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Summary. Let (S) be a lattice random walk, ie. §;=X,+...+X,, where

X,,X,,... are independent random variables with values in the integer
n—1

lattice Z and common distribution F, and let L (w,k)= ) Yy (Si{w), the
i=0

local time of the random walk at k before time n. Suppose EX, =0 and F is
in the domain of attraction of a stable law G of index > 1, i.e. there exists a
sequence a(n) (necessarily of the form n'/*I(n), where ! is slowly varying) such
that S,/a(n)—»G. Define g, (o, u)=c;i)Ln(w, [uc(n)]), where c(n)=a(n/log
logn) and [x]=greatest integer <x. Then we identify the limit set of
{g(w,*):n=1} almost surely with a nonrandom set in terms of the I-
functional of Donsker and Varadhan. The limit set is the one that
Donsker and Varadhan obtain for the corresponding problem for a stable
process. Several corollaries are then derived from this invariance principle
which describe the asymptotic behavior of L (w, *) as n— cc.

1. Introduction

Let X,,X,,... be real-valued independent identically distributed random vari-
ables on a probability space (2, %, P) with a common distribution function F.
Let

S,=X,+..+X,, nxl, S,=0.

We assume F to be in the domain of attraction of a stable law G of index
o, 0<a<2, which has a strictly positive density on R and satisfies the scaling
property, ie., if y(t), t =0, is the stable process with stationary and independent
increments and y(1) has distribution G then ¢~ **y(ct), =0, has the same finite

* Research partially supported by NSF Grant #MCS 78-01168. These results were announced at
the Fifteenth European Meeting of Statisticians, Palermo, Italy (September, 1982)



142 N.C. Jain and W.E. Pruitt

dimensional distributions as y(f), t20. If «>1 we assume EX, =0. Under these
conditions there exists a function

a@®)=t"1(), >0, (1.1)

where [ is a slowly varying function near oo, such that

S
"G (1.2)
a(n)
in the sense of weak convergence of the corresponding measures.
We need to introduce some more notation to describe our results. Let

M ={u: pis a subprobability measure on R}.

M is given the topology of vague convergence, ie. p,—u in M means
{fdu,—~§fdu for f continuous with compact support. For ueM the I-func-
tional of Donsker and Varadhan [1] corresponding to the semigroup generated
by G is given by

10 = inf { (2 ) dutos (13

where % denotes the class of strictly positive C*® functions on IR which are
constant outside of a compact interval (which depends on the function), and L
denotes the infinitesimal generator of the Markov semigroup generated by G. If
peM and p has a density f on R (with respect to Lebesgue measure) then I(f)
will denote I{). This functional plays a crucial role in the probability estimates
and helps in the evaluation of the limit constants. Now define

%={f:fgo, f uniformly continuous on IR, Oj? f(x) dxgl}, (1.4
and -
B={fesd: I(/)1}. (1.5)

Assume now that the random walk takes values in the integer lattice Z and
a>1. In this case EX, exists and equals zero by our assumption, so the
random walk is recurrent. Let

2 ={xeZ: P[S,=x]>0 for some n=1}.

We assume without loss of generality that X=Z; this amounts to relabeling
the state space [9].

The local time at keZ before time » is defined to be the number of visits to
k before time n, i.e.

n—1
L (e, k)= ZO Yoa(Siw)),  wel, (1.6)

where x, denotes the indicator of the set 4. We also need to introduce

c(my=a(n/loglogn), n>e, (1.7)
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and for weQ

g, (v, u)=$1n) L (o, [ucm)]), uekR. (1.8)

Here (and later) if zeIR then [z] denotes the greatest integer less than or equal
to z.

We prove an invariance principle (Theorem 3.5) which says that the limit
points of {g,(®w,*): n=1}, in the sense of uniform convergence on compacts,
almost surely equals the set 4. The main tools involved in the proof are some
techniques used in [1], some of the main results of [4], and Theorem 2 of [5].
The results in [5] deal with the local time of a recurrent lattice random walk
in a more general situation where F need not be attracted to a limit (stable)
law; these results in turn depend on some estimates obtained in [3]. In the
latter more general situation we of course get less precise results.

