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Summary. This paper gives extensions of Mori's strong law for (r)Sn=S n 
_ X ( 1 )  . . . . .  j[((r),, where S , = X I + X 2 +  ... + X , , X  i are iidrv's and (X(, ~)) is 
(X~) arranged in decreasing order of absolute magnitude. The methods 
differ from Mori's. Continuity of the distribution of the X~ is assumed 
throughout. Necessary and sufficient conditions for relative stability 
(~r)Sn/B,~ +_ 1 a.s. for some B,), including a generalised condition of Spitzer's 
and a dominated ergodic theorem, are proved. A one-sided version of the 
relative stability results is also given. A theorem of Kesten's is generalised 
to show that if (( ' )S,-An)/B . is bounded almost surely for constants An, B,T 
+co  then ( ( r )Sn-e , ) /B , -~PO for some %. A corollary to this is that if 
I~r)S,]/Bn is bounded away from 0 and + oo a.s. then (~)S, is relatively stable. 
This generalises a result of Chow and Robbins, apart from the continuity 
assumption. 

1. Introduction and Statement of Results 

Let X i be a sequence of i.i.d, random variables, let S , = X  1 + X 2 +  ... + X , ,  and 
let (X~, i)) be (Xi)7= 1 arranged in decreasing order of absolute magnitude. Let 
(~ ., and if r is a fixed integer >1 and n>r ,  let ~r)Sn=S,--X~). . .  -- X n(r) be 
the (lightly)-trimmed sum. 

The almost sure properties of (~)S n were studied first by Feller [-7]. In 1976 
Mori [22] gave the following elegant analogue to the law of large numbers for 
(r)Sn: ( ( ' )S , -~ , ) /n~O a.s. (n~oo)  for some constants % if  and only i f  

~ x r H  r+ i ( x ) d x <  + oo, (1.1) 
o 

where H(x )=P( lX1]>x  ). This shows that the almost sure behaviour of S n can 
be " improved" by trimming off a fixed number of extreme observations, in the 
sense that (1.1) may converge when EIXI] = + oo. Mori's result has been gene- 
ralised in [23] and [11]. 
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One of the purposes of the present paper is to generalise this result to the 
case of relative stability of (r)S,, which we first explain for the case of S,. The 
sample sum S, is relatively stable (in probability) if there are positive constants 
B,I" + o0 for which S,/B, converges in probability to a finite non zero constant 
(which may be taken as + 1 or - 1  by rescaling B,); write this as S,/B, 1" , 4-1 
(n~  + o0). Conditions on the distribution function F of the X i for this to occur 
have been given by HintSin [13], Rogozin [27] and Mallet [17]. The relative 
stability almost surely of S, is not of interest since it is known that if S,/B, is 
bounded almost surely for some B o + o 0 ,  then EIXII<+O0 and so 
S,/noEX~ a.s.; see Chow and Robbins [4], and [17]. 

It is shown in Lemma 5.4 below that (r)S,/B, 1" ~+_1 (no + o0) if and only 
if S , / B , ~  +_ 1 (no + o0); that is, trimming a fixed number of observations 
from the sample sum has no effect on its convergence in probability behaviour. 
What concerns us here is the almost sure relative stability of (~)S,. We show 
that trimming does have an effect on this mode of convergence. 

Mori's technique for the proof of (1.1) uses a clever form of truncation and 
appeal to either a strong law of large numbers for non-identically distributed 
independent r.v.'s due to Prohorov, or to Prohorov's inequality. These methods 
do not generalise easily to the case of relative stability. The alternative meth- 
ods presented here are nearer in spirit to the classical techniques for sums of 
iidrv's, in that they utilise ordinary truncation and a maximal inequality. An 
inequality due to Bennett takes the place of Prohorov's. The methods can be 
applied to obtain other results on the almost sure and iterated logarithm 
behaviour of the trimmed sum, as we hope to show elsewhere. 

We make a blanket assumption of the continuity of the distribution of the 
Xi for the proofs in this paper. For  some of the results this restriction can be 
dispensed with as in [22] and [24]. 

