hypotheses in [5] (Theorem 2). 

Theorem 3.2. I f  (1.2) holds and c~ > 1, then given e > 0 there is a 6 > 0 such that 

and 

P [co: lim sup c(n~) sup IL.(co, x)-L.(co, y) l>e]=O.  (3.7) 
n n I x _ y l < 6 c ( n )  

We now define 

g,,(co, u) = ~ gtt,cl,ol}(Sj(co)), u~N., (3.8) 
j=O 

n - 1  
h,(co, u)= c(n) ~ Z{k}(Sj(CO)), if u=k/c(n), kE2g, 

n j = o  

= linear elsewhere. (3.9) 

Theorem 3.2 can be rephrased as Theorem 3.3 and Theorem 3.4 is an easy 
corollary of Theorem 3.3. 

Theorem 3.3. I f  g,(co, .) and h,(co, .) are defined by (3.8) and (3.9), respectively, 
then given e > 0 there exists 6 > 0 such that 

P[co: limsup sup [g,(co, u)-g,(oo, v)I>e]=O, (3.10) 
n lu-vl<~ 

and 
P[oo: limsup sup Ih,(co, u)-h,(co, v)l>e]=O. (3.11) 

n lu-~,l <6 
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Theorem 3.4. There exists a set f2 o with P(f2o) = 1 such that if co~f2 o, then 

and 

lim limsup sup [g~(co, u)-G(co, v)l=0 (3.12) 
, ~ 0  n [ u - v t < ? ,  

lim limsup sup Ih~(o),u)-h~(co, v)[--O. (3.13) 
6~o n lu-vl<6 

Remark. Theorem 3.4 implies that if coef2o, then (G(e),.)) and (h~(oo, ")) are 
uniformly equicontinuous on IR and gn(o)..)-h,(co, . ) ~ 0  uniformly. 

With sr as in (1.4) we let 3--denote the topology on sd given by uniform 
convergence on compact subsets of N. Now we are ready to prove the main 
result. 

Theorem 3.5. There exists f2 o with P(f2o)= 1 such that if ooef2o, then 

(i) the set 
R(co)= {h~(co, x + .): n > l ,x~lR} 

is a relatively compact subset of d ;  
(ii) the set of limit points of R(co) is contained in ~ ; and 

(iii) the set of limit points of 

S(co) = {h,(co, .): n>  1} 
contains the set r 

Proof. For any co the function hn(co , .) is nonnegative, continuous, has compact 
support and satisfies 

~ hn(co, u ) d u = l  , n > l .  (3.14) 
- - O o  

Therefore the set R(co) is contained in d .  Now let f2 o be picked so that P(f2o) 
= 1 and (3.1) and (3.2) of Theorem 3.1 and (3.12) and (3.13) of Theorem 3.4 are 
satisfied for coef2 o. If {h,(co, x,): n > l }  is an unbounded set, then along a 
subsequence (nj) we have h,j(co, xn )=Ks  as j--.ov. Then by (3.13) we have 
h,~(og, u ) > K f 2  for l u - xn j l<6  , for some c5>0, J>Jo. This contradicts (3.14), so 
for co~f2 o the set {ILh,(co, ")LIoo: n>  1} is bounded. This fact and (3.13) imply (via 
Ascoli's Theorem) that the set R(co) is relatively compact in ~4. 

Let mie2g and let (ni) be a sequence of positive integers tending to infinity. 
Let x i = mi/c(n~) and 

k~(og, �9 ) = gn,(co, x~ + "). (3.15) 

We will first show that if ~o is continuous with compact support on ~ ,  then 

lira qo(u)ki(co, u ) d u -  ~ - - ~  qg(u)dL~, (og, u) =0. 
- - o o  

(3.16) 

To see this, note that 
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(r+ 1)/c(ni) 

- o o  f e z  r/c(nl) 

c ( n i  ) n, - 1 (r+ t)/c(nd 

�9 j =  0 r/c(n 0 

z t reTZ n i  j =  0 

where ~;i , r -*0 uniformly in r as i ~  oo. We have 

1 hi--1 
~- ~ z{~+~,}(sj(o~))sup I<~[--sup I~i,~l~O 

lqi j=O r r 

as i--* oo. Also 

- -  - - - -  ( ~ 0  

= o~ ~~176 
--00 

which shows (3.16). 
To check (ii) it will be convenient to work with the set Rl(co)={g,(o,x 