Some preliminary results are given in Sect. 2 which are derived under the
sole assumption (1.2) with G having a strictly positive density and satisfying the
scaling property. Section 3 contains the main results. Theorem 3.1 is a refine-
ment of a result in [4]; we need it to prove the invariance principle (Theo-
rem 3.5).

Theorems 3.6 and 3.7 are corollaries of Theorem 3.5 which we shall de-
scribe now in a special case. Let G be symmetric with characteristic function
pes=e " if 1<a<2, and @4(t)=e "/? when a=2; then for keZ

lim sup C;l) L, (w,k)y=limsup ? max L,(w,m)=d,
meZ

n n

a.s., where d,=TI'(1jo) I'(1—1/a)/(m(a—1)'~") if 1 <a<2, and d,=1/2. If l(1)=1
in (1.1), then c(n)/n=n'"*"'(loglogn)~ '/, so for ®=2 we have in this case c(n)/n
=(nloglogn)~'/2. This result was obtained by Kesten [6] for a=2. For some
related results see also [8], where the case of a simple random walk is
considered and the main tool used is the Skorohod embedding. The special
case of Theorem 3.7 states that for — oo <a<b< oo, j a positive integer,

j—1 b
lim sup C(n)j Y Ifw,ky=sup [fi)dr,

n n acn) =k Zbe(n) fe® a

a.s.; the limit constant is positive and finite.

We would like to note here that a weak invariance principle for the local
time of a recurrent lattice random walk is established in [7] via the Skorohod
weak invariance principle.

2. Some Preliminary Results

For the results of this section we assume only that F satisfies (1.2) and G
satisfies the scaling property and has a strictly positive density on R. We do
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not assume that F is lattice. These results are analogues of results in [1], §2,
where local times of stable processes are considered.
Let T, and §,, xelR, >0, be transformations of the real line given by

Ly)=x+y
and

Se(y)=0""y,
where a is the index of G. If ue M, we define u,e M by
He=0uS; !,  O0<OuR)L1. (2.1)

The I-functional on M is defined in (1.3). For later reference we observe
that I is translation invariant, ie. I(u)=I(uT. ') for ueM. Furthermore, the
scaling property of G is inherited by I in the following form: if ue M and G has

index o, then for >0
1(0uSs ) =0L(uS; ")=1I(w).

The translation invariance of I implies the translation invariance of the set %
defined in (1.5) in the sense that if f is in the set, so is the function f.(*)=f(*
+Xx), xelR.

For we, xeR, and A a Borel subset of R we write

N j(w)
c(n) ) ’

and if x=0 we will simply drop the superscript x. Thus for each we®Q, L*(w,*)
is a probability measure on IR. For K >0 and keZ, define

_ 1n—1
Do, A)=~ 3 x4 |x+ (2.2)

L ,=[(=K+k~1)c(n),(K+k+1)c(n)]
and
TP =inf{j 20: S;el, .},
= o0, if the above set i1s empty. (2.3)

We now prove four lemmas which culminate in Lemma 2.4. This in turn is
used in the proof of Theorem 3.1 which is needed in the proof of the in-
variance principle.

Lemma 2.1. With I, and T defined as above, we have

Y P[T"<n]=0(loglogn), as n—co.

keZ
Proof. For given K, w, j, and n, S (w) can belong to at most 2K +3 intervals
I, .- Therefore we have

2n-1

CK+3)212Y Y o syapen (@)

keZ j=0
2n—1

g Z X[w: Tlﬁ”)(w)ﬁn](w) Z X[w: Sj(w)ely, n](w)'
k Jj= T (o)
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Now taking expectations and using the Markov property of the random walk
we get

2n—-1

P[T"=p] ¥, PIS; el I T"=p]

J=p

(2K+3)2n

v
=1
™=

]
i
=}

2n—p-1

P[T"=p] inf ) P[S;+xel,]

1\
=1
> =

p=0 xel,n j=0
n—1
g;P[Tkw)§n] irIlf ZOP[SJ-%—erk’n]
XELp,n j=

IV

inf Y, P{S,e[ —zc(n),2K+2—2z)c(m)]} Y, P[T" <n]

0Sz<2K+2 jel,

where [, =[n/(2loglogn), n/loglogn]. Since G has strictly positive density, for
jel, it is clear that

inf  P{S;e[—zc(n), 2K+2—~2)c(m]} =c>0.

