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Summary. Let X be the (B ~ {q,(x)})-branching diffusion where B ~ is the 

( i )  exp - k(Bs)ds -subprocess of BM(R 1) and q,(x) is the probability that a 

particle dying at x produces n offspring, qo-q1-0 .  Put m(x)=~nq,(x). We 
assume %, n>2 ,  m and k are all continuous (but m is not necessarily 
bounded). If k(x)m(x)---,O as Ixl-+oo, then we prove that R]t~()~o/2) 1/2, as 
t--->oo, a.s. and in mean (of any order) where R t is the position of the 
rightmost particle at time t and )~o is the largest eigenvalue of (1/2)d2/dx 2 
+ Q, k(x)(m(x)- 1). 

1. Introduction 

Consider the following branching process. At time t =0  a single particle begins 
a standard Brownian motion {Bt, t > 0  } on the line starting at Bo=0.  The 
motion continues for a random time ~ whose law is 

t 

P['c>tlBs, s>O]=exp(- !k(Bs)ds)  

where k>0,  k~0 ,  is a given continuous function. (r may be realized as the first 
t 

time the functional At=~k(Bs)ds reaches a random level ~/ where r/ is an 
0 

independent Exp(1)-distributed random variable.) At z the particle splits into 
n_>_2 particles with probability qn(x) where x=B~_. (We assume that qo(x) 
=q1(x)=0,  ~ q , ( x ) =  1 for all x and that every q, is continuous.) Each of the n 
new particles continues along independent Brownian paths starting from x 
=B~_ and is also subject to the same killing and splitting rules. At time t there 
are Z t particles located at positions v(l~ X(r~ ~ . . . . .  t , r = Z c  It is well known that, 
under reasonable assumptions, Zt{J}, the number of particles in an arbitrary 
interval J, tends to increase exponentially like eZ% 2 o defined below, as t~oo .  

* This work was supported in part by a grant from the National Science Foundation ~MCS- 
8201470. 



130 K.B. Erickson 

See, for example [1] or [133. In this paper we show that, under reasonable 
assumptions, the diameter of the process tends to increase linearly, like 
(2)~o)~/2t, as t--+oo. More  precisely, let R t be the rightmost edge of the popula- 
tion at time t: 

Rt = max {XI 1~ . . . . .  Xlr)}, r = Z t. 

Let re(x) be the expected number  of offspring of a particle which dies at x: 

m(x)= ~ nq,(x)>2.  
n = 2  

We assume m is finite and continuous not necessarily bounded. Put 

Q (x) = k(x)(m(x) - 1). 

Theorem 1. If, in addition to the preceding assumptions, 

Q(x)--,O as Ix l~oo ,  (1.1) 
then 

a . s ,  

Rt/t LT~fi o as t ~  (any r>O), (1.2) 

where fio=(2o/2) 1/2 and 2 o is the largest positive eigenvalue of the boundary 
value problem 

co 

(1/2)(d2u/dx2)+ Qu=2u, u>O, S u2dx< oo. (1.3) 
- oo 

Corollary. Let L t be the left-most edge and D t = R t - L  t the diameter of the 
population at time t. Then Lt/t--*-fio and D j t ~ 2 f i o  a.s. and in mean (o f  any 
order) as t~oo.  

Notes. 1. Under  our assumptions, k(x)~O as Ix]~oo.  If  k goes to 0 fast 
enough, for example if k vanishes off a compact  interval, then the lifetimes of 
the individual particles have infinite expectation. That the conclusion of Theo- 
rem 1 should still obtain in these cases seems a little surprising. See Note 4. 
Note  that when k vanishes off a compact  interval J, say, then particles neither 
age nor reproduce outside of J. 

2. Our result provides a little information about  a family of solutions to the 
semilinear heat equation 

8 v/8 t = (1/2) (~2 V / S X  2 A V k(x)(F(x, v) - v) (1.4) 
where 

F (x, v )=q  2 (x) v 2 + q 3 (x) v 3 + .... 

