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Summary. An infinite system of Markov chains is used to describe popula- 
tion development in an interconnected system of local populations. The 
model can also be viewed as an inhomogeneous Markov chain where the 
temporal inhomogeneity is a function of the mean of the process. Con- 
ditions for population persistence, in the sense of stochastic boundedness, 
are found. 

1. Introduction 

Markov processes have long been used to model the dynamics of animal 
populations (Bartlett 1973). However in the majority of cases the animals are 
assumed homogeneously distributed in space. In contrast, Andrewartha and 
Birch (1954) stressed that animal populations are not homogeneous in space, 
but are made up of a number of partially independent local populations, 
connected by migration. When this is recognized, a system of interacting 
Markov processes is necessary for the description of population dynamics. Such 
systems are not easy to analyze and consequently models in population eco- 
logy have involved restrictive assumptions to achieve analytical tractability 
(Caswell 1978; Chesson 1978, 1981). Typically such models consider a finite or 
infinite system of "patches" (areas of suitable habitat) where each patch sup- 
ports a local population. For analytical tractability, the number of patches is 
usually infinite and migration is random, that is, any two patches are assumed 
equally accessible to migrating organisms from any other patch. Most re- 
strictive, however, is the assumption that a two-state Markov chain is sufficient 
to describe local population dynamics. Essentially, one must assume that 
simply knowing whether a local population is extinct or not, is sufficient. 

To overcome the last and perhaps most serious problem with these popula- 
tion models, Chesson (1978, 1981) introduced a model that retains the assump- 
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tions of random migration and infinitely many patches, but allows local popu- 
lations to be described by an essentially arbitrary Markov process on the 
nonnegative integers. The model can be thought of as a infinite set of interact- 
ing Markov chains. However because of the random migration assumption, the 
interaction between these chains is very simple and an alternative description is 
available: the population on any patch can be regarded as an inhomogeneous 
Markov chain where the inhomogeneity is a function of the expected value of 
process. Thus the transition probabilities are a functional of the marginal 
distribution. 

For this model, we study the fundamental problem of population per- 
sistence. Our definition of persistence uses the notion of stochastic bounded- 
ness (Chesson 1978), which is a concept closely related to positive recurrence of 
the states of a Markov chain. Both necessary and sufficient conditions for 
persistence are found. 

2. The Model 

In the discussion below h is some fixed number (0<h < 1), t is a non-negative 
integer while s is a member of {0, h, 1, 1 + h,...}. 

We deal with just the single species models in the class introduced by 
Chesson (1978, 1981). In this class migration and population growth are as- 
sumed separated in time. Migration occurs during the periods (0, hi, (1, 1 + hi, 
(2 ,2+hl .  During (h, l l ,  ( l+h ,  2], (2+h, 3],. . .  local populations are isolated 
and local population growth occurs. 

Let Zi(s ) be a non-negative integer-valued random variable representing the 
local population size on patch j at time s and define Z(s)=EZj(s) (it will not 
depend on j). The population size Zj(t+h), following a migration period, is 
written Zj ( t+h)=Zi ( t )+I~( t+h) -Ej ( t+h  ), where Ij and Ej respectively repre- 
sent immigration to, and emigration from, patch j. 

Define J/Y~ to be the o--field generated by 

{Zj(u), u <=s; Ij(t +h), Ej(t +h), t +h<s;  j=  1, 2 .. . .  }. 

The following assumptions are made. 

1. Z1, Z 2 . . . .  are i.i.d, stochastic processes. 

2. Conditional on Jilt, {I j ( t+h),Ej( t+h), j=l ,2 ,  ...} is a collection of mu- 
tually independent random variables. Ij(t+h) is conditionally Poisson with 
mean # 2 ( 0  and Ej(t +h) is conditionally binomial with parameters Z~(t) and #. 
(Note that gI j ( t+h)=EEj( t+h)  and so 2(t+h)=Z(t)) .  