0=z22K+2
Therefore Y. P[T,"™ <n]=0(loglogn) and the lemma is proved.
For AckM, let
CA)={veM:v=(uT "),=0uT 'S, !

for some peA, some x, and some 0 <6< wo}. 24

Lemma 2.2. If AeM then given ¢>0 there exists a vague neighborhood N of A

such that
inf I(f)=I(A)—e. (2.5)

BeC(N)

Proof. By the lower semicontinuity of I (see [17]) there exists a vague neigh-

borhood N of A such that
I(B)zI(4)—¢,BeN. (2.6)

Let v denote the left side in (2.5). Then there exist 6,, x, and B eN such that

lim (6,8, T, 'S¢ ) =v.

=00

By the scaling property of I we have 1(6,8,T,'S; ")=1(8,T. "), and since I is
translation invariant this last quantity equals I(8,). Therefore by (2.6)

v=lim I(f,)2I(1)—e.
IfVeaM,let V,={BT,"': eV} and let D, =) V,.
Lemma 2.3. Let 1eM and £>0 be given. Then there exists a neighborhood V of

A such that
log P[L,eD,]< —I(1)+e, 2.7)

i
1mnsup loglogn

where L, is defined in (2.2).
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Proof. If A(R)=0 then I(2)=0 and there is nothing to prove, so let A(R)=a>0.
Let N be a neighborhood of 1 such that

inf I(B)=I()—e, 2.8)
peC(N)

where C(N) is defined by (2.4). Such a neighborhood exists by Lemma 2.2.
Then we can find

W={B:|[f;dB—[fidi| <26, i=1,....r}

where 6 <a/8 and the f; are continuous functions with supports in a compact
interval [ —K, K] (neighborhoods such as W form a base for the vague to-

pology) such that W< N and without loss of generality we may assume that

0sfi=sL, jf1d/123a/4~ (2.9)

Let
V={B:|[fidp—[fidA<é,i=1,...,r}. (2.10)

We will show that (2.7) is satisfied by this V. We have
P[L,eD,1<> P[L,e ) V. (2.11)
keZ |x—kl=%
and
P[L,c V]
[x—kj=%

: v (_x+%)—jfid/{ <4, i:l,...,r]}. (2.12)

Let T, be defined as in (2.3). Then since the f; have support in [—K, K],
T 21 implies

S.
fi(-x+c—(};—)):0, 0<j<l, |x—kl<i, 1<i<r. (2.13)

Therefore, if T, 2n (1 —%) and [x—k| <3, then

5 et

SIS

(2.14)

where 0< f, <1 is used. Since d<a/8, by (2.9) and (2.14) the event in (2.12)

. a
cannot occur if T, 2n (1 —5)' Therefore
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Le | vis P{ | [LeVIn[R"=0

<4, 1ZiZr,

lnilfi (—x+i+s—> [ fda

some [x—k| <%, T =1, Slzz], (2.15)

where the summation on ! is for the same values as above and S =X+
+ X;. Now by the independence of §,, 1 £r</, and S the last quantlty equals

Y Y PIL"=18,=7]

I zelxn

[“ilf( +»~+—S—) [fidA

<0,1<i<r, some |x—k| < ]

()«
(2.16)
If |x —k| <% and zel, ,, then —x+%e[—K«%, K +21. Therefore
PlLe ) VISY Y PIT"=L5=2p, 2.17)
k=% zelk,n
where
n—1—1
Pu= max [ Y f( ) {fidi|<é, 1<i<r,
0§l§[n(1—;)] nj=o c(n)
some ue[—K—%,K+%]]. (2.18)
Summing on z first, then on [ in (2.17) gives
PiLe |J V]gpnP{T;")g [n (1—%)]} (2.19)
SiES:
Now summing on keZ and using Lemma 2.1 we get
P[f‘nEDV:lépnqna (220)
where g,=0(loglogn). It follows that
li L, P{L eD,]<li ! lo 2.21)
B SUP f fogn og PIL,eDy]= 1mnsuplog10gn &Py (2.