Some further notation is required: F(x)=P(X~ <x)  is the continuous distri- 
bution of the Xi, and we always assume H(x )= l -F (x )+F( -x )>O for x >0 .  
Let 

x 

i ydV(y), A(x)=fa(y)dy, 
- - X  0 

G(x) = 1 - F ( x ) -  F ( -  x), V(x) = i y2 dF(y). 
- x  

(1.2) 

The sample sum S, is relatively stable (in probability) if and only if ([17]) 
xH(x)/v(x)~O (equivalently, [18], V(x)/xv(x)oO), and if it is then v(x)~A(x), 
v(x) and A(x) are of constant sign (positive if S,/B. P ~ + 1, negative otherwise) 
for x large enough and are slowly varying as x o  + o0. The sequence B n for 
which S,/B,o+_I may be chosen to satisfy B,=nlv(B,)] or B,=nlA(B,)[ for n 
large enough, and is regularly varying with index 1 as n o  + o0. 

Let (r)S,(t) denote the polygonal function obtained by interpolating linearly 
between the points (k/n, (r)Sk/B,) for 0 < k_< n (where (")S k -  0 for 0_< k < r). Our 
main result is: 

Theorem 1. The following are equivalent for r= 1,2 .. . .  and some positive B,'~ 
4-o0: 
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( ' )S . /B.~ +_ 1 a.s. (1.3) 

sup ](r)S.(t)T-t[~0 a.s. (1.4) 
O=<t__<l 

n-  i p {[(~S , T- B n] > e B,} < +0o (1.5) 
n ~ l  

E sup ]I~tS.[/B. < + oo and (1.6) 
n > r  

o0 r r + l  x H (x) 
)o Fv(~ ~ dx < + oo (1.7) 

The upper signs or the lower signs are to be taken together throughout. 

Remarks. (i) (1.4) can be motivated by: (~)S,(t) is close to (~)St,tl/B ., and the 
latter converges to _+ t if (~)S, is relatively stable, since then B, is regularly 
varying with index 1. For ordinary relative stability, the following weak version 
can be proved: S , / B , ~ + _ I  if and only if sup IS~(t)-T-t] e , 0 ;  see Rogozin 

O _ < t < l  

[26] for applications. 
(ii) Condition (1.6) is a "dominated ergodic" result for relative stability. For 

versions of this type of result for S, see Gut [10], Teicher [30], and the papers 
referenced therein; for applications of uniform integrability see Klass [14, 15]. 
By methods similar to the proof of the equivalence of (1.6) and (1.7), it is 
possible to prove the following (cf. Theorem 3.2 of [9]): 

if 0 < e < 2, p > 0 and r -- 0, 1, 2 . . . .  the following are equivalent: 

Esup [n-  i/~[(~)S~-c~,[]P < + oo ; 
n > r  

E sup In-  i/~'[X~+ i)l]v < + oo ; 
n > r  

and 

or 

or 

oo 

x(r+l)~-i Hr+i (x )dx< +oo 
0 

(n~  + oo); 

(n~  + oo); 

for every e>0;  

B,~nlv(B,) l ;  

for some Xo>0. 

~ x v l l o g x H ~ + i ( x ) d x <  +oo  
1 

if r + 1 > p/~ 

if r + 1 = p/~ 

oo 

S xP-IHr+I(x)  d x <  +oo if  r+l<p/c~.  
0 

The proof of these is omitted (continuity of F is not required, incidentally). A 
version of (1.6) with {F)SJ/BJ p replacing F~S.I/B. can be proved if the appro- 
priate change is made in (1.7). 

(iii) The requirement that B,~nlv(B,)]  in (1.6) cannot be omitted since it is 
clearly possible to have E supJ(r)S,l/B,< +oo for constants B, which have 

n > r  

nothing to do with relative stability. Also (1.6) does not hold for r = 0  since 
then (as in the S,/n case) an extra logarithmic term is required in (1.7). 
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(iv) On the other hand (1.3)-(1.5) and (1.7) are still equivalent for r = 0  but 
only to 0 <  IEXll < g i x l l  < + oo. Condition (1.5) is for r = 0  a generalisation of 
a result of Spitzer [29] for the strong law of large numbers. 

(v) A distribution for which (1.7) holds but EIXaI = + oo is easily given. 
(vi) "One-sided" versions of Theorem 1 consist of conditions under which 

M~ i] B , ~ I  a.s., where M~ ) is the rth largest of X r For these, we 

assume 0 < F ( 0 ) < I .  Then M~)T+oo a.s., so ( S , - i = l  ~ M ~ i ) ) / B , ~ I  implies the 

dominance of the positive part of X~ over the negative part. We state the 
simplest version of such a result; it can be expanded as before. 