3. P(Zj(t-[- 1) = z l ~ +  h) = 7 (Z, Zj(t + h)) where ~ is some transition function. 
Heuristically condition 2 can be described as follows: For each patch, each 

individual animal emigrates with probability #, independently of the other 
individuals. The emigrants from all patches join a common pool of migrating 
individuals, which are redistributed at random to all patches to give the 
Poisson distribution of immigrants. 
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Condition 1 may seem a little odd since it appears that different patches, 
though connected by migration, do not affect each other. In fact the effect of 
all other patches on any given patch is deterministic, not stochastic. Any 
individual patch is affected by the average population density of all patches, 
viz 

lira 1_ ~ Zj(s)=Z(s). a.s., 
n ~ o e n  j= 1 

and is nonrandom by virtue of the law of large numbers. Chesson (1981) shows 
how the model described here can be obtained as a limit as k ~ o o  of a model 
with k<  ~ patches. In this latter model the Zj,j= 1 ..... k, are not independent. 

An important quantity is the conditional mean 

g(zj(t + h))= E EZj(t + 1)IN+h3 = 2 z,/(z, Zj(t + h)). 
z 

It must satisfy the condition g(0)=0 i.e. a zero population has zero growth. 
This is of course equivalent to the condition ,/(z, 0)= l~o~(Z ). To avoid triviality 
it is also assumed that 2 ( 0 ) > 0  and/~>0.  

3. Stochastic Boundedness 

Stochastic boundedness (Chesson 1978) is closely related to tightness of a 
family of probability measures which is sometimes also given the name sto- 
chastic boundedness (e.g. Feller 1971). 

Definition 1. The population on the j th patch is said to be stochastically 
bounded from above (sba) if for every e > 0  there is an N<Go such that 
P(Zj(s)>N)<e for all s. 

Definition 2. The population on the jth patch is said to be stochastically 
bounded from below (sbb) if the event {Zj(s)>0} occurs for infinitely many s, 
a.s., and there is a positive number e such that P (Z j ( s )>0)>e  for all s. 

In this paper the Zj are identically distributed and so either all local 
populations are stochastically bounded or all local populations are not sto- 
chastically bounded. Hence we shall speak of stochastic boundedness of local 
populations rather than stochastic boundedness of the population on the jth 
patch. While the set of processes Z1, Za, ..., serves to motivate the model, the 
mathematical structure of Zj does not depend on the presence of other stochas- 
tic processes and it can be defined in isolation. Thus the subscript j will be 
suppressed in all that follows. 

Stochastic boundedness from below is one way of defining population 
persistence and is the main subject of this article. Stochastic boundedness from 
above can be dealt with very simply, for it is not difficult to see that the 
population will be sba if and only if Z(t)<M, for all t, for some finite constant 
M. Moreover the following simple condition on g is easy to derive: the 
population will be sba if there are positive constants p <  1, and N <  ~ ,  such 
that g(z)<__pz for all z>N. 



100 P.L. Chesson 

3.1. Sufficient Conditions for Stochastic Boundedness from Below 

For convenience, in this subsection we assume stochastic boundedness from 
above so that there is an M <  o% with Z(t)<M, for all t. In the presence of this 
condition, sbb reduces to a simple condition on Z: 

Lemma 3.1.1. Local populations are sbb if and only if there is an ~ > 0 such that 
Z(t)>e for all t. 

Proof The "only if" part follows from the inequality P(Z(t)>O)<Z(t). To 
prove the "if" part assume Z ( t ) > e > 0 .  Then P ( Z ( t + h ) > O ) > l - e  -"~. More- 
over 

P(Z(t + h) = l) >= E# z(t) Vl, 

where vz=inf{(#z)le-"Z/l![e<=z<__M}, and using Jensen's inequality it follows 
that P(Z(t+h)=l)>p~v~. Defining pz=P(Z(t+l)>OlZ(t+h)=l)  we have 

P(Z(t+l)>O)> ~ #Mvlp I. 
/ = 1  

The RHS above is positive because v~>0 and pt must be positive for some l, 
since Z ( t ) > 0  for all t. Thus we have proved that P(Z(s)>O) is bounded away 
from 0. 