Let y denote the right side in (2.21). Then there exist sequences of non-negative

integers (n,) and (1), [.< [ s (1 —%)], such that n,— oo and
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. 1 ns—1ls—1
lim ——— all
sin(;lo loglognSIOgP[ns Z f( c(n s)) Ifdi‘<5
1<i<r, some ue[—K—%,K—i—%]]:y. (2.22)

Along some subsequence (again denoted by n) we have

nS‘-ZS

HA

—0,, =<0,<1. 2.23)

SRR

g

This implies that c(n,—I)/c(n,)—05* as s—co. Since the f; are continuous with
compact support, we get

ng—ls—1

! 0
<l S — Y ( l/u)
pElimsup g e 1y 8 Hns——l 2 Sl —1)9

s

_[f.dA|<26, 1<i<r, some ue[—K—%,K—I—%]]. 2.24)
Therefore
<lim sup —— [9 "zlf( S5 gl/a) [fdi|<20
P ploglogn c(n) R
1<i<r, some ue[—K—%,K+g]]. 2.25)

With 0, as in (2.23), let

F={BeM:|0,[f,dBT, ' S;,' = [fidA<26, 1<i=r,
some ue[ — K —2, K+3]}.

The set I' is closed and (2.25) is the same as

log P[L,eI]. (2.26)

1
<li
’= 1rnnsup loglogn

By Theorem 3.2 in [4] we get

y < —infl(B), 2.27)
pel

and since '« C(N ) (if Bel, then v=(BT, 1), €W for some ue[—K—3, K+3],
but then f=(T_ )} /)os 1> SO BeC(W)= C(N)) we have y< — mf I(,B)< I(4)
+¢ by (2.5). This proves the lemma.

Lemma 2.4, If A is a closed subset of M, then

1 -
i < —inf I(). .
11mnsup Toglogn logP[L,eD = 113161}; 1] (2.28)

Proof. Let >0 be given. Then by Lemma 2.3 each 1 in 4 has a neighborhood
N, such that
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lim sup log PIL,eDy 1< ~I(A)+e (2.29)

»  loglogn

Since A is compact in the vague topology a finite number of such neigh-
borhoods Ni, ..., N, (corresponding to 4,,...,4,, respectively) cover 4. Thus

ey Mg

P[L,eD ) <r max P[ineDNJ].

1=j=r
Therefore
limnsup fog logn log P[L,eD < — 11;1};1(/1]-) +eé
< —inf I{(A)+e.. (2.30)
€A

This proves the lemma.

3. The Main Results

Theorem 3.1 below is a refinement of Theorem 5.1 [4]; it is proved under the
assumptions of Sect. 2. Below A denotes the closure of A with respect to the
vague topology.

Theorem 3.1. Let Co={feM: I(f)<1}. Let [*(w,*) be defined by (2.2). Then
for almost all »

A U B ) xeR} < Cq G3.1)
and "= ::m«_
N U Lo, )} >Cq. (32)

m=1 nzm

Proof. We need only prove (3.1) since (3.2) is contained in Theorem 5.1 [4]. Let
N, be an open neighborhood of Cj;. Since I is lower semicontinuous on M, we
have inf I{(A)=60>1. Let 0<y<1 be such that 8y>1 and let j,=[exp(n’)]. Let

JeN§

£>0 be such that y(0 —¢)>1. By Lemma 2.4 we have
P[L*, eN for some xeR] < exp{—(loglogj,)(f —¢)} (3.3)

for all n sufficiently large. The right side in (3.3) equals n="®~9(1 +0(1)) so
summed on #n it converges. By the Borel-Cantelli lemma

P[L5, eN; for some xeR, 1.0.]=0. (3.4)
Therefore

P [a): N U L5 -): xeR}CNl]zl.
m=1 juzm

Now, if j,_,<p,<j,, then p,/j,—1 and c(p,)/c(j,)—1; consequently for any

continuous f with compact support [ —z,z], x,€R, y,=x,c(j,)/c(p,), and we,

by subtracting and adding terms it is easily seen that
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§fdL(w, ")~ fdLn(w, ")
1 Prz 1 S; X
> { ( (fo))—f(yﬁsf(w))}wu) (3.5)

pn j= c(]n) C(pn)

as n—oo. We also have

Sj(a))) _ ( Sj(w)) _ ( Sj(w)> (C(pn)—c(jn))

()~ bt ) = b)) i)