Put v(t ,x,y)=Px[Rt<Y], then v as a function of t and x satisfies (1.4) with the 
initial condition v(O,x, y)= l, x < y ;  =0,  x>y .  See [83. From Theorem l it 
follows that for each fixed x as t--,oo v(t,x, f l t ) ~ l  or 0 according as fl>fio or 
fi<fio. Moreover,  for fi>fio, a<2flo(f l - f lo) ,  1 - v ( t , x ,  f l t)=o(e -a') as an exam- 
ination of the proof  in Step 1 in w 3 will reveal. 
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3. The existence of the eigenvalue )-o, under (1.1), is a standard result in the 
theory of ordinary differential equations. A proof is easily made using the 
results of Chap. 9 of [5]. (For the one sided case see Problem 2, p. 255 of [5].) 
The spectrum of the operator (1/2)dZ/dx 2+Q consists of a continuous part, 
( -o%0] ,  and a discrete part 2 o > 2 1 > . . . > 0  (the eigenvalues.) If {2 does not 
satisfy (1.1) then there need be no eigenvalues. If, for example, Q is constant, 
say Q - Z  o >0, the spectrum is ( - ~ ,  Zo] and there is no solution (2; u) of (1.3). 

4. In the homogeneous case when k is a constant and all of the q, are 
constant, the distribution v (t, x, y) = P~ [R t < y] satisfies 

v (t, x ,  y )  = v (t, 0 ,  y - x) .  

Suppose for example that k(x)=2o, a positive constant, and that q,(x)=0, n4:2, 
qz(X) = 1 for all x. Then v(t,x)= v(t,O, x) satisfies 

~3 v/O t = (1/2) 02 v/O x z + 2 o (v 2 - v) 

with initial condition v(O,x)=l~o,o~)(x ). This and similar homogeneous semi- 
linear diffusion equations have been studied in great detail. For a sample of the 
literature, see [2, 3, 10] and [11]. In this case if c~ t is the median of Rr i.e., the 
solution to v(t,c~)= 1/2, then, as t~oo ,  Rt-c~ ~ has a nondegenerate limit distri- 
bution and furthermore c ~ 2 f l 0 t  , /3o=(2o/2) 1/z. It follows that R]t~2f lo  in 
probability (and almost surely with a little extra effort). Note that 2 o though 
not an eigenvalue is still the largest point in the spectrum of (1/2)d2/dxa+Q 
=(1/2)dZ/dx2+)~ o. The lifetime of a particle in the homogeneous case is 
independent of the particle's path and has an exponential distribution with 
mean 1/2 o. 

In [4] Biggins has studied the asymptotic linearity of a homogeneous 
branching random walk. In [12] Uchiyama proves a limit theorem for a quite 
different class of branching processes (but again with exponentially distributed 
particle lifetimes independent of paths) which implies a linear growth for their 
diameters. 

One of the key estimates is the bound given in Step 1 of the proof of 
Theorem 1. To prove it we h-transform the expectation semigroup (Mr) into the 
transition semigroup of a conservative recurrent diffusion from which we 
quickly obtain uniform estimates of the expected number of particles to the 
right of fit at time t. This method is similar in spirit to the method of 
"associated distributions" so useful in large deviation theory and renewal 
theory. See Feller [6]. For another important estimate see Step 4. The idea 
behind it is to stop the particle production at time t/2 and run the process 
during the time interval (t/2, t) as if we had r=Z~/2 independent Brownian 
motions. 

2. The Expectation Semigroup 

The formal definition and construction of branching Markov processes and the 
derivation of their fundamental equations and basic properties may be found 
in Ikeda, Nagasawa, Watanabe [8]. 
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Let Z~= the total number of particles at time t. If at time t there are Z t = r  
particles, their positions will be denoted X t = [ X ]  1~, ,X(r)q �9 -. t J, an unordered r- 
tuple. These position variables are not independent but for any set A in the, 
rather complicated, state space of X we have 

P[X,+seAlX,, O<u< t, Xt= [x 1 .... ,xr]] 

= Px, [XeA] Px2 [XeA]. . .  Px. [X EA]. 