To complete the proof we must show that {Z(s)>0} occurs infinitely often, 
a.s., whenever Z ( t ) > a > 0  for all t. If Z(t)>e then P(Z(t+h)>Ol~t_l+h)>l 
--e-Uq It follows that 

P(Z(t + h) > O] ~ _  a +h)= oo 
t - 1  

and hence, by the extended Borel-Cantelli lemma (Breiman 1968, p. 96) Z(t 
+ h) > 0 infinitely often, a.s. 

We now come to general sufficient conditions for sbb. In order to define 
them we need to introduce another model. 

Let Y be a Markov chain with index set {0, h , l , l + h ,  ...} and state space 
{0, 1, 2 . . . .  } such that 

P(Y(t + 1)=jl  Y(t +h))=7(j, Y(t +h)) 

and, given Y(t), Y(t + h) is conditionally binomial with parameters (Y(t), (1 - #)). 
The process Y behaves like the population process for an individual patch with 
immigration excluded, i.e. with I(t + h) set equal to 0. 

Define f (t) = E [ Y(t)] Y(h) = 1 ]. 

Theorem 3.1.2. I f  

then local populations are sbb. 

f( t)# > 1 
t = l  

In order to prove the theorem we need some lemmas. We shall assume that 
at least one pz=P(Z(t+l)>OrZ(t+h)=l) is positive, as must be so if any of 
the f (t) are positive. Define A (t, u) = {Z(t) > 0, ..., Z ( t -  u + 1) > 0, Z ( t -  u) = 0, 
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Z ( t - u + h ) = l } ,  u = l , 2 , . . . ,  A(t,O)={Z(t)=O, Z ( t + h ) = l } ,  B(t,u)={l(t+h) 
... I ( t - u + l + h ) = O }  and C ( t - u ) = { Z ( t - u + h ) = l ,  Z(t-u)=O}.  

Lemma 3.1.3. 

_ Z ( t -  v) (1) E[Z(t+ 1)la,,ul] C(t--u)] >_f(u+ 1) exp --# v 

Proof. The conditional distribution of Z(t + 1) given B(t, u)~ C ( t - u )  is equal to 
the conditional distribution of Y(u + 1) given Y(h)= 1. Hence 

E rz ( t  + 1)lB(t, u) r~ C( t -  u)] =f(u + 1). 

Note also that on B(t, u)r~ C(t-u), Z ( t + l ) = Z ( t +  1)IA.,. ) because, in the ab- 
sence of immigration, an extinct population remains extinct. Hence 

EEZ(t + 1)lA(t,,)lB(t, u)c~ C(t--u)] = f (u + 1) (2) 

and since Z(t+ 1)>0 we have 

E [Z(t + 1) 1A(t,,, [ C(t-- u)] >f(u + 1) P(B(t, u)[ Cit - u)). 

The lemma is now proved by the observation 

2 (t - v) P(B(t, u)[ C(t-u))=exp - #  

Lemma 3.1.4. Suppose that for some given value of t, 0 < ~ < 2(t) < M, then there 
is a number e'>O, independent of t, such that Z ( t + l ) > e ' .  

Proof. As in Lemma 3.1.1 

P(Z(t + 1)>0)=> ~ #MvlpfleUe'>O ; 
l = l  

and it is clear that Z(t+l)__>d. As a corollary we can conclude that Z( t )+0  
for any t when Z(0)+0. 

Lemma 3.1.5. I f  l imZ( t )=0  then, for every 5>0 and every positive integer N, 
there is a t > 0  such that Z(t), . . . , Z ( t -  N + I)<5. 

Proof. For e and e' as in Lemma 3.1.4 define a(e)=min(e,d).  Let a (N) be the 
Nth composition of a with itself. If 

Z(t + 1) < 0-(N~(~) (3) 

then 2(0  . . . . .  Z ( t - N + l ) < e .  Since a is a positive function lim Z( t )=0  implies 
that (3) is satisfied for infinitely many t and so the lemma is proved. 