+ . ) :  n > l ,  xeN.}.  The members of Rl(co) are step functions and it is clear 
from the remark after Theorem 3.4 that the set of limit points under J -  of 
Ra(cO), for ~ f 2 o ,  is the same as the set of limit points of R(co). Let coes o and 
let 

,~i(co, ") = g,,(o), x i + " )--, f (3.17) 

as i~oo  in the sense of Y-; f e d  since (g,(e), .)) is uniformly equicontinuous. 
There is no loss of generality if we take x~=rn]c(n), mieZ,  because if each x i is 
replaced by a nearest such number in (3.17) then the limit point would still be 
f We want to show I ( f ) < l .  If v e M  with density f then (3.16) applied with 
~i(co, ") in place of ki( (o  , ")  shows that under (3.17) the set {L2fi(co, "): i>  1} has 
v as its limit point. By Theorem 3.1 we then have I(f)=I(v)<__l. This proves 
(ii). 

To prove (iii), let f e N .  Let v e M  with density f By Theorem 3.1, if coef2 0 
then there exists a sequence (hi) along which L,(co, ")--*v vaguely. By (3.16) with 
x~ = 0, we then conclude 

lim ~ (p(u)g,,(co, u)du= o~ (p(u) f (u )du  (3.18) 
i - - c o  - - o o  

for (p continuous with compact support. Since coe~2o, {g~(co,-): i>1} is rela- 
tively compact in d and so along a subsequence g,~(co, . )~k( .)es~ '  in the sense 
of 3--. Therefore by (3.18) we get 

- o o  - o o  
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for each continuous q0 with compact support, which shows k = f  and (iii) is 
proved. 

The following theorems are corollaries of Theorem 3.5 which describe the 
asymptotic behavior of L,(co, "). Let 

0 G = sup{f(0): f ~ } .  (3.19) 

If G is symmetric stable with characteristic function ~oG(u)=e -lul=, 1<c~<2, 
then 0 G is computed in [-1] to be F(1/~)F(1-1/~)/(~(c~-I)I-1/~). When c~=2 

and G is N(0, 1), 0 G is shown [lJ to be l/~. 

Theorem 3.6. I f  c~> 1, then for almost all co and ke7l 

c ( n )  - ,  , 
lim sup c(n) Ln(co, k) =l im sup - -  max L~lco, m) = OG, (3.20) 

n F/ n n m 

where 0 G is deJlned in (3.19). This quantity is positive and finite. 

Remark, The constant 0 G is the same one that occurs in the corresponding 
behavior of the local time of a stable process y(t) for which y(1) has distribu- 
tion G with c~>l; see [lJ. 

Proof. Let q~(f)=f(0). �9 is a continuous functional on d (topology J-). Let 
f2 o be as in Theorem 3.5 and for coef2 0, keZ, let f,(co, u)=h~(co, u+k/c(n)). Then 
by Theorem 3.5 the sequence {f,(co, .): n > l }  is relatively compact in d and 

has limit set N. {Note that {f,(co, .)} and {h~(co, .)} have the same limit 
r 

s e t  
\ 

since c~n) -+0). Thus 

lim sup q~(f,(co, .))= sup {f(0): f e ~ }  = 0 G. 
1'l 

On the other hand, 

lim sup q~(f~(co, -)) = lim sup hn(co, k/c(n)) 
n n 

c(n) 
= lira sup - -  L,,(co, k). 

n n 

The quantity 0 G is clearly positive and it is finite because {I]h,(co, ")Lion: n>= 1} is 
bounded as shown in the proof of Theorem 3.5. 

To prove the second equality, let coE~? o and observe that 

c(n) 
- -  max Ln(co, k) = sup h,(co, x). 

n k x 

If fi denotes lim sup sup h~(co, x), then there exists (x~) such that 
n x 

lim sup h,(co, x,) = ft. 
n 
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Let f,(co, u)=h,(co, u +x, )  and ~ ( f ) = f ( 0 )  as before. Again by Theorem 3.5 the 
set {f,(co,-): n>  1} is relatively compact in d and 

lim sup a~(f,(co, .)) = lim sup hn(co , x,) = ft. 
n n 

This shows that fl<O~ by Theorem 3.5, but clearly fl>limsuphn(~o,O)=O G. 
Therefore fl = 0 G and the theorem is proved. 

For the next theorem f20 is any set of probability 1 that satisfies Theo- 
rem 3.5. 