Here P~[.] stands for probability given that a single particle starts at time 0 at 
x. Let zl, z2, ... denote the successive splitting times: zl=inf{t:Zt+Zo} , etc. 
We duly note here the unsurprising fact that under the assumptions of Theo- 
rem 1 there is no explosion; if zoo=lim~,, then P~[z~o=oQ]=l for all x. This 
fact, whose proof we omit, is in this case a straightforward uniqueness result 
for nonlinear integral equations (v=P~[r~>t] satisfies the nonlinear renewal 
equation called the S-equation in [8]). 

For  any function f put Zt( f)= ~, f(X~i)). For  sets J Zt(d)=Zt(1g) is the 
J. <~i <-Zt 

number of particles in J at time t. The basic properties of the law of X 
exhibited in the last paragraph imply that the equation 

Mtf(x)=ExZt(f) ,  t>O, 

defines a positive but not contracting semigroup (M,) on b C(R). 

( i )  Lemma2.1.  Put eQ(t)=exp Q(Bs)ds , Q = ( m - 1 ) k  as in w Then 

MJ(x)=Ef[ee(t)f(B~)], t>O, (2.1) 

for any bounded measurable f. In particular 

E~Z,(J) =El [eQ(t), Bt6J ] 

E~Z,=E~eQ(t) <eJl~ ]IQ[[ = supQ(x). 

In these formulas and elsewhere pB, E B denote probabilities and expectations 
for Brownian motion. 

Proof. We may suppose f is positive, bounded and continuous. Let v(t,x) 
denote the lefthand side of (2.1). Then v satisfies the renewal equation (.) 

v(t,x)= Tt~ f (x)+ i I Ktx;d y, ds)m(y)v(t--s, y), 
O R  

where Tt~ r > t ] ,  K(x; dy, ds)=P~[Br ~dy, ceds] and m 
=~nq, .  (Here z is as defined in w and obviously coincides in distribution 
with r~.) Call the righthand side of (2.1) Vl(t,x ). If we compute the Laplace 
transform of v 1 (in t), use Kac's formula and a formula for K (see [9], 
Problem 2, p. 184) and a little algebra, we find that v 1 also satisfies (*). We 
obtain the equality in (2.1) by establishing a uniqueness result for solutions to 
(.). The fine details are left to the reader. For  a direct probabilistic proof of 
(2.1) in a special case (but with unbounded Q), see [9], w 5.13. 
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Corollary. (i) M~: b C(R)w-~b C(R). 

(ii) The differential operator (1/2)d2/dx2 +Q is the (local) generator of (Mr). 

Lemma 2.2. Let h be the unique solution to the eigenvalue problem (1.3) subject 
to h(O)= 1. Then 

l i m h '  (x)/h(x) = -Y- 2fio = -T-(2 )~o) ~/2, (2.2) 
x ~  - I - o o  

and consequently h(x)=exp[ , -2 f io  Ixl(1 +o(1))] as Ixl--,oo. 

Proof Fix e, 0 < e < 2  o and choose Xo>0 so that Q(x)<e  for X>Xo, see (1.1). 
Then h " = 2 ( 2 o - Q ) h > 0  on (Xo, oo) so h'eT there. But h6L 2 entails h"eL  2 (Q is 
bounded) and this forces h'eL 2. It follows from these considerations that h'<O 
on (Xo, oo) and r=(h ' )  2 - 2 2 o  h2 is integrable on (Xo, oo). But r'= - 4 Q h h ' > O  on 
(Xo, oo) from which we conclude r < 0  there and this implies (*) h'(x)/h(x)> 
-2 r io  for x > x  o. We now put r~=(h ' )2 - (22o-2e)h  2. Then r~eL 1 and r~<0 on 
(Xo, oo) so r~>0 there. Hence I h ' l / h = - h ' / h > ( 2 2 o - 2 e )  1/2 on (x o, ~) .  Since e is 
arbitrary, we conclude from (,) and the last inequality that (2.2) holds (as x ~  
+ oo but the same argument with a sign change works at - ~) .  

