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Summary. Given independent, identically distributed copies of a mixed 
Poisson process N on a LCCB space E, i.e., a Cox process whose directing 
measure is of the form c~m*, where a>__0 is a random variable with distribu- 
tion a and m* is a measure on E, we construct strongly consistent and 
asymptotically normal  estimators of m* and the Laplace transform l~. 
Methods are presented for estimating the directing measure of the (n + 1) st 

process by combining the data for that process with estimates of appropri-  
ate quantities, the latter based on the first n processes. The case where 
different processes are observed over different sets is addressed. 

1. Introduction and Problem Formulation 

In this paper we analyze methods for effecting nonparametr ic  estimation of 
defining objects and state estimation using estimated attributes of the process, 
for mixed Poisson processes, which constitute an important  class of Cox 
processes. The possibly unfamiliar term "state estimation" will be explained 
below. We assume that the data comprise a sequence of i.i.d, realizations of a 
basic underlying process, and consider mainly asymptotic properties of esti- 
mators of the quantities defining the process and of state estimators con- 
structed using estimated properties of the process. 

Our setting is the following. Let E be a locally compact  Hausdorff  space 
with Borel a - algebra g. Let m* be a fixed, locally finite measure ( =  Radon 
measure) on g and let a be a nonnegative random variable with distribution 
function a. Regard M = am* as a random measure on d ~ Then a point process 
N on E is said to be a mixed Poisson process directed by am* provided that 
conditional on a, N is a Poisson point process on E with mean measure am*; 

* Research supported in part by the Air Force Office of Scientific Research, USAF, grant 
number AFOSR 82-0029. The United States Government is authorized to reproduce and distribute 
reprints for Governmental purposes 



82 A.F. Karr 

see Kallenberg (1976). In particular, it follows that for each A, N(A) has the 
mixed Poisson distribution (called by some authors a compound Poisson distri- 
bution) 

m* (A) k 
(1.1) P { N ( A ) = k } -  k! ~a(dx)e-~m*(A)xk' k>=O. 

Mixed Poisson processes are a special case of Cox processes (=doub ly  
stochastic Poisson processes); see Kallenberg (1976) for details. 

We assume that m* and ~ are unknown (except that they satisfy certain 
mild hypotheses below) and that they and other attributes of the individual 
processes are to be determined from the data. We work with data that are 
mixed Poisson processes N1, N2, ... directed by i.i.d, random measures M t 
=~1 hi*, M 2 = 0 ~ 2 m *  . . . .  , where the ~ are i.i.d, with distribution o-. Thus, each 
Mf is a deterministic measure m* common to all processes times a random 
scalar multiplier cq. 

Our analysis focusses on two main problems. The first is more classical, 
although our approach is entirely nonparametric: estimation of the measure 
m* and the probability measure o- that define the distribution of the N~. This 
problem is treated in Sect. 2, where we propose estimators of m* and of the 
Laplace transform 

l~(t) = [. G(dx) e -'~, 

which are shown to be strongly consistent and jointly asymptotically normal. 
Our second class of problems deals with state estimation. Consider for a 

moment a single mixed Poisson process N directed by the random measure 
M(A)=em*(A)  and suppose that m* and o- were known. The random variable 

is not directly observable but often (see, e.g., the discussion below of poten- 
tial applications to modeling of cancer) is of paramount  interest. Thus one 
must estimate c~, realization-by-realization, based on observation only of N, 
possibly over only a subset A of E. Regarding c~ as an unobservable state of 
nature leads to the term "state estimation". Optimality in the sense of mini- 
mum mean-squared error is attained by conditional expectations E[c~[~N], 
where ~ N =  a(N(B): B o A )  is the a-algebra representing observation of N over 
A. It is shown in Karr  (1983) that 

(1.2) 
a(d x) e - x,.*( a) X1 + N(A) 

consequently, M itself is estimated by 

a(dx) e-Xm*(a) x 1 + N(A) 
(1.3) ECMI w m*, 

where the conditional expectation is in the sense of Karr  (1976). 
Obviously (1.2)-(1.3) can be implemented only if m* and cr are known. 