N 

Proof of Theorem 3.1.2. Let N be a positive integer for which ~ f(u)# > 1. Let 
u = l  

e > 0 be such that 
N 

f(u)#e_U, ql  __ ~ ) d e f p  > 1. (4) 
u = l  
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By Lemma 3.15 either the population is sbb or there is a t such that 
Z ( t - u ) < e  for u = 0  . . . .  , N - 1 .  Assume the latter and define 2m~n(t,N ) 
=min  {Z(t) . . . . .  Z ( t - N +  1)}. The sets A(t,u), u=0 ,  1 . . . .  are pairwise disjoint 
and so 

N - - J  N - 1  

Z(t+l)=> ~ EZ(t+I)  IA,,.)= ~ E[Z( t+I)  IA(t,.) I C( t -u)]P(C(t -u)) .  (5) 
u = O  u = O  

Since P ( Z ( t -  u) = O) > 1 - Z(t - u), P ( Z ( t -  u + h) = l [Z( t  - u) = 0) = # Z ( t -  u) exp 
�9 ( - # Z ( t - u ) )  and Z ( t - u ) < e ,  we have P(C(t -u))>pZ(t -u)e-U~(1-e) .  Com- 

bining this with (1), (4) and (5) we obtain 

N 

Z ( t + l ) >  ~ f ( u )#e - ""~ (1 -e )N( t -u+l )  
u = l  

> p Zmi n (t, N). 

Clearly Z ( t + l )  . . . .  ,2(t+N)>P2min(t ,N),  provided none exceeds s. Hence 
Zmln(t+N,N)>P2min(t,N ). This means that 2mi~(t+rN, N ) will increase as a 
function of r until sup {Z(t+v),  v=  1, ..., rN} exceeds e. It is then possible that 
J~min(t+ rN, N) may decrease but it must remain above e* -- o-~m(s). 

It is now clear that l i m Z ( t ) > s * > 0  and by Lemma 3.1.1 this proves the 
theorem. 

Note that the asymptotic lower bound, s*, is independent of the distribu- 
tion of Z(0). 

3.2. Necessary Conditions for Stochastic Boundedness from Below 

Throughout  this subsection we assume that there is an M < oo such that 

E[Z(t+ 1)[Z(t + 1)>0, ~ + h ]  < M. (6) 

Thus there is an upper bound on the conditional mean population size of 
positive populations. From (6) it follows that E[Z(t+ 1 ) [ ~ + h ] < M ,  Z(t)<__M 
for all t >  1, and hence that local populations are sba. We have the following: 

Theorem 3.2.1. I f  

f( t)# < 1 
t = l  

then there is an e > 0  such that l i m Z ( t ) = 0  whenever Z(0)<e.  Hence local 
t ~ o o  

populations are not sbb for such values of Z(O). 

To prove the theorem we need several lemmas. 

Lemma 3.2.2. 
u - - 1  

E [Z(t  + 1) la(t, u)] C(t - u)] <= f (u  + 1) + #M ~ Z(t - v). (7) 
v = O  
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Proof Using Z, A, B, C respectively for Z(t+ 1), A(t, u), B(t, u) and C(t -u)  we 
have 

E[Z1AI C] =E[Z1A~BI  C] + E [ Z  la~Bc] C] 

<__E[Z1AIBC~ C] + E[ZIB~ c~ C] P(Bq C). 

By (2) E[Z1AIBc~C]=f(u+I  ). Moreove r  E[Z[gf~t+h]GM and since 
BC c~ C~V~t+h it follows that  E[Z[BC c~ C]< M. Final ly  

Z ( t - v )  <~ ~ Z l t - v ) .  P ( B q C ) = l - e x p  - # ~  ~=o 

Put t ing this together  we get the stated result. 
For  the next  result we need to define the event 

D(t, N) = {Z(u) > 0, u = t -  N + 1 . . . . .  t}. 

L e m m a  3.2.3. There is a number Z < 1 such that 

P (D (t, N)) <__ Z N 
for all N < t. 