Theorem 2. ( S , -  M(,1))/B,~ I a.s. for some positive B,'F + oo if and only if  

~ x [ 1 -  F(x)] 2 ~ x~dF(-  x)l 
dx < + oo and < + co. (1.8) 

O [! udF(u) ] xo ! udF(u) 

B~ 

I f  these hold, B, may be chosen to satisfy B, = n ~ x dF(x). 
0 

Remarks. (vii) S,/B, e , 1, if (1.8) holds, as is shown in the proof of Theorem 2. 
Thus one-sided trimming has no effect on convergence of S, of this type. 

(viii) The integral 

]' udF(u) x l d f ( - x ) l <  +oo if and only if X~- Xi+~0 a.s., 
1 i 

where X/~ = max (Xi, 0), X 7 = ]Xih - X/+ (see Erickson [6]). 
/ 

EIXtl = + o% these are equivalent to ~ X c / ~ Xi+--,0 a.s. When (Pruitt 
/ = 1  / i = 1  

[25, Lemma 8.1]). 
(ix) One sided versions of Mori's theorem can be proved in a similar way 

to Theorem2; e.g., (Sn-M(,1)-c~,)/n-~O a.s. for some e, if and only if S-xZ[1 
- F(x)] dF(x) < + oo and EX~ < + oo. We omit the details of these. 0 

The next theorem generalises a result of Kesten [12, Lemma 4, p. 728] on 
the almost sure boundedness of S,. Our proof of Theorem 3 uses a method of 
Rosalsky and Teicher [28], who generalised Kesten's theorem to the case of 
triangular arrays. 

Theorem 3. I f  there are constants A,,  B,, B,>  0, B,]" + 0% r =0, 1, 2 . . . . .  for which 
lim sup ]r A,]/B, < + oo a.s., then (S,-c~,)/B, P >0 where a ,=n  v(B,). 

n ~  -t- oo 

This theorem has the following corollary, related to relative stability: 

Corollary. There are positive constants B,~( + oo, r = O, 1, 2 . . . . .  for which 

0<lira  infl<r)S,l/B,<limsup ]<r)S,]/B, < + oo a.s. (1.9) 
n ~ + o o  n ~  -}- oo 

if and only if (1.3) holds. 
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The remainder of the paper is laid out as follows: the three theorems and 
the corollary to Theorem 3 are proved in the next three sections. Sect. 5 
contains some technical results and lemmas which are used throughout the 
other sections. 

2. Proof  of  Theorem 1. 

Throughout  these proofs we consider only the case (~SjB,, e ,  + 1; the other 
case can be handled similarly. 

Suppose first that (1.3) holds (with a+sign). Then ~r*S,/B,P-Z~I, so by 
Lemma 5.4, S, is relatively stable. Since Xn+l/Bn+l~O we have B,,+i~B ., 
so ((~S,+a-(~)S,,)/B,~O a.s. The following is easily proved: 

sup I(r)sj-(r)S) ll~-~-IXT+l)l, l<__r<n, (2.1) 
r < j < = n  

from which follows X(,~+i~/B,~O a.s., i.e. (5.3) and hence (1.7). (See Lemma 5.4 
below) Thus (1.3) implies (1.7). 

Now suppose (1.7) holds. This implies the relative stability of S~ as follows. 
From the mean value theorem, using the continuity of F, and of v, 

~_, ~H~+a(~)lv(~n)[ -~- i= Z i x'H~+l(x)[v(x)l ~ ldx 
n ~ n  0 n ~ n  0 tl 1 

=~ xrH'+X(x) lv(x)l -r-~ dx< + oo 
x o  

for some r  - 1 ,  n] and some no, x o. Using a result of Lo6ve [16, p. 277] there 
is then a sequence nit + co with hi+ l/ni ~ 1 for which ~,+ 1 H~+ i(r 1 ~0 .  
Since ~ , > ~ , - t  and ~ . . . .  ~ , , ,  we have yiH(yi)/tv(yi)]~O for a nondecreasing 
sequence y~ satisfying y~+~y~. (Here and throughout the paper ~ connects 
quantities whose ratio converges to 1). Now for x large choose i=i(x) so that 
yi<x< yi+ ~; then 

because 

x g ( x )  ~.y~+ 1 g(y3 Iv(Y3l= o(1)Iv(Y31 = o(1) (x--, + oo) 
Iv(x)l = lv(Yl)l b'(x)l Iv(x)l 