Nonetheless the underlying problems of state estimation are of equal impor- 
tance when m* and a are unknown. In Sect. 3 we treat this class of questions 
in the following formulation: i.i.d, copies of N are observed one-by-one. Sup- 
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pose that processes N1, ..., N,, have already been observed. To effect state 
estimation based on partial observation of the process N,+ 1 over the set A (i.e., 
to approximate E[~,+I  [ 97A N'+I] or ELM,+1 ] @~"+1]) we invoke the principle of 
separation long used in engineering. That  is, the data N 1 . . . . .  N, are used to 
form estimates of the functionals of m* and a that appear in (1.2)-(1.3), while 
the partial observations of N,+ 1 are substituted for those of N. This procedure 
yields a "pseudo-state estimator" that approximates the " t rue"  state estimator. 
Many of our results are asymptotic comparisons of " t rue"  and "pseudo" state 
estimators. 

Our interest in these mixed Poisson processes and the questions addressed 
here was stimulated by the paper of Bartoszyfiski, Brown, McBride, Thompson 
(1981), especially the proportional hazards model in their Sect. 5. The basic 
problem they treat is estimation (from i.i.d, realizations) of the intensity func- 
tion of a nonhomogeneous Poisson process on N+.  The context is metastasis 
in the growth of malignant tumors: different processes correspond to different 
patients and events of one patient's process are times of metastases. Their 
techniques are based on penalized maximum likelihood estimation. In the 
proportional hazards model (based on Cox (1972)) they permit finitely many 
covariates zl . . . .  , ze that are deterministic and observable, and influence the 
intensity through a factor exp(~fiiz~), where /?sN~ is unknown. Our model 
replaces the covariates by multipliers % that are random and unobservable, 
and generated by the unknown probability distribution a; thus while related 
the two models apply to differing physical situations. State estimation for e,+ 
in effect seeks to estimate for that process and each realization, the contri- 
bution of the unobservable "covariates': 

In reality, of course, not all patients are observed for the same length of 
time, let alone over the same time interval, so in Sect. 4 we extend some of the 
results of earlier sections to the case where the process N,. is observed over a 
deterministic set A~. These results do not include the case of randomly censored 
data, although extension to a censoring mechanism independent of the pro- 
cesses should be straightforward. 

Mixed Poisson processes on IR+ were introduced by Lundberg (1940) in the 
context of insurance (m*=Lebesgue measure). When c~ has a gamma distribu- 
tion the process is called a P61ya process. The definitive mathematical charac- 
terization of these Cox processes is due to Kallenberg (1975): when m*(E)= oo, 
N is a mixed Poisson process with parameters c~,m* if and only if N is 
symmetrically distributed with respect to m* in the sense that whenever 
A 1 . . . . .  A k are disjoint (bounded) sets, the random variables N(AI), ..., N(Ak) 
are interchangeable. For  further details, including an analogous character- 
ization when m*(E)<co,  see Kallenberg (1975, 1976). State estimation tech- 
niques for these processes are developed in Karr (1983). 

Estimation from i.i.d, samples of the mixing distribution of a single mixed 
Poisson distribution has been treated by Tucker (1963) and, using maximum 
likelihood/convexity methods, by Simar (1976). Albrecht (1982) deals with 
mixed Poisson processes on IR, with m* assumed to be Lebesgue measure. 
Virtually all aspects of our problem are more general. The basic question of 
estimating m* and a involves a whole family, indexed by S, of mixed Poisson 
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distributions, but with the special structure indicated by (1.1). In Sect. 2 we 
exploit this structure in order to effectively estimate m* and a. For the state 
estimation problems of Sect. 3, the crucial quantities to be estimated are 
integrals KA(k ) of the form (3.2) below, which we estimate using the estimator 
for m* together with the empirical process associated with (N,(A)); these 
estimators are related to the estimators obtained by Simar (1976) for a single 
mixed Poisson distribution. (Simar essentially estimates the mixing distribution 
# by estimating integrals of the form ~#(dx)e-Xx k, by which /2 is uniquely 
determined.) 

For the most part, our estimators are devised ad hoc, with their reasonable- 
ness justified by virtue of strong consistency and asymptotic normality. The 
generality in which we work, with E a general space and m* and a both 
unknown, seemingly precludes use of maximum likelihood methods. 