Let £¢>0 be prescribed and 4> 0 be such that if |x —y|<¢ then | f(x)— f(y)| <e.
Pick n, such that 2z|c(p,)—c(j)l/c(p,) <8 and |c(p,)—c()/c(p,) <3 for n=n,. If
|x,+ (S {w)/c(j,)| >2z and n=n,, then the corresponding summand on the right
side in (3.5) is zero because each argument of f is then strictly bigger than z;
on the other hand, if |x, +(S (w)/c(j,)| £2z and n=n,, then the two arguments
of f differ by less than 8, so the summand is less than ¢ in absolute value. It
follows that the left side in (3.5) tends to zero as n— co. Therefore {Lx : xeR}
and {L" xelR} have the same vague limit points and

P [ O (L xeR} e N, ]=1. (3.6)
m=1 nzZm
Since we can pick N;oN
(3.1).
Assume from now on that (S,) is a lattice random walk. The next theorem
is proved under more general hypotheses in [5] (Theorem 2).

N; open, j21, such that () N;=Cg, (3.6) implies
J

j+1

Theorem 3.2. If (1.2) holds and o> 1, then given ¢>0 there is a 6 >0 such that

P [co: lim sup E%Q | S}l% ( )ILn(a), x)—L, (o, )] >e] =0. (3.7
p x—y|Sdc(n
We now define
.= Z Lo (S0, ueR, (8
and
h (cw, u) Z X Si(@)), if u=kjc(n), ke,
=11near elsewhere. (3.9

Theorem 3.2 can be rephrased as Theorem 3.3 and Theorem 3.4 is an easy
corollary of Theorem 3.3.

Theorem 3.3. If g,(w,*) and h,(w,") are defined by (3.8) and (3.9), respectively,
then given &¢>0 there exists 6 >0 such that

Plw: limsup sup g, (w,u)—g,(w,v)>e]=0, (3.10)
n lu—v|<d
and
Plew: limsup sup |A,(w,u)—h,(w,0)|>&]=0. (3.11)
n lu—v|<d
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Theorem 3.4. There exists a set Q, with P(Q,)=1 such that if weQ,, then

lim limsup sup |g,(w,u)—g,(w,v)|=0 (3.12)
-0 n lu—-v)<d

and
lim limsup sup |h,(w,u)—h,(w,v)|=0. (3.13)
§—0 n |l —v]<é

Remark. Theorem 3.4 implies that if weQ,, then (g,(w,*)) and (h(w,*)) are
uniformly equicontinuous on R and g (o, *)—h,(w, *)—0 uniformly.

With & as in (1.4) we let J denote the topology on .o/ given by uniform
convergence on compact subsets of R. Now we are ready to prove the main
result.

Theorem 3.5. There exists Qg with P(Q,)=1 such that if weQ,, then

(1) the set
R(w)={h(w,x+*): n=1,xeR}

is a relatively compact subset of of ;
(i) the set of limit points of R{(w) is contained in & ; and
(ii1) the set of limit points of

S(@)={hy(e,): n2 1}
contains the set 4.

Proof. For any w the function h,(w, +) is nonnegative, continuous, has compact
support and satisfies

[ hfowdu=1, nzl. (3.14)

Therefore the set R(w) is contained in «/ Now let Q, be picked so that P(Q,)
=1 and (3.1) and (3.2) of Theorem 3.1 and (3.12) and (3.13) of Theorem 3.4 are
satisfied for weQ,. If {h,(w,x,): n=1} is an unbounded set, then along a
subsequence (n;) we have h, (w,x,)=K;—o0 as j—co. Then by (3.13) we have
h, (w,u)>K /2 for lu—x, | <9, for some 6>0, j=j,. This contradicts (3.14), so
for weQ, the set {|h,(w, )| ,: n=1} is bounded. This fact and (3.13) imply (via
Ascoli’s Theorem) that the set R(w) is relatively compact in .o,
Let m;eZ and let (n,) be a sequence of positive integers tending to infinity.
Let x;=m,/c(n;} and
kiw, ) =g, (@,x;+ ). (3.15)

We will first show that if ¢ is continuous with compact support on R, then

lim (Of o)k, (w, u)ydu— ojo qo(u)dl:;ixl(a),u)>:0. (3.16)