Theorem 3.7. Let ~o be any continuous function on IR. Then for coef2 o the 
following assertions hold: 

(i) I f  (k,) is an integer sequence such that 

lim c~)  =ae lR  (3.21) 

then 

limsupq~(C(_~nJL,(co, k , ) ]=  sup q~(t), (3.22) 
n \ h i  O<t<=Oo 

where O~ is defined in (3.19). In particular, 

c(n) 
l imsup ~ -  L,(o, k,) = 0a. (3.23) 

In the above, if k, = k, n > 1, then a = O, and the conclusion holds. 

and 

(ii) I f  - oo < a < b < o% then 

1 ) b 
lim sup )t'n-~c ~ (P L,(co, k) = sup ~ ~o of (t) d t, (3.24) 

n ac(n)<=k<=bc(n) f E ~  a 

/ c (n]  \ 
l imsup inf q) /- _'@" Ln (co, k ) | = s u  p inf (pof(t). (3.25) 

n ac(n)<=k<=bc(n) \ fl  l f ~  a<-t<--b 

Proof. I f f ~ d ,  let 
q~(f) = q0 of(0). 

This defines a continuous function on d .  Let 

A={q)(h"(c~176176 _ (3.26) 

Since k,/c(n)-~a and (h,(co, .)) is a uniformly equicontinuous family, the set of 
limit points of A is the same as the set of limit points of A 1, where 

A 1 -- {~b(h,(co, �9 +a)): n>  1}. (3.27) 

By Theorem 3.5 the set of limit points of A 1 is the set {~ ( f ( .  + a ) ) : f s ~ } ,  but 
the translation invariance of ~ implies that the limit set of A 1 is {~b(f) : feN}.  



Invariance Principle for Local Time 155 

( / e ( n ~  \ ) 
�9  ere ore the ,imi  set 

{(p of(0): f e N }  = {q0(0: 0_<t< 0c,}, which implies (3.22). 
b 

To prove (3.24), let eb(f)=~qoof(t)dt for f ~ d .  Again ~b is a continuous 
a 

function on sd. Since h , - g , ~ 0  uniformly on IR, the set of limit points of 
{~(h,(co, .)): n > l }  is the same as the set of limit points of {~b(g,(co, .)): n> l} .  
Now let r, and s, be integers such that 

r~ r , + l  s, < b < S n + l .  
c(n) =< a < 7 ( , ) '  c(n) = c(n) 

Then 

We have 

Also, 

b 

e(g.(o~, .)) = S q~ ~ g.(~o, u) du 
a 

sn -- 1 (k + 1)/c(n) 

= ~ ~ qoog,(e),u)du+ 
k = r~ + 1 k/c (n) 

b 

+ ~ ~oog,(o),u)du. 
s~/c(n) 

(rn+ 1)/c(n) 

S ~ og.(co, u)& 
a 

s n - 1  ( k + l ) / c ( n )  

Z ~ ~oog.(~,u)du= 
k = r n + l  k/c(n) 

) 
k=rn+ 1 \ I1 

(r.+ !)/c(n) ~ (r.+ 1)/c(n) 

(pog,(co, u)du ~ [q~ o g,(o), u)l du 
r. /c(n)  

1 (P c(n) 
= ( - 7 -  L.(co, ,;,)) cOO 

and by (3.20) this last expression tends to 0 as n ~  or; likewise we have 
b 

lim ~ qoog,,(o~,u)du=O. 
n s~/c(n) 

Therefore, again using (3.20), we have 

1 

~(g.(co, .)) = c(n) oc(.)~=k~=bc(.) 
( c ~  L,(co, k)) + o(1). 

Since the limit points of {~(g,,(co,.)): n > l }  consist of the set {~b(f) : fe~} 

= (pof(u)du:fer , (3.24) follows. 

The proof of (3.25) goes along the same lines (one defines ~ ( f )  
= inf cp(f(u))) and is left to the reader. 

a<_u<_b 



156 N.C. Jain and W.E. Pruitt 

Remark. In (3.25) if we take cp(x)=x, then 

c(n) 
l i m s u p - -  inf Ln(~o,k)=sup inf f(u), (3.28) 

n Yl a c ( n ) < k < b c ( n )  f ~ . ~  a<~u<-b 

b ~  ! f (u)du< b 1 and since inf f(u)< , it follows that the right side in 
a ~ u < b  - -  - - a  

1 
(3.28) is _<~Za_ a and it is clearly positive. If k,=O(c(n)) replaces (3.21) as the 

hypothesis of Theorem 3.7(i) then by the previous theorem 0 G is still an upper 
bound  for the left side, and by (3.28) the lower bound  is positive. It seems 
plausible that if k, = O(c(n)) in (3.23) then the statement remains valid. 
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