2. Nonparametric Estimation of m* and a 

The following assumptions will be in force throughout the paper: 

(2.1a) E is compact; 

(2.1b) m* is diffuse; 

(2.1 c) a (0) = 0; 

(2.1d) ~o(dx) x=l. 

None of these is very restrictive; the role of (2.1d) is to fix the value of an 
otherwise unidentifiable constant that could be shifted between m* and the ~i. 

For this section only we assume for the sake of exposition that E = [0, T] is 
a compact interval in R+.  Although the arguments below seemingly make 
heavy use of this assumption, it can be relaxed, in view of (2.1b), by construct- 
ing (cf. Kallenberg (1976, Chapter 8)) increasing sets (Ax), 0<x_<l ,  that play 
the same role as do the intervals [0, x] below. 

Let N1, N 2 . . . .  be the mixed Poisson processes on E directed by M 1 =a lm*,  
M 2 = a  2 m* . . . .  , respectively, where the a i are i.i.d, with distribution a; each Ni 
is observed over all of E. Note that 

(2.2) E[N(A)] =m*(A), 

(this uses (2.1d)) and 

(2.3) n {N(A) = 0} = l~(m* (A)), 

both expressions holding for all A~g. 
Below we use distribution function notation where convenient and denote 

by m** the right-continuous inverse of m*. 
We now introduce estimators for m* and for l~ (the latter is considered only 

on the interval [0, m*(T)], because of (2.3)). Let 

n i = l  
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and let 

(2.5) /'~(t) = l(rfi** (t)), t<rfi*(T), 

where rfi** is the right-continuous inverse of rh* and 

1 n 

(2.6) l ( x )= -  ~ l(N~(x)=0), x<T.  
n i=1  

The motivation for (2.4) is evidently (2.2), while (2.5) is motivated by the fact 
that i(x) estimates l~(m*(x)), which implies that l'~(t)=rorh**(t) estimates l~(t) 
=l~(m*(m**(t))). Here and below estimators are distinguished by the caret and 
dependence of them on n (the sample size) is suppressed. 

We now examine properties of these estimators. 

(2.7) Theorem (Consistency). Assume that (2.1) holds. Then almost surely 

a) rfi*-+m* uniformly on [0, T]; 
b) f~--+l, uniformly on [0, m*(r)].  

Proof a) By Theorem (2.1) of Karr (1979), using the assumption that the N i are 
i.i.d, point processes with mean measure m*, we infer that almost surely 
rh*--+m* in the sense of vague convergence of Radon measures on [0, T]. Since 
(2.1a) implies that m* is continuous, the convergence is uniform by Billingsley 
(1968, p. 21) or Chung (1974, p. 86). 

b) First of all, we claim that 

(2.8) r(x)-~ l~(m* (x)) 

uniformly in xe[0, T], almost surely. Indeed, 

I Z 
n i=i 

where T/, i is the time of the first event in N~., and by (2.3), 

lo(m*(x))=e{T~ > x}, 

where Ta is the first event in a generic copy N. Therefore, (2.8) follows from the 
Glivenko/Cantelli theorem; cf. Chung (1974). 

Since l~ o m* is uniformly continuous 

[l~-l~l[~ < IL f - l~  o m*lLoo + constant x ILn3** -m**H~, 

and b) now follows from (2.8) and a). [] 

For simplicity we assume in the following result that m*(T)= 1; the general 
case is obtained by a scaling argument entailing properly placed multipli- 
cations by proper powers of m*(T). 

(2.9) Theorem (Asymptotic normality). Assume that (2.1) holds, that m * ( T ) : l  
and that m* is strictly increasing and differentiable on [0, T]. Then for every 
~>0 
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(2.10) ~ ^ , 
[ n-(l~-l~) J ~ 2 

as processes on [0, T] x EO, 1 - e l ,  where a_~ denotes convergence in distribution 
and where 

i) U ~ W~ Vm * on [0, T] with W ~ a Brownian bridge and V a ran- 
dom variable independent of W ~ with distribution N(O, z2), where 