Remark 1. If we drop the assumption Q(x)~0  as Ixl--,~ and require instead 

that ~ Q d x <  ~ (and that Q be bounded and continuous), then (2.2) remains 
- - O O  

valid. Indeed the estimate can be strengthened to 

-h ' (x )=2f ioh(x) (1  + o(1))= Ce-Z~~ + o(1)), x ~ o o ,  (2.3) 

for some constant C and a similar estimate at - o o .  The proof is different of 
course. See [.7], Chap. XI, Corollary 9.2. (Continued in Remark 1 in w 3.) 

3. Proof of Theorem 1 

In what follows we sometimes write P, pB, etc., for P0, Po e, etc. 

Step 1. Fix z l > 0 .  There exist finite positive constants t 1, C1, dl and d 2 with 
dl z 1 - d ~ > O  such that 

P[,Rt>(fl o + z)t] <= C 1 e -Id~-d2)t (3.1) 

for all z>z~ and t > t  1. 

Proof. From Lemma 2.1 we obtain 

P [,R t > b] < EZ~(b, oo) = E B [-ee (t), B~ > b] = MJb(O ) (3.2) 

where fb is the indicator of (b, oo). The generator of (Mr) is the operator 
(1/2)d2/dx 2 +Q restricted to an appropriate dense subset of Co(R ). The eigen- 
function h of Lemma 2.2 is in the domain and it follows that for all t and x 

M t h(x) = eX~ 
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We define a new semigroup (M)) by 

M~f = e-  ;~ot (l/h)Mr(h f).  (3.3) 

Then Mthl =1. From Lemma 2.1 and its Corollary it is clear that M~f(x) is 
continuous in x whenever f is bounded and continuous and that M~f--*f as 
t~0 .  Using some bounds on h from (2.2), one can in fact show that M~': 
Co(R)~Co(R ). Thus (M h) is the transition semigroup of a strong Markov 
process Y and an elementary computation shows that its local generator is 

(1/2) d2/d y2 + (h'/h) d/d y, 

so Y is a diffusion. Now Y has an invariant probability distribution given by 
Tc(dy)=ch(y)2dy, c=(ShZdx) -1. Furthermore for any x=>0, 
PoY[Y~>y]<P~Y[Yt>y] as a simple coupling argument shows (see also 
McKean's Stochastic Integrals, p. 58, Exercise 4). It follows that 

OO CO 

c ~ h(x) 2 d x >  S P~r [Yt > Y] 7c(dz)>rc(O, oo)Po [Yt > y ] 
y o 

for all t>0 ,  y>0 .  Fix 5, 0<e<f i0 .  Then by Lemma (2.2) we have for all x > x  o 
sufficiently large 

h(x)<e -(z~~ and h ( x ) - l < e  (2~~ 

So, for some constant C 2 and all y > Xo, 

pY[y t>y  ] <  C2e-(4/~o 2g)y. 

From (3.2) and (3.3) (and h(0)= 1), we have 

CO 

P [R t > b] < e x~ M~ (L/h)(O) = e ?~~ ~ h (y) -I  p r  [ Yt Ed y], 
b 

which yields, on integrating by parts and applying the preceding bounds, 

P[Rt>b  ] < C a exp(20 t -  (2rio - 3e)b) 

for all t>_O, b>=xo, C a independent of t and b. Setting b=(fio+Z)t and pre- 
choosing 5>0 sufficiently small we get (3.1) with the obvious choice of con- 
stants. 

Step 2. For any interval J and any 2 < 20 we have 

l imZt(J)e-Xt= oo a.s. (3.4) 
t ~ C O  

Proof Case 1. We will assume that for some N > 2  the offspring probabilities 
{q,(x)} satisfy 

q,(x)=0 for all n > N  and all x. (3.5) 
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Then ~ n2qn(x)<N2< oo and the assumptions A, B, and C of Theorem 3.2 in 
n = 2  

Watanabe [13], p. 222, are easily checked. (Assumption C is trivially satisfied 
since )-0 is an isolated point in the spectrum.) We conclude that as t ~  

Zt(J)e -)'~ ~h(x)dx a.s. (3.6) 
J 

for every bounded interval J where h is our ubiquitous eigenfunction and W is 
a random variable which, since q0=0, may be shown to satisfy 

Px[W>0]  = 1 for all x. (3.7) 

(For the interested reader, if v(x) denotes the lefthand side of (3.7), then v 
satisfies (1.4) with Or~St set =0. This quickly leads to (3.7).) Clearly (3.6) and 
(3.7) imply (3.4). 