Proof. 
P(Z(t § l )-=Ol~f~O>=P(Z(t + h)=Ot.Yt~) 

~t2z(t) e ~,2(t) 

>= #z(t) e -  .M 

Thus 
P(Z(t + 1) > 0 t S~t) < 1 - e -  "MllZ(t)ae=fp(Z(t)). (8) 

N o w  
N 1 

P(D(t, N ) ) =  [ I  P ( Z ( t - u ) > O ] D ( t - u - 1 ,  N - u - l ) )  
u = 0  

N - - 1  

<= I] E [ p ( Z ( t - u - 1 ) ) l D ( t - u - l , N - u - 1 ) ]  
U = 0  
N 1 

< H p ( E [ Z ( t - u - 1 ) J D ( t - u - l , N - u - 1 ) ] ) .  
u ~ O  

Z �9 �9 �9 9 �9 ( he last lnequahty  is Jensen s.) Using (6) we see that  the condi t ional  expec- 
ta t ion is < M  and so P(D(t, N))<p(M)NdefzU with Z <  1. 

L e m m a  3.2.4. Fo r  u > 0 

EZ(t  + 1) l{z(t_.= o, z(~ .+ h)> 1} = M [ # Z ( t  - u)]-. 

Proof The L H S  of (9) equals 

(9) 

E{E[Z(t  + l)12/f t+h][Z(t-u)=O,Z(t-u+h)> l } P ( Z ( t - u ) = O , Z ( t - u + h ) >  l) 

<= M P ( Z ( t -  u + h) > 1 ]Z( t -  u) = O) 
= M{1 - [1 + p Z ( t - u ) ]  exp [ - -  ~2(t  - u)]} 
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and the desired result  follows f rom the inequali ty e X - l - x < x 2 e  ~ for all 
posi t ive x. 

L e m m a  3.2.5. Let {zt} and {~bt} be sequences of non negative numbers such that 

43<1, (lOt 
t = l  

and for all N < t 
N u-1 

Z t + l ~  2 [ff)u ~-a 2 Zt-v]Zt-u+l -~-M)~N' (11)  
u = l  I_ v=0 

where a,M,)~ are positive constants with Z < I .  Then there is an e > 0  and an 
N < oQ such that 

Zl,...,ZN<~. implies z t~O as t~oe .  

Proof Define z(t, N)=max{z(t) ,  ..., z ( t - N +  1)}, p =  ~ ~b t and assume that  for 
t = l  

some fixed t and N, z(t, N ) < N  -3. F r o m  (11) we obta in  

zt+ z < pz(t, N ) + a N  -4 + M z  N. (12) 
If  

a N - 4  + MzU <~(1 - p ) N  -3 (13) 

then Z~+l<N 3 which means  z ( t + l , N ) < N  -3, indeed z ( t + r , N ) < N  -3 for all 
r > 0 .  As a consequence (12) holds for all t greater  than  or equal  to the given t. 

Since lira zr = lira z(t, N) it follows that  

lira zt< p lira z t + a N - 4  + M z  N. 
Hence  

a N - 4  + M z u 
l im z t<  < 1/8N- 3. (14) 

1 - p  

N o w  choose N o so that  (13) holds for N > N  o and let e=No 3. If z 1 . . . .  ,ZNo<e 

then l i m z t < l / S N o  3. Define N , = 2 " N  o. If  t, is given and zt<Ns -3 for t>=t, 
then it follows f rom (14) that  there is a t,+ 1 such that  zt<N2+31 for t>t,+~. 

Choos ing  t o = 1 it now follows inductively that  lira z t<  N,-3 for every n, which 
proves  the lemma.  

Proof of Theorem 3.2.1. First  of all 

N--1 
2(t+1)= ~ ~z(t+l)lA(~,.) 

u--0 

+ EZ(t  + 1)lD(t, m 
N - 1  

+ ~ EZ( t+  1)lD(~,~)~(zct_u)=O,Z(~_u+h)~ a~- 
u=0 

We have 

(15) 

EZ(t  + 1)la(t,,)=EEZ(t + 1)lA(t,,) I C(t, u)]P(C(t, u)), P(C(t, u))<#Z(t  
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-u)  and using Lemma 3.2.2 we obtain 

EZ(~ + 1)IA(~,,)< [ f  (u + 1) + pM k 
"-~ )] 

Z ( t - v  
v=O 

~2(t-u). (16) 

Also EZ(t + 1)lou.x)=EEEZ(t + 1)l)~t+h]lD(t,N). 
Using Lemma 3.2.3 it follows that 

EZ(t + 1) ID(t,N)<= MZ N. 