v(x) = ydG(y) Iv(yi)]<=xH(y~)/lv(yi)]~ )Y~+I ,0 as x--*+oo. 
v(Yi) ~ Yi 

Thus xH(x)/v(x)~O as x---, + co, and this is equivalent to relative stability of 
S,. (See the discussion after (1.2)). This means S,/B,~ +1, say, where B , > 0  is a 
nondecreasing sequence which is regularly varying with index 1; in fact ([21]) 
B, satisfies a condition strong enough (Condition (2.1) of [3]) that we can 
assume n(Bn+ I/B,-1)-~1 (Theorem 4 of [3]), which will be required shortly. 

Still assuming that (1.7) holds, we now show that (1.5) does. Let B, be the 
sequence whose existence was deduced in the previous paragraph. We want to 
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apply the bound of Lemma 5.5, so we truncate and re-center S,. Define for 
O<=j<n, n>l ,  

J 
Sy= ~ X,I(IXil<sB,,), s>0,  S ; = 0  

i = 1  

where I denotes the indicator function. From ( S . - B . ) / B . ~ O  a symmetri- 
sation argument ([16, p. 259]) gives [median (S.)-ES~.]/B.~O, and since ES". 

nv(eB.)~B~, also (S~- " P = ES,)/B, - ~ ,  O. As in Mori [22] it follows that 

S O  

{I(*)S~- S~I > (r + 1) eB.} ~_ {IXf + 1)] > eB.} 

S n- 1 p{lr B.I > (5r + 3) eB.} =< 22 n-  1 P{IS~- B.I > 2(2r + 1)eB.} 

+ Z n-  1 p{ix~+ 1)j > ~Bn} ' 

(2.2) 

The second series on the right converges by (5.6). To deal with the first 
2--nV(~B,), t = 2 ( 2 r  series on the right, we use Lemma 5.5, with M=2eB, ,  s, 

+ 1)eB, to give 

z:~ n -  1 n n P {]Sn- ESn] > 2(2r + l )e Bn} ~ X nZr VZr + l(~ Bn) B~ 4~- 2 

where the notation ~ is used instead of the 0 notation and summations are 
taken over values of n>no, n o large. Since B , + I - B , ~ n - I B , ,  the last sum- 
mation is 

e B n +  1 

~ S  S Y-4r-3V2*+l(Y)[ B l(Y)]2r+ldy �9 
8 B  n 

Also B-~(y)~y/v(y), as shown in the proof of Lemma 5.4, so we have to prove 
the convergence of the integral 

oo 

I = ~ y  2r 2v-2r-X(y )v2r+l(y)dy,  (2.3) 
Yo 

given (1.7). 
This we do by successively integrating by parts, continually using the facts 

yH(y)/v(y)~O and V(y)/yv(y)~O, which follow from relative stability. We mere- 
ly sketch this procedure here, discarding arbitrary constants so as to simplify 
the notation. At the first stage we obtain 

I ~ ~ y -  2r +a V- 2r- l(y) V2r(y) dh(y)- ~ y -  2r v-  2~- 2(y) V2~+ l(y) dG(y) 
Yo Yo 

where dh(y)=-dH(y),  G(y)= 1 - F ( y ) - F ( - y ) .  Now G is not monotone but 
IdG(y)l<dh(y) and V(y)/yv(y)--,O, so the second integral is of smaller order 
than the first. Thus we need only deal with the first, and this we denote 11 and 
integrate by parts, (integrating -dH(y) to H(y)), to obtain, apart from a 
constant, 
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co 

I ~ = 2 r  ~ y-Z~+3v-Z~-~(y) V 2~ ~(y)H(y)dh(y) 
Yo 

co 

- ( 2 r - l )  5 y-2~v 2r-l(y) V2~(y)H(y)dy 
Yo 

oo 

+ (2r + 11 j" y 2~+ 2 v- 2~ 2(3 0 VZ~(y) H(y) dG(y). 
Yo 

From this we discard the (negative) second integral and note that the third 
integral is of smaller order than the first, so we again need only consider the 
first integral; call it 12. Integrating by parts and again discarding a negative 
term and a constant, we have 

O(3 

i 2 < 2 r ( 2 r _ l  ) ~ y  2~+Sv 2~ l(y) V2~-2(y)H2(y)dh(y) 
Yo 

+ 2r(2r + l ) ~ y -  Zr + 4 v-  2~- 2(y) V2~- l (y) H2(y) dG(y) 
Yo 

where again we ignore the second integral because it is of smaller order than 
the first. This procedure can be repeated r times to obtain 

o~ 

I~ < (2 r) ! ~ y v- 2~- l(y) W(y) U~(y) d h (y) ~ ~ y~+ ~ v - r -  ~(y) H~(y) dh (y). 
Yo Yo 

A final integration by parts on this last integral (call it I'~) gives 

~o ,N? 