(2.11) z 2 = Vat (N1 (T)); 

ii) 2(y)=(l'~(y)/(m**)'(y))Z(y) on [0,1-e-I ,  where Z ( y ) = - W ~  
-V(m**) ' (y)y ,  with W ~ V as in i) above," 

iii) )~o_ WO(l_l~) on [0, 1 - e l ,  where W ~ is a Brownian bridge and the 
process 

(2.12) X= X(m* )  

on [0, m* (T)] satisfies the following covariance relations: 

(2.13) Cov(U(x), X(y))= -m*(x)l~(m*(y)) if x < y  

= (m* (x) - m* (y)) K[0 ' yl(1) 

-m*(x) l , (m*(y))  if x> y .  

Proof. 1) To begin, consider the sequence of processes 

x. =ptr- ,oom*) oo n 
Z. [n~-(k **-m**) on [0, 1-e]J  

By the continuous mapping theorem and an argument based on a Taylor 
expansion, it suffices to show that 

(2.14) (U~, X,,  Z , ) ~  (U, X, Z) 

and then to calculate relevant covariance relationships. But it is also apparent 
that each X, is a functional of U,, so we need only establish asymptotic 
normality of (U,, Z,). The composition of r and th** in the definition of/ ' ,  is 
dealt with by Theorem (2.7) and Billingsley (1968, pp. 144-145). 

2) Restricting attention to (U,) alone for the moment, we have 

(2.15) U,,& Wv~ + Vm*('), 

where W ~ is a Brownian bridge and V is a normally distributed random 
variable independent of W ~ with mean 0 and variance z z given by (2.tl) 
above. To establish (2.15) we use the representation (see Kallenberg (1976) or 
Matthes/Kerstan/Mecke (1978)) 

Ni(T) 

Ni= E Sx,k, 
k = l  



inference and State Estimation for Mixed Poisson Processes 87 

where e~ denotes the point mass at x, and the X~k are i.i.d, with distribution m* 
n 

and independent of the Ni(T ). Putting S, = ~ N~(T) we can write 
1 

with the Xz independent of (S,) and themselves i.i.d, with distribution m*. Thus, 

U=n -~ ex -S ,m*  +n-~(S,-n)m 

~ S 2 ~ @ ~ x - S , m * )  + n-  -(S.  - n) m* 

(since Sjn-~m*(T)= 1 a.s.) 

Wv~ (rn*) + Vm* 

by independence of (S,) and (Xi), the continuous mapping theorem, standard 
theory of empirical processes and the ordinary central limit theorem. 

3) Now consider (Z,) alone. From the representation (2.16) we have 

] Zn = n~ k-~=o (Xs~' (k+ 1) - X s , .  (k)) ek/, - m * *  

(where the Xs~ ,tk) are the order statistics from X 1 ... . .  Xs,1) 

~S~ Xs~.(k+l)--Xs~,(k))ekls--m** 
k = O  

S 1 

=I+II.  

By independence of (Sn) and (Xi) and theory of empirical processes (Shorack 
(1972), e.g.), for a Brownian bridge W ~ 

(2.17) I & W ~ (m**) 

on [0, 1 -  e] for every ~ > 0. Applying II to a smooth function f gives 

(2.18) nt[  ~o (Xs""k+l'--Xs""k)) 

(s )k n~ Xs,, ~k+ ~) -Xs~, (k))f' S, n 

& V[.f'(y)ym**(dy) 

by Taylor's theorem (since S,/n~ 1 a.s.), independence of (S,) and (Xi), (2.17) 
and the ordinary central limit theorem, with V as above. To obtain ii) one uses 
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(2.18), integration by parts and a straightforward approximation of indicator 
functions by smooth functions. Finally, validity of the relationship 

is a consequence of Shorack (1972). This completes the proof of asymptotic 
normality of (U,, Z,). 