Finally, using Lemma 3.2.4, we have 

(17) 

EZ(t + 1) lv(t, .)~{z(t-.)= o. z(t-.+h)> n < EZ( t+ 1)ltz(t-u)=o,z{,-.+h)> 1} 
=< M [# 2 (t - u)]-'. (18) 

Combining (15)-(18) we obtain 

Z ( t + l ) <  (u)+IzM ~ 2 ( t - v )  t ~ 2 ( t - u + l ) + M z  N. (19) 
u = ] .  v ~ 0  

Using Lemma 3.2.5 we now deduce that there is an e '>0  and an N < ~ such 
that 2(0) . . . . .  Z (N-1 )<e '  implies that 2 ( t ) ~ 0 .  Given such N and e' choose a 
= ~'/M N. Then 2(0) < e implies Z(0), ..., Z(N - 1) < e' because 

Z(t + 1)=EE[Z(t + 1)/Z(t +h)l~+h] Z(t +h) 

< EE [Z(t + 1) [ Y,'~, +,,,] Zit + h) 

<MEZ( t+h)  

=MZ(t ) .  

Hence 2(0)<~ implies 2(0  4 0 .  

4. Interpretation and Application 

The condition for sbb given in the previous section has a natural interpretation 
in terms of the expected number of emigrants from a patch that is begun with 
one individual, and to which subsequent immigration is excluded. The expected 
number of emigrants from such a patch during (t, t+h] is E[Y(t)IY(h)=I]# 

=f( t ) / l .  It follows that ~ f(OP is the expected total number of emigrants 
t = l  

from a patch treated in this way. We have shown that stochastic boundedness 
from below depends on whether this quantity is greater than 1 or less than 1. 
The intuitive strength of these results suggests that they are likely to hold in a 
much broader class of models than is considered here. 

I now give a simple example of the application of the results in Sect. 3 to a 
particular model. 
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Example. Suppose 

Then 

7(z,~)=~l{~ 4=0 
[7,(z), ~>0. 

E[Y( t+I ) I  Y ( t + h ) > 0 ] =  ~ zTt(z)~f~ 
z=0 

P(Y(t+h)>OI Y(t+h-1)>O)= ~ 71(z)(1-pz) 
z=0 

= 1 - ~b (#) 

where ~b is the probability generating function of 71. It follows that P(Y(t 
+h)>OIY(h)=l)=[1-O(#)] ~ and E[Y( t+l) lY(h)=l]=~[1-O(#)]  t and so 

~f(t)l~=p~/~(#).  Thus local populations will be sbb for all possible Z(0)>0 
t=l 
if/~/q~(#) > 1. If 71 is Poisson with parameter 2 this criterion reduces to 

2# > e ~(u- ~) 

Despite the ease of interpretation of the condition for sbb, in situations 
more complex than the example above the f(t) are not readily calculated 
except for small t. Clearly sufficient conditions can be found by considering 
partial sums of the f(t). In addition the example above can be used to find 
both necessary and sufficient conditions for any particular example. For an 
arbitrary transition function 7, 71 can be defined generally by the equation 

71 (z) = inf 7 (z, ~) 
~>0 

for z>0,  and 71(0)=1-  ~ 71(z). ~ and q5 are defined in terms of 71 as above. 
z = l  

Clearly ElY( t+ 1) I g(t +h)>O] >= ~ and P(Y(t +h)>O I Y(t +h - 1)) >0=> 1-4)(#). 
It is now easily seen that 

f (t)l~ > #U4~(#) 
t = l  

and that/~/~b(#) > 1 is a sufficient condition for sbb for any 2(0)>0.  
Now define F2(z)=inf ~ 7(Za, 4). If F 2 is a proper distribution function 

zl<z 

then define 7e(Z)=F2(z)-F2(z-1). With ~-- and ~b + defined in terms of V2 in 
the same way that ff and ~b are defined in terms of 71, we can say that local 
populations will not be sbb for all possible Z(0)>0 if 

~+/q~+(~)<l. 
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