I; ~ ~ y~ v-~-I (y) H r +1 (y) d y - ~ y~ + 2 v ~-2 (y) H ~ +~ (y) d G(y). 
YO YO 

Since yH(y)/v(y)~O, the second integral is of smaller order than I' r. The first 
integral converges by (1.7). Thus we have shown that (1.7) implies (1.5) for 
continuous F. 

Now let (1.5) hold. We show that this implies Sn/B . e ,  1. By Lemma 2 of 
Egorov [5], there is a sequence end0 such that Z n - I P { I t ~ S , , - B ~ [ > 8 , B , , } <  
+oo, hence there is a sequence n~'+oe with n i + l ~ n  ~ such that P{lCr)S,~ 
-B,~l > ~,, B~}~0. This means (r~S~,/B,~ e , 1, so from Lemma 5.4, S~,/B~, P , 1, 
n i H(B~,)~O, and B,~ ~ n i A(B~,). 

We want to show B . . . .  ~B,~, and to do this we let B , =  C in~A(B.3 where 
Ci-~l.  Choosing i so large that 

Cj+lc i ni+ln~ 1 <_6._ . B,,_<_(I+b)n~A(B,,,) and n ~ H ( B , ) < b / ( l + 6 )  2, 
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we have 

B . . . .  1 = Ci+lni+lA(BciniA(Bn ) . . . .  ) 1 <= Ci~iirtlni+l 1 3- Ci+lni+lclni A(B.~+~)A(B.) 1 

~n +1 / 
< 6 + ( 1  +6) i G(u) du IA(B.)I 

B n  i 

<3+(I+(~)n~H(B.) B"~+'-1 B.,,~ < 6 + 3  ---1B"'+' 
- ' B .~  n i A ( B . , )  = 

which gives ~ - 1  <b/(1-3). Thus B.~+~ ~B.,, and B., H(B.,)/A(B.)~O, and 
n i  

standard methods give xH(x)/A(x)---,O, which, since A(x)=xG(x)+v(x) and 
IG] < H ,  means xH(x)/v(x)-,O. So F is relatively stable and S . / b . ~  1 for some 
b.. Since we must have b.~B., and n~+~n~, this implies b.~B. and so 
S./B. e ,1 as required. 

Still assuming that (1.5) holds, we now show that (~)S./B.--* 1 a.s. If x > 0  and 
"~k = [2k], 2 > 1, 

P{l(r)S. - B.I > x B. infinitely often} 

. tk+ 1 

=limP( U {l(~)S,-B/l>xB/})<lirnP ~g ~ ,= ,~k~+ 
m j>m > 1 

{[~)Sj - B j] > x B j } )  

< lim ~ P{ sup ](')Sj- Bjl > x B J  
m ~k<j_--<~k+ 1 

2k+2 

_-<clim~ ~ n-lP{ sup [(~)Sj-BjI>xB[~_2.]} 
m k n = 2 k + i + l  .~k<J<= n 

(2,4) 

~ , k + l  

the last inequality following from ~, n-  1 < (2 k + 1 _ 2k ) 2~- 1 ~ (2 _ 1). Applying 
k k +  1 

Lemma 5.1 with ~ of that Lemma replaced by x/2(2r+4) shows that the last 
series is 

< c l i m  }f_. n -1P{I~r)S.-B.I>�89 
?n n >  m 

+c l im  ~, n-  1V{lX~f+ 1)[ >x/2(2r+4)B[ ~ 2.]}. 
m n>m 

The convergence of the last two series follows from (1.5) and Lemma 5.2 below. 
(The argument 2 -2n  of B can be replaced by n since B is regularly varying). 
Since x > 0 is arbitrary, (1.3) holds. 