4) That X=)?(m*) has the indicated form follows by arguments in 2) 
above, since 

--1 i 

is the ordinary empirical process associated with the probability distribution 
1-1~(m*(x)). [] 

3. Estimation of the Directing Measure 

Recall that the conditions (2.1) are in force; however, E is otherwise a general 
LCCB space. Let N~, N 2 . . . .  be i.i.d, copies of the mixed Poisson process N 
directed by M=am*,  where c~ has distribution a. Suppose that N 1 . . . .  , N, have 
been observed over all of E and N,+ ~ over a subset A. Consider the problem of 
reconstructing the directing measure M,+a, in the sense of state estimation, 
from these data. According to (1.3), if m* and o- were known, the appropriate 
state estimators would be the conditional expectations 

(3.1) E [M, +1 (B) I ~N. + 13 _ K A (N, + 1 (A) + 1) m * (B), 
Ka(N,+ I (A)) 

where 
k~ 

(3.2) Ka(k ) = ~ a(dx) e-Xm*ta)X k _ n {N(A) = k}. 
m* (A) ~ 

However, if m* and a are unknown, it is necessary to replace m* and Ka by 
estimates thereof; our strategy is to construct the estimates rfi*, /(a from 
N 1, ..., N,, then to replace m*, K a in (3.1) by them. 

We begin the section by developing properties of the estimators 

1 
(3.3) rh* = -  ~ N~ 

?[i=1 

and 

(3.4) /~A(k)_ 1 ~, k! 
- -n  i=1 m*(A) k I(N/(A)=k)" 

We proceed to study the difference between the "true" state estimator 
E[M,+ 1 [~N, ,  1] of (3.1) and the "pseudo-state estimator" 

aN ,1 gA(N,+ 1 (A)+ 1) 
(3.5) gEM,,+II~A" 3= ~ f t ( ~ )  r~*, 
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where both sides of (3.5) are viewed as random measures on E; see Karr (1976). 
The estimator rfi* appeared in Sect. 2, where motivation for it was given; the 
choice of / (A is motivated by (3.2). 

The first results of the section establish consistency and asymptotic nor- 
mality of the basic estimators. 

(3.6) Theorem (Consistency). For each A6g,  almost surely 

/ ( A ( ' + I )  KA(" + I) 
* i n  IR ~ +.  KA(.) KA(') 

We omit the straightforward proof. 

(3.7) Theorem (Asymptotic normality). Assume that m*(A)>0 and that 
Var(e)< oo. Then 

(3.8) ~ . A 
Ln (KA--KA_I 

where p is a Gaussian random measure (parameterized by the set C(E) of 
bounded continuous functions on E) and Z is a Gaussian sequence, whose co- 
variance function is given for g, h~C(E) and k, j e N  by 

(3.9a) F(g, h)=m*(gh)+Var(e)m*(g)m*(h), 

(3.9b) C(g, k)= k! P{N(A)=k}m,(A) k [k_m, (g )  m*(glA)+Var(c~)m*(A)m*(g)]m,(A) ' 

(3.9c) F(k, j )=P{N(A)=k}  P{N(A)=j}  

k!j!  k ! j ! j (k -m*(A))  k ! j ! k ( j -m*(A) )  
x m,(A)k+j m,(A)k+2; m,(A)2k+ J 

+( m,(A)21] \m,(A)Zk ] ~ ]  [m*(A)+Var(~) 

+P{N(A)=k}  \m,(A)k] l (k=j) ,  

where m * ( f ) = ~ f  dm* and 1 a is the indicator function of A. 

Proof. By the Cram&/Wold device and Theorem 4.2 of Kallenberg (1976) it 
suffices to show that for L_>_l, c 1 . . . .  ,cL+zMR and gsC(E)  the linear com- 
bination 

(3.10) c~ n-(K A(l)- g~(1)) + CL+ 1 n~( m* (g)-- m* (g)) 
l= 

has a limiting normal distribution, and then to calculate the covariance func- 
tion. Concerning asymptotic normality of (3.10), we observe first that for each k 
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(3.11) n~(t~A(k)--KA(k)) 
k! 

n -~ ~ [I(N~(A)=k)-P{N(A)=k}] 
m* (A) k i= 1 

(1 ~ ) rh*(A)km*(A) n}(m,(A)k rfi,(A)k)" +k! ,.., I(N~(A)=k) 
i = 1  

By virtue of (3.11), Theorem (3.6), a standard Taylor expansion and Slutsky's 
theorem (cf. Billingsley (1968)), asymptotic normality of (3.10) follows from that 
of the random vectors 

(3.12) 

n- ~ ~ [1 (Ni(A) = 1) - P {N(A) = 1 }] 
i = l  

n -~" ~ [I(Ni(A)=L)-P{N(A)=L}] 
i = 1  

n -~ ~ [N~(A)-m*(A)] 
i = 1  

n -~ ~" [N~(g)-m*(g)] 
i = 1  

but asymptotic normality of (3.12) is evident, since the N i are i.i.d. [] 

Theorem (3.7) is not directly relevant to the problem at hand, but the 
following consequence of it is. 