1 —

To see this, note that
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oo (r+1)/c(ni)
[ ok(w,wdu=Y | oWkl udu
- reZ rlc(ny)
n) m—1 (r+ L)/e(n,)
=y o L AeemySf@) | olu)du
rez M j=o rfe(ny)
nz—l »
= Lo+ my(S @ ( ( )+ei,)
2 ”Z rem S0 (0 (o5 ) +e

where ¢; ,—0 uniformly in r as i—co. We have

1 ni—1
2 Z X{r+ml} S (0‘))) Sup |81 rl _Sup Igl rl_)o

¥ lj—

as i—o0. Also

Y- "‘ilewml}( s)e ()= L' (e -x)

rlJ— nljo

= f @u)dLy(w,u),

which shows (3.16).

To check (ii) it will be convenient to work with the set R, (w)={g (w,x
++):n=1, xelR}. The members of R,(w) are step functions and it is clear
from the remark after Theorem 3.4 that the set of limit points under Z of
R (w), for weQ,, is the same as the set of limit points of R(w). Let weQ, and

let g0, ) =g, (x4 )~ f (3.17)

as i—oo in the sense of 7 ; feof since (g,(w, *)} is uniformly equicontinuous.
There is no loss of generality if we take x;=m,/c(n,), m;eZ, because if each x;, is
replaced by a nearest such number in (3.17) then the limit point would still be
f. We want to show I(f)<1. If veM with density f, then (3.16) applied with
g{w, ) in place of k,(w, *) shows that under (3.17) the set {E;ﬁ""(w, *): i=1} has
v as its limit point. By Theorem 3.1 we then have I(f)=1(v)<1. This proves
(ii).

To prove (iii), let fe#. Let ve M with density f. By Theorem 3.1, if we,
then there exists a sequence (»,) along which L, (w, *)—v vaguely. By (3.16) with
x;=0, we then conclude

lim T pu)g, (o, u)ydu= Ojo o) f(wydu (3.18)

for ¢ continuous with compact support. Since weQ,, {g, (w,*): i=1} is rela-
tively compact in .o/ and so along a subsequence g, (w, *)—k(*)e/ in the sense
of 7. Therefore by (3.18) we get

[ owkdu= | o) f(wdu
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for each continuous ¢ with compact support, which shows k= f and (iii) is
proved.

The following theorems are corollaries of Theorem 3.5 which describe the
asymptotic behavior of L {(w, ). Let

6 =sup{f(0): feB}. (3.19)

If G is symmetric stable with characteristic function @g4u)=e 1", 1<a<2,
then 64 is computed in [1] to be I'(1/a)I(1 —1/a)/(m(ox— 1) ). When o=2
and G is N(0,1), 0, is shown [1] to be /2.

Theorem 3.6, If o> 1, then for almost all w and keZ

lim sup E%n—) L (w,k)=limsup @ max L, (w,m)=0,, (3.20)

n n m
where 0, is defined in (3.19). This quantity is positive and finite.
Remark. The constant 04 is the same one that occurs in the corresponding

behavior of the local time of a stable process y(¢) for which y(1) has distribu-
tion G with e>1; see [1].

Proof. Let &(f)=f(0). ¢ is a continuous functional on .o/ (topology 7). Let
Q, be as in Theorem 3.5 and for weQ,, keZ, let f (w,u)=h,(w,u+k/c(n). Then
by Theorem 3.5 the sequence {f,(w,*): n=1} is relatively compact in &/ and

has limit set Z. (Note that {f(w, )} and {h(w,*)} have the same limit set

since i—>0) . Thus
c(n)

lim sup &(f,(w, *))=sup { f(0): feB}=0.
On the other hand,
lim sup @(f,(w, -))=lim sup h (o, k/c(n))

=limsup %?)— L (w,k).

The quantity 6, is clearly positive and it is finite because {||h,(w, *)|l,: =1} is

bounded as shown in the proof of Theorem 3.5.
To prove the second equality, let weQ, and observe that

552 max L, (w, k) =sup h,(w, x).
k x

If B denotes lim sup sup h,(w, x), then there exists (x,) such that

limsup b (o, x,)=p.
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Let f(w,u)=h w,u+x,) and ®(f)= f(0) as before. Again by Theorem 3.5 the
set {f,(o,+): n=1} is relatively compact in &7 and

lim sup @(f,(w, *))=limsup h,(w, x,) = p.