Next, (1.3) implies (1.4) as follows. By the linear nature of S.(t) (and (r)S k-- 0 
for 0 < k < r) we have (taking the + sign as usual) 

sup I(~)S.(t)-t]= sup (~)Sk-k-+ sup _k 
0=<t=<l r < k < n B n rt 0_-<k_-<r tl  
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where (~)Sn(t)=0 for O<t<r/n.  Thus it suffices to show from (1.3) that 
(~)S k 

sup ~  can be made arbitrarily small if n > k o and k o is large enough. 
ko<=k<n B n n 

It is elementary to show that 

'% k k 

if C, is another sequence for which ~ a.s. Thus we can assume B, is 
the special (nondecreasing) sequence satisfying B, -- nA(B,). Then 

,%__k kB. = sup k 

(~)S 
< sup ~ k - - l +  sup B$1n-1]nBk-kB , [  
--k~ I Bk k~ 

and sup (~)Sk 1 
ko <-k<-n B k  --  

a.s. Also for n >_ k 

can be made small for k o large and n>  k o since (rJS,/B,,--,,1 

B2 ~ n l l n B k - k B . l = B 2  ~ klA(Bk)- A(B,) I 

= B ;  1 k i l  [1 - F ( u ) - F ( - u ) ] d u  <kH(Bk) 
n 

which is small for k > k  o since kH(Bk)~O. Thus (1.4) holds, so (1.4) and (1.3) are 
equivalent since (1.4) clearly implies (1.3). 

Finally we show the equivalence of (1.6) and (1.7). First let (1.7) hold. This 
implies Sn/B . P,  +1 (as usual we take the + sign) where Bn~nv(B,).  It also 
implies E sup ]X~ + ~)]/B, < + oo ; because, for this it suffices that 

n > r  
~o 

~P{sup tX(,~ + I~I/B , > x} dx be finite, and for this (by Lemma 5.7) it suffices that 
1 

05 

~ n r ~  H~+l(xB,)dx be finite for some x0>0. The last series is bounded by a 
XO 

multiple of (noting that B, is regularly varying with index 1) 

Bj j Bj 

~ Ur+l(x) dx ~ n " B $ 1 ~ , ,  S H"+~(x)dx(j-1)"+~Bf J 
Bj-  1 n = l  j B j - z  

x- l [B- l (x ) ]"+l  H"+l(x)dx~ S xrIv(x)I -" XHr+l 
xo xo 

(x) dx, 

since B l (x )~xv(x )  (see Lemma 5.4), and so is convergent by (1.7). Similarly, 

X2~+l ~ H"+l(xB~j)dx is finite. 
XO 
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Next, using the maximal inequality of Lemma5.1 with e=�89 o 
=�89 + 4) (x > 1) we obtain for Xo, No, Jo large enough 

Esup  [(r)Snl/B.< E su p sup ](r)S.- Bnl/B. + I 
n>no J>Jo )~j < ?1 ~ ~.j + 1 

_-<Xo+Z~P{ sup I(r)g.-Onl>xB~,}dx 
j xO . ~ . j < n ~ . j + l  

oo 

j xo 

co 

+ 2  ~ e{Ix(2,++11)l >�89 +4)} dx. 
j xo 

By Lemma 5.6 (of course h - r - l ( x ) ~ l  as x ~  + oe) the second series is bounded 

by a multiple of 22~ +~ ~ H~+l(xBx,)dx, which is finite. Remembering that B. 
XO 

is regularly varying with index 1, the first series is bounded by a multiple of 

2 2 n-1 ~ P{I(r)Szj-B~j]>xBx,} dx 
J )o./< n <  2j  + i xo 

oo 

=<Z Z n -~ ~ P{ sup I(~)Sk--Bk]>XB~j}dx 
j .~j<n<_).j+l xo )~J<=k<= n 

~ n -  1 ~f P{](~)S.-B.] >(5r+3)xB.} dx +c 
n Xo 

the last step following by a change of variable. (We use c to denote a finite 
constant resulting from another application of Lemma 5.1). 