Case 2. We now drop the assumption (3.5). Let N = 2  be fixed but arbitrary. 
We define a process of tagged particles with the following rules: (i) The initial 
particle is tagged. (ii) If the number of offspring of a tagged particle at its 
splitting time is more than N, then, at the split time, N of its offspring are 
selected at random and tagged, the remaining offspring being left untagged. (iii) 
If the number of offspring of a tagged particle is no more than N, then all of 
them are tagged at the split time. (iv) Finally, no offspring of an untagged 
particle is ever tagged. (Of course the random selecting of the offspring to be 
tagged must be done independently of the positions and future evolution of all 
the particles, so the formal construction will require enlarging the original 
sample space in the usual manner. This we leave to the reader.) If ZIN)(J) 
denotes the number of tagged particles in J at time t, then by construction 

P[Z~N)(J)<Zt(J) for all t ] = l .  (3.8) 

The tagged process is a branching Brownian motion process with killing rate 
(N) X function k(x) and offspring probabilities q~ ( ) = q j ( x ) ,  j<N; =qN(x)+qN+I(X) 

+..., j=N; =0, j>N. From (3.8) and Case 1 we get (3.4) for any 2<2(o N) 
=largest eigenvalue of (1/2)d2/dx2+Q (u), Qff~=k(~nq~,~-l). But, as N~oo, 
Q(mTQ (uniformly), so 2(omT2o by standard comparison results in the spectral 
theory of differential equations and thus (3.4) holds for any 2 < 2  0 . (That 
2(omi " 2o is easily verified from the variational formula 

sup{_~ Q f  dx+�89 j f fdx} ")~0 2 ~ t 

where the sup is taken over f e  C o with ~ f 2  dx= 1.) 
- o o  ! 

Step3. Fix b >a, sl <s 2. Then 

P[R~ >b, Rt<a for some s 1 <t<s2] <2(1 -G((b-a)/(s 2-sl)1/2)), (3.9) 

and 
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P [Rs2 < a, R t > b for some s 1 ~ t ~ $2] ~ 1 -- G ((b - a)/(s 2 - s fll/2), 

where G is the s tandard Gaussian distr ibution function: 

G(z )=  i e-X2/2 dx/(2~z) 1/2" 
- - O 3  

Proof. The  event in (3.9) implies that  some Brownian path was to the right of b 
at t ime s I and then the same path and all of the ther paths were to the left of 
a at some time t in (sl,s2). Ignoring the other  paths and using the Markov  
proper ty  gives 

Lh.S. (3.9)_-< max P~ [ min B s < a] 
y>=b O<--s<--s2--sl 

= 2 pB [Bs2 _ sl < - (b - a)] = Rh. S. (3.9). 

A similar argument  leads to (3.10). (Condi t ion on the s topped field F r where T 
= m i n  {t: R t = b  }. Note  that  {Rt} is a cont inuous process.) 

Step 4. Let  d be any interval contained in [0, o9). Then  for all t, b, r > 0 ,  we 
have 

P [R t < b, Zt/2 (d) ~ r] ~_~ a(b (2/t)1/2) r. (3.11) 

Proof. Put  u(t ,y)=Py[Rt<b]=EyI[Xll)<-_b]. . .I[X}Zt)<=b]. By the Markov  
proper ty  and the independence of particles, we have 

P [R t <= blXt/2 = [x 1 . . . .  , Xn'], Z t / 2  = n] 

= Px, [Rt/2 < b] Px~ [Rt/2 < b]. . .  Pxn [Rt/2 < b] 

<= [ I  u(t/2, x,). 
i: x i~J 

Integrat ing this over the event [Zt/2 (J)> r] gives 

P [R t < b, Z~/2 (J) > r] < max u(t/2, x)q 
x ~ J  

But again, if we ignore all of the processes branching off of the initial path, we 
obtain a single Brownian motion.  Hence  

Py [R t < b ] < P f  [ B t < b ] = G ((b - y)/tl/2). (3.12) 

Since J c [0, oo) (3.11) follows immediately.  