(3.13) Theorem (Asymptotic normality). Under the assumptions of Theorem 
(3.7), 

(3.15a) 

(3.15b) 

and 

(3.15c) 

In n~(rh * -m)  ] 
(3.14) } (_/s +1) KA(_ '+I )~[&[ ;*]  ' 

\ ga(') K~(') I] 

where (/~, Z*) is a Gaussian process with covariance function Z given by 

Z(g, h)=F(g, h), 

1 KA(k+ 1) 
Z(g,k)=~A(k) F(g,k+l ) KA(k)2 F(g,k), 

1 
Z(k, j)=Ka(k ) KA(j ) r(k+ 1, j+ 1) 

KA(j + 1) 
KA ( ~ - a ( j )  2 C(k + 1, j) q 

where F is given by (3.9). 

We now take up the question of asymptotic behavior of the difference 

Ka(k+ 1) 
F(k,j+l) 

KA(k) 2 K,,U) 

KA(k+ 1)KA(j+ 1) 
KA(k)2 KA(j)2 F(k, j), 
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between the pseudo-state estimator given by (3.5) and the "true" state esti- 
mator given by (3.1). Recall that the former is based on estimates of m* and 
the K A obtained from observation of the previous processes N1, ..., N,, whereas 
the latter is applicable when m* and a are known. The following result is the 
most important in this section. 

(3.16) Theorem. Under the assumptions of Theorem (3.7), 

(3.17) n~(EEM,+I I GN~ -EEM.§ I g2~ 'I 

as random signed measures on E, where rl is a mixture, with mixing distribution 
(1.1), of the sequence (Pk) of (centered) Gaussian random measures on E having 
covariance function A given by 

(3.18) A(gk, g j)= Coy (Pk(gk), P/(gj)) 

= m* (gk) m* (g j) Z (k, j) + rn* (gk) 

+m*(gj) KA(kq- 1) 

KA(k) z(gj, k)-~ 

where Z is given by (3.15). 

KAU+I) 
Z(gk,j) K~(j) 

KA(k+ 1) KA(j+ 1) 
KA(k) KA(j) 

Z(gk, g), 

Proof. Once again appealing to Slutsky's theorem, we find that the processes 

I (I~A(" + 1) KA(" + 1) m*(')) p.=n~\ K:A(') rh*(.) KA(') 

asymptotically satisfy 

(/s + 1) K~(k+  1)] 
Pn(g'k)=m*(g)n~\ i~A(k) ~A(k) ! 

KA(k + 1) 
-~ gA(k ) n~(n3*(g)-m*(g))" 

Together with Theorem (3.13), this implies that p , ~  p, where p is Gaussian 
with covariance function A given by (3.18). 

For each n, N,+I(A ) is independent of {N 1 . . . . .  N,} and hence of {n3*,/s 
therefore (here N(A) has distribution (1.1)) 

(3.19) (p~, N, +1 (A)) & (p, N (A)), 

where p and N(A) are independent. The mapping H((m,),j)-e, mj, where the m,, 
are Radon measures on E, is trivially continuous, so (3.17) follows from (3.19) 
by the continuous mapping theorem. [] 

Theorem (3.16) dealt with estimating the directing measure M,+ 1. However, 
in some applications (e.g., the cancer model discussed in Sect. 1) estimation of 
%+ 1 may be the principal interest. (Possibly m* is even known.) Analogous but 
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simpler arguments yield the following result concerning the difference between 
the pseudo-state estimator 

[~ A(N.+ I (A) + 1) 

and the true state estimator 

KA(Nn+I(A)+I) 
EEl .+ ,  I~N~ = 

KA(N,+ 1 (A)) 

(3.20) Theorem. Under the assumptions of Theorem (3.7), 

(3.21) n~(/~[%+ 1 [ ~AN.+ i ]  - E  F~n_l_ 1 l ~  N"* 1])& y, 

where Y has the mixed normal distribution obtained by mixing according to the 
distribution (1.1) the Gaussian sequence Z with covariance function X(k,j) given 
by (3.15c). 