Now truncate at xB, and use the inequality following (2.2) (with x replac- 

ing e) to replace (~)S~ with S"~= ~ X~I(lXil<xB.). We can also re-center at 
i = 1  

F/ __ n v(xB,)-ES, ,  since B,-nv(B,)=o(B,)  and for x>__ 1 and n large 

nlv(B.)- v(x B.)l = n ~i~ u d[1 - f ( u ) -  f ( -  u)] < n x B. H(B.) < �89 x B. 

since nH(B,)---,O. Thus it will suffice to prove the convergence of 
co 

Z n- 1 ~ P{]S~- n v(xB.)] > 2(2r + 1) xB.} dx. 
xo 

But by Lemma 5.5 with M=2xB, ,  t=2(2r+l)xB, ,  s,-2-nV(xB,), this series is 

Z n -  1 ~ n Z r +  1 V 2 r +  1 (xB.) dx/x 4~+ 2 B4~+ 2 

x0 

<~ C~ X -  2r--  2 v 2 r  + l ( x )  v - 2r l(x)dx. 
xo 

This is (2.3) and it converges by (1.7). 
Now let (1.6) hold. Then sup](~)S,-B,]/B,< +o~ a.s., so (anticipating the 

n>r  

result of Theorem 3, which is proved independently) we have (Sn -nv(B,))/B~ P , O. 
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Since we assume in (1.6) that B.~nLv(B.)I, each sequence of integers 
contains a subsequence for which S.,/B., e ) _+1. By Theorem 2 of [17] this 
means that S. is relatively stable, S . / B . ~  +1 say, and that B.+ 1 ~B.. Then 
by (2.1) 

IX~ + 1)I/B,= sup IC)Sj-Bj)-C)Sj I-Bj_ 1)I/B,+0(1) 
r < j < = n  

__<2 sup ](r)Sj--ByBj+O(1) 
r < j ~ n  

oo 

giving Esup]X~+l)[/B,<+~. By LemmaS.7 then, Zn'~ H'+l(xB,)dx con- 
n > r  x o 

verges, and by the usual manipulations this implies (1.7). The proof is com- 
plete. 

3. Proof  of  Theorem 2 

Suppose (S,-M(,1))/B,~I a.s. Then (S,_ 1 (1) e M(1) - M,_ 1)/B, ~ 1, because and 
M~ 1) 1 can only differ if X, > M(, 1)_ 1, and the probability of this is n- 1_~0. These 
mean that B,~B,_I, so actually (S,_I-M(,1)_O/B,~I a.s. Then (c.f. (2.1)) 
M(,Z)/B~--*O a.s. Now M(~Z)/B,~PO implies M(,1)/B,--~Po by proceeding as in 
Lemma5.3. Also, then, M(,2)/B~-~O a.s. implies Zn[1-F(r +oe. In ad- 
dition, S,/B,--~ P 1, so B, may be taken to satisfy B ,=  n v(B~) where v(x)> 0 for 
x large enough. From the convergence of Zn[1-F(eB,)J 2 follows that of 

~ v -  :(x) x [1 - F(x)] dx. Clearly 2 

1 

V(X)= i udF(u)<=iudF(u)' so udF(u) x[1-F(x)]2dx 
x 0 1 

converges, from which we deduce by applying Theorem 1 to X~ + that 

( ,,/ a.s. wher, " . x r - s u p  x .  c~  C,=n S xdF(x)>=B .. 
\ i =  l < = i < n  / 0 

Thus IS,-M(,1)[/C, is bounded almost surely and since (M(n 1)- sup X~-)/C,~O 
l <=i<=n 

a.s. (easily checked), ~ XT/C . is bounded almost surely. This means 
i = 1  

Z F ( - e C , )  is bounded for some e>0,  hence for all e>0,  since C, is regularly 
varying with index 1 [17 Lemma lJ. The convergence of ZF(- C~) then implies 

T[i that of u dF(u) x]dF(-x)[, which means further that 
1 

Su[dF(-u)l/!udV(u)~0, so B.= ~ xde(x)~n S xdI:(x). 
0 - - B n  0 

]-" 
Conversely, convergence of udY(u) x(1-F(x))2dx means by Theo- 

1 LO J 
B .  

rem 1 that (XX + - s u p  X+)/B.~I a.s., where B.=n ~ xdF(x) and B. is regularly 
0 
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varying with index 1. Convergence of 

udF(u) x ldF(-x) l  
1 

then implies Z F ( - B , ) < + ~ ,  hence E F ( - e B , ) < + o o  for e>0 ,  from which 
B~ 

(EX T - n  ~ xldF(-x)l)/B,---,O a.s. follows by standard methods. Now 
0 

~uldF(-u)l udF(u)~O, so n ~ x d F ( - x ) = O ( B , ) ,  
0 0 

hence ZXF/B,--->O a.s., leading to ( S , - s u p X ~ - ) / B , ~ l  a.s., hence (S, 
- M(,1))/B,--> I a.s. 