Step 5. lim sup R j t  < flo a.s. 

Proof. F r o m  Step 1 and Step 3, (3.10), we have for 6 > 0  

P[R.>( f lo  + 6)n] < ~ 
n = l  

and 

P [R~ + 1 < (rio + 6) (n + 1), R t ~ (rio + 2 c5) (n + 1) for some t in (n, n + 1)] 

<= l - G ( 6 ( n +  l ) )=O(e  ~2,~/2). 

K.B. Erickson 

(3.10) 
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Since ~ e  -~-~"~/2 < oo it follows that 

P[R,<(ro+f)n,  max Rs<(ro+26)(n+ l) for all n surf. large]=1 
n<_s<_n+l 

by the Borel-Cantelli Lemma.  This concludes Step 5 since 6 is arbitrary. 

Step . l iminfRt / t>f i0  a.s. 
t ~ o O  

Proof. Fix an interval J c [ 0 ,  oo), say J = [ 0 ,  1], fix r < r o  and note that 

[R~<fit  for some t>n]cAnwB, ,  

An= [Zt/2 [0, 1] < e  at/2 for some t > n ] ,  

B,=[Rt<r t  for some t>=n, Zt/2[O, 1 ] > e  ~t/2 for all t>n]. 

I f 2 < 2 0 ,  then PA,~O as n---, co by Step 2. For  6 > 0  we have 

PB,< ~ PERk <(r+b)k, Zk/2[0, 1]>_e ;~k/2] 
k >=n 

+ ~ P[Rk>=(r+6)k, R t<rk  for some t~(k, k + l ) ]  
k>=n 

< ~ G((fi+5)(2k)~/2)~(k)+ ~ 2 ( 1 - G ( 6 k ) )  
k>n k>=n 

by (3.11) and (3.9) where r(k)=e ;'k/2. But 

G ((p + 5) (2 k) 1/2)~k) = O (exp ( - c k -  1/2 r (k) e -  (~ + ~}~ k)) 

for some c > 0 ,  so the first sum above converges and then goes to 0 as n ~ o o  
provided we keep 2 ( r + 6 ) 2 < 2 < 2 0  . Also 1-G(6k)=O(e -~k~/2) so the second 
sum also goes to 0 as n--. oo. What  all this says is that for any r<ro 

P[Rt<rt  for some t>=n]<PA,+PB,~O 

as n ~ .  But this is exactly the assertion of Step 6. 
Steps 5 and 6 obviously imply the a.s, convergence assertion of Theorem 1. 

Step 7. Mean convergence. Put R* = (1/t)R t -  rio. We will show 

E [R*[---,O, as t - ~ .  

(The proof  is easily modified to show E I R * I ~ O  for any r>O.) An integration 
0<3 

by parts gives E JR*[ = ~ P HR*[ > y] dy = 11 + 12 + 13 where 
0 

11 = ~ P[R* > y ] d y = ~  P[Rt> fit 3 dr, 
o #o 
o #o 

I2 = ~" P[R*<y]dy=~ P[G<rt]df i ,  
- # o  0 

-#o 0 
I3= J~ P [ R * < y ] d y =  ~ PERt< f i t ]d r .  

- o o  - o o  
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Fix z 1 > 0 but otherwise arbitrary. Applying Step 1 gives 

I1 < zl + C1 o~ exp(-(dlz-d2)t)dz  
"Z 1 

=z~ +O(e-at), a=dlzl-d2>O. 

Letting t ~ o o  and then z l ~ 0  shows that I1~0.  Next I 2 ~ 0  by the a.s. con- 
co 

vergence of R]t. Finally, from (3.12) we obtain I3<~[1-G(flta/2)]dp 
0 

=O(t-~/2)~O as t~oo.  This concludes the proof of Theorem 1. 