To conclude the section we observe that in some sense the rates of con- 
vergence in Theorems (3.16) and (3.20) are best possible since they match the 
rates of convergence for the estimators themselves. 

4. Different Processes Observed over Different Sets 

For many situations the assumption in Sect. 3 that each process be ob- 
served over the same set A is excessively restrictive; the fact that the distribu- 
tion of N(A) depends on A only through m*(A) indicates that the assumption 
can be relaxed. In this section we deal with behavior of the difference 

~ L + I  ] - E [ c ~ . + ,  A.+I J, 

where N/is  observed over the (deterministic) set A/. In order to obtain results 
we will need to assume that there is a set A such that m*(A/)~m*(A) in some 
sense (we consider several). The difference above then takes the form 

/((N~+, (A.+,) + i) KA~+I(N~+I(A~+I)+I ) 
I~(Nn+l(An+l)) KAn+t(Nn+I(An+A)) 

for suitable estimators/< introduced below. 
We assume that (2.1) is satisfied, that N~ is observed over the set A/and  that 

A is a fixed set. The following conditions will be used below: 

(4.1) n-1 L [m*(A/)-m*(A)[--*0, 
i = 1  

(4.2) n -~ ~ [m*(Ai)-m*(A)l ~0,  
/ = 1  

(4.3) s u p S <  oo. 
�9 m ( A )  
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Evidently (4.1) and (4.2) are forms of convergence of m*(A 3 to m*(A). Note, 
however, that they imply nothing about convergence of Af to A, so that the A i 
need resemble A only in terms of the measure m*. 

As replacements for the estimators/s defined by (3.4) we propose 

(4.4) / ((k)= k! _1 ~ l(N~(Ai)=k). 

Ns(Aj) i= 1 
j = l  

These estimators have the following properties (recall that the A~ and A are 
fixed; the latter is suppressed). 

(4.5) Theorem (Consistency). Assume that (4.1) and (4.3) are satisfied and that 

(4.6) ~ a(dx) x k < oo 

for all keN. Then 
R ( - + I )  K A ( ' + I )  

(4.7) /,~ (.) * KA(. ) 

in IR+ almost surely. 

Proof 1) Consider first the (uncomputable) estimators 

tl 

k! 1 ~=ll(N~(Ai)=k) ' 
R(k)-m*(A)k n ,= 

for which we show that 

(4.8) /(  --* K A 

almost surely. To do so, we begin by showing that 

(4.9) lim E [/s (k)] = K A (k) 
n~oo  

for each k. Indeed, 

"1) L 
i = 1  

+KA(k)(# ~ (rn*(A')~k--l) 
i=1 \m*(A)  ! 

[where by (4.3) c k does not depend on n] 

1 '_L' 
<constant  x -  2 Im*(A3-m*(A)l 

F / i = I  

by (4.3) and (4.6); the last expression converges to zero by (4.1). 
The random variables 

k! 
Y~ - m* (A) k 1 (N~(Ai) = k) 
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are independent with uniformly bounded variances and therefore by Theorem 
5.4.1 of Chung (1974) 

(4.10) 1 ~ (Y~-E[Y~])-~0 
n i=l  

almost surely; (4.8) follows at once from (4.9) and (4.10). 
2) By an analogous argument 

(4.11) 1 " i~_. Ni(Ai)~m*(A) 
n 

almost surely. 
The theorem now is a consequence of (4.8) and (4.11). [] 

(4.12) Theorem (Asymptotic normality). Assume that (4.2), (4.3) and (4.6) are 
satisfied. Then 

_{g(.+l) 
(4.13) n ~ \ g ( . )  KA(') ] 

where Z is a Gaussian sequence with covariance function Z given by (3.15c) 
above (with F there given by (3.9c)). 