4. Proof of Theorem 3 and the Corollary 

We require the following representations of the distributions of (r)S, and X(f ), 
�9 which are implicit in e.g. Arov and Bobrov [1]. If y > 0  define 

Xi(y )=(x i l l x i l<y) ,  and let S,(y)= Xi(y ). Using the continuity of F, we 
have i= 1 

c o  

P {(r)S, < x} = ~ P { S,_r(y) < x} dg~,(y), (4.1) 
0 

oo 

p {x~r+ 1) < X} = ~ P { sup Xi(Y ) < x} dg~(y), (4.2) 
0 l < - i < - n - - r  

dg~(y)-- r (~) h" r(y)[1 - h(y)] ~- l dh(y), and h(y)= 1 - H (y)= P(IX 1 [<= y). w h e r e  

We now restrict ourselves to r__> 1, and proceed by showing that 

l imsup I(r)S,- A.I/B, < + oo a.s. 

implies X~+I)/B, P ,0. If this were not so, we could find e, 6 > 0  and an 
infinite sequence N for which P{IX~+l) l>2eB,}>38(r-1)!  when heN. Then 
for such n, 

3 ~ ( r - 1 ) ! < e { l x  ~r+l) 1 > 2 e B . } = ~ P {  sup IX~(y)l>2eB,}dg~(y) 
0 l<=i<=n - r  

oo 

< S P {  sup [Xi(y)-m(y)l>eB,}dg~(y ) 
l <_ i<_n- - r  

oo 

< 2 ~  P{ sup IXS(y)l>eB,}dg~(y) (4.3) 
0 l < i < - n - r  

by [16, p. 259], where XS(y) are symmetrised versions of Xi(y ) and re(y) is a 
median of X 1 (y). We used the fact, easily verified, that Im(y)- m] < c for some c, 
where m is a median of X 1, then assumed N contains only integers large 
enough for ([m[ + c)/B, <= e. 
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Make the transformation z=nH(y) in (4.3), let y.(z)=H-l(zn -1) where 
H ~ denotes the left-continuous inverse of H, and note that 

P{ sup [X~(y.(z))l>eB.} 
l <_i<_n--r 

is, for each n, a nonincreasing function of z. Thus by Helly's theorem a further 
subsequence of N can be taken, if necessary, so that 

P{ sup [X~i(y.(z))l>eB.I--+f(z), 
l <i<=n--r 

a nonincreasing function of z. Note that e C'-'l~~ is bounded by e -~/(~-") in 
ONz<~n, ~/<1, and by e"~~ in ~In<z<n, so it is easy to deduce from (4.3) 
that 

oo oo 
2 ~f(z)z '-~e-~dz=21im ~ PC sup IX~(y.(z))[>eB.}e"~~ 

0 n~N 0 l < i < n - r  

> 36(r-  1)! (4.4) 

This means f (Zo)>6  for some zo>0,  so by further restricting N if necessary, 

P{ sup ]X~i(y~(zo))l>~B~}>(~, heN. 
l <_i<_n 

Applying now a result due to Rosalsky and Teicher [28], for any integer 
m > 1 there are integers 0 = v o < v~ < . . .  < v m < n -  r, depending on N, m, and z o, 
such that for 0 < z < z o, 

rain P{suplX~(y.(z))l >eBn} > min P{suplX~(y,,(Zo))[ >eB,,} >5/2m 
1 <~k<-m iEIk 1 <--k<_m iei  k 

where I k = (v k_  1, Vk], 1 <- k <_ m.  

Note that, again by symmetrisation, ([16, p. 259), 

2P {1r A.] > meB.} = 2 ~ P {IS._,(y) - A. 1> meB.) dg~(y) 
0 

r -- 8 r > P {IS~ ~(y)] > 2meB.} dg.(y)- 2 ~ P {S._ r(Y) > 2meBn} dg.(y) 
0 0 

> 2  ~ P{ min 2 X~(y)>2eB.}P X~(y)>O dg~(y) 
0 l<=k<= rn ir i=vm+l 

> ~ P { Z  X~(y)>2eB.}dg:(y) 
0 k= 1 ielk 

1 
~ 2  ~0 k l~I P =  1 (. Isupielk j=vk~l+ 1 X ~ ( y ) ~  2 t ~ n n }  dgVn(y) 

f i ,  {suptx (ytm > 
0 k~  1 ielk 

1 