Remark 1. Using the estimate (2.3) we can obtain the following strengthening of 
(3.1) in the case that Q is integrable (and bounded and continuous): For some 
constants C O >0  and t~ >0  we have 

P[Rt> flot + X] < Co e-z~~ 

for all t>=tl, all x>0 .  This estimate in turn allows us to conclude that, in 
addition to (1.2), for any ~>(2fi0) -1 

P [Rt < flo t + ~ log t for all sufficiently large t] = 1. 

We omit the details. 

4. Additional Remarks 

(1) A multidimensional version of Theorem 1 is easily proved with very much 
the same methods. For example consider the case of Brownian particles in R d. 
Suppose that the offspring probabilities q, and the function k are spherically 
symmetric. Let Q = ( m - 1 ) k  as before and let D t be the distance of that particle 
which is furthest from the origin at time t. If Q(x)~O as ][x[]-~oo, then 
Dt/t---~()Lo/2) 1/2 as t~oo,  where 20 is the largest positive eigenvalue of the 
boundary value problem 

oo  

(1/2)u"(r)+(d-1)u'(r)/2r+Q(r)u(r)=2u(r), t">0, ~u(r)2r~-ldr<oo 
0 

(and u'(0)=0 in the d =  1 case). (Q(r)=Q(x) for Ilxll =r.) 

(2) The assumptions of Theorem 1 can be weakened. Suppose B ~ the 
nonbranching part of X, is the exp(-At)-subprocess of B where A, 
=SL(t, x)k{dr}, L=loca l  time, and k is a measure with k(-a,  a)< m for every 
a > 0 .  Under very general conditions the expectation semigroup is given by 
Mtf(x)=E x exp(Qt)f(Bt) where Qt=~L(t, x)(m(x)- 1)k{dx}. As long as the 
generator of (Mt) has a largest positive eigenvalue with an eigenfunction which 
decays exponentially at 4- ov (this will be the case if k has bounded support, for 
example), then one can expect asymptotic linear increase in the diameter of the 
branching process. However this property of the generator of (Mr) is certainly 
not necessary. See Note 4 in w 1. 
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(3) W h e n  the funct ion k of T h e o r e m  1 is u n b o u n d e d  the conc lus ion  of 
T h e o r e m  1 is no t  true. W e  ob t a in  an interes t ing class of examples  wi th  

k ( x ) = [ x l  ~ 

for some r > O .  Let  us suppose  tha t  q 2 ( x ) = l  for all x (so m=-2). In  this case it 
is k n o w n  tha t  P [ z ~ < o � 9  or  1 accord ing  as O_<r_<2 or  r > 2 .  (z~ is the 
exp los ion  time.) See [91, pp .209-10 .  Let  us suppose  O < r < 2 .  Proceed ing  al- 
mos t  exact ly  as in [91, pp. 207-9, one can show 

P[R~>=t q i.o. as t ] ' o e ] = l  for q<qo:=2/(2-r).  (4.1) 

W i t h  a l i t t le  more  effort one can also show E S e x p  IBffds =e ~ where  p 

= (2 + r)/(2 - 1"). Therefore,  see (3.2), 

P JR, >= n q] <= ~ (E B ee(n)2) t/2 (pB lB, > nq]) t/2 
n 

< ~  exp(cnP-(1/4)n2q-1)< oo 
t l  

whenever  q > ( p +  1 ) / 2 = % .  Thus  P[R>=nq i.o.] = 0 ,  q>qo. This and  (4.1) and  a 
slight modi f i ca t ion  of Step 5, w 3, enable  us to conc lude :  A lmos t  surely 

l im sup Rt/t q = 0 or  

accord ing  as q > q0 or  q < qo- (In fact l ira sup R t / t  q~ < o~.) 
The case r = 2  is pa r t i cu la r ly  interest ing.  In  this case the expec ta t ion  semi- 

g roup  is ov for all t sufficiently large,  [91, p. 204, and  R t tends to increase  faster 
than  any power  of t. 
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