Proof. 1) Since (4.2) implies (4.1) the convergence (4.7) obtains; together with 
Slutsky's theorem it implies that for fixed k we have (asymptotically) 

k~ 
n ~ ~ [l(Ni(Ai)=k)-P{Ni(Ai)=k}] n~[I((k)-KA(k)]-m*(A) k i = 1  

k! kP{N(A)=k} 
m*(A) 2k n-~i=l ~ [Ni(Ai)-m*(Ai)]" 

Together with the Cram6r/Wold device this computation reduces asymptotic 
normality of n~(I(--KA) to that of standardized sums of the random variables 

L 

Yi=coNi(Ai)+ ~ c, l {Ni(Ai)=I }, 
/ = 1  

where Co, ..., CLAIR. 
2) The random variables Y/= Y~-E[Y[1 are independent with mean 0 and 

n 

therefore n -~ ~ Y/has normal limit distribution N(0, ~2) provided that 
1 

(4.14) ~2=,, ~ Var(Y[)-+ov, 
i = 1  

that 

(4.15) 

and that the Eindeberg condition be satisfied (see Billingsley (1968, Theorem 
7.2)). Since 
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IUI < constant + Ic01 INi(Ai) - m*(Ai)l 

and since the random variables Ni(Ai)-m*(Ai) have moments of all orders by 
(4.6) that are uniformly bounded in i by (4.3), it is clear that Lindeberg's 
condition is satisfied. If z2>0 in (4.15), then evidently (4.14) holds, so we 
restrict attention to (4.15). Using (4.2) and computations analogous to those 
appearing in the proof of Theorem (4.5) it is straightforward to verify that 
asymptotic variances are precisely those in the case when A~=A for all i, which 
correspond to the covariance function F of (3.9c). 

The remainder of the proof is routine. [] 

We are now able to examine the difference between the true state estimator 

E[c~,+ ~o~-N,,+ 1l KA,+, (N"+I(An+x)+I) 

and the pseudo-state estimator 

E[~,,+ ~ I ~ N  . . . .  /((N?I-}- 1 (An+ 1) "~- 1) 
~A ,+ , ] -  ~(N,+I(A,+I) ) 

However, we must require that m*(A,)--+m*(A) at a rate faster than n -~ 

(4.16) Theorem. Assume that (4.6) holds and that 

(4.17) n~ im* (A,)-m* (A )l ~ 0. 

Then 

(4.18) 

where Y has the same mixed normal distribution as does the limit in (3.22). 

Proof Note that (4.17) implies both (4.2) and (4.3), so that (4.13) holds. 
1) Consider first the processes 

(/s + 1) KA,,+I('-I-1)~_n�89 KA(" + 11 ~ 

t- 
fA('+_ 1t scA.~o.~. _+,(" + 1)] 

_I_ n~- 
t /%+,(.) I 

In view of (4.13) and some calculations, if 

n* IKA,, (k)-  K~(k)  l --> 0 (4.19) 

for every k, then 
(g(-  + 1) KA +~(- -t- 1)~ 

(4.20) n~ ~ ~ - )  ~ ( 7 )  ] &  Z, 

where Z is as in Theorem (4.12). However, 
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11�89 [ KAn (k) - KA (k)[ ~_~ (~ ( 7 ( d x )  x k + 1) n�89 Ira* ( A . )  - m *  (A)[ 

and hence (4.19) holds by (4.6) and (4.17). 
2) To complete the proof we need only show that 

N,+ 1 (A,+ a)& N(A), 

where N(A) has distribution (1.1), but this follows at once from (4.17). [] 

Remark. The principal difficulty with conditions (4.1), (4.2) and (4.17) is that 
when m* is unknown there may be no way to verify in advance whether they 
are satisfied. Of course, sufficiently strong assumptions on the A i and A entail 
(4.1) or (4.2); for example, (4.1) follows from 

1 ~ IAiAA--+O 
/~i=1 

pointwise on E, and similarly for (4.2). However, there is no corresponding 
sufficient condition for (4.17). Presumably one would at this point require 
partial knowledge of m*; e.g., if m*~m 0 for some known measure m o and 
(4.17) holds for m0, then it holds also for m*. 
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