This shows that <60, by Theorem 3.5, but clearly ﬁ>11msuph (0,0)=0,.
Therefore f=40, and the theorem is proved.

For the next theorem Q, is any set of probability 1 that satisfies Theo-
rem 3.5.

Theorem 3.7. Let ¢ be any continuous function on R. Then for weQ, the
Jollowing assertions hold :

(i) If (k,) is an integer sequence such that

m —=geR (3.21)
then
lim sup ¢ (@ L (o, kn)) = sup (1), (3.22)
n n 0<tgbc
where O is defined in (3.19). In particular,
. c(n)
lim sup e L(w,k,)=0;. (3.23)

In the above, if k,=k, n=1, then a=0, and the conclusion holds.
(i) If —oo<a<b< oo, then

c(n
lim sup Y e ( ) L(w,k) )—sup foof(t)dt, (3.24)
c(n) ac(n) Sk Sbc(n) n
and
. ) c(n)
lim sup inf ¢ ( L (o, k)) =sup inf @of(t). (3.25)
n ac(n) =k <bc(n) fe®B ast<h

Proof. If fef, let
D(f)=9-f(0).

This defines a continuous function on /. Let

A={d§ (h,, ( e clz;))): n%l}:{q)ohn (w, clz:l)): ngl}. (3.26)

Since k,/c(n)—a and (h,(w,*)) is a uniformly equicontinuous family, the set of
limit points of 4 is the same as the set of limit points of 4,, where

A, ={Ph,(w,* +a)): n=1}. (3.27)

By Theorem 3.5 the set of limit points of 4, is the set {®(f (- +a)): fe#}, but
the translation invariance of # implies that the limit set of 4, is {®(f): fe%}.
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Therefore the limit set of A_{ (c(") L (w.k )): @1} is the set
{oof (0): fed} = {o(t): 0=t<6;}, which implies (3.22).
b
To prove (3.24), let &(f)=[¢pof(t)dt for fes/. Again @ is a continuous

function on /. Since h,—g,—0 uniformly on R, the set of limit points of
{®(h,(w,): n=1} is the same as the set of limit points of {@(g,(w,")): n=1}.
Now let r, and s, be integers such that

5, <a< 1 Sn s,,—\—l‘
cm™ e’ emT )
Then
P(g,(w, ")) §<P og,(w,u)du
sn—1  (k+ 1)/c(n) (rn+ DY/c(n)
= 3 I oeglowdutr |  @oglowudu
k=m+1 kfc(n) a
+ j @oglw,u)du
sn/c(n)
We have
sn—1 (k+1)/c(n) sp—1 1 c(n)
pog,lw,u)du= — (— L (o, k)).
k=tm+1  Kfc) k=§+1 c(n) n
Also,
(Fn+ 1)/c(n) (4 L)fcln)
@ og,(w,u)duj< f lpog,(w,u)|du
a ¥ufc(n)
1 c(n) )
— — L
= | (3 o)

and by (3.20) this last expression tends to 0 as n— o0 likewise we have

b
lim | ¢ogw u)du=0.

"o safe(n)

Therefore, again using (3.20), we have
1 ( c(n)
(g0, N=—"~ > L, (w,k)} +o(1).
(n) ac(n)§k§bc(n)
Since the limit points of {®(g(w,)): n=1} consist of the set {@(f): feAB}
b
={j(p of(u)du:fe@}, (3.24) follows.

The proof of (3.25) goes along the same lines (one defines &(f)
= inf ¢@(f () and is left to the reader.

a MA
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Remark. In (3.25) if we take ¢(x)=x, then

lim sup @ inf  L,(w,k)=sup inf f(u), (3.28)
n N ac(my<k=bc(n) feBB asush
. . 1 b . . S
and since inf f(u gg—f r, it follows that the right side in
agusgh a -

1
(3.28) is gm and it is clearly positive. If k,=0(c(n)) replaces (3.21) as the

hypothesis of Theorem 3.7(i) then by the previous theorem 0 is still an upper
bound for the left side, and by (3.28) the lower bound is positive. It seems
plausible that if k, = O(c(n)) in (3.23) then the statement remains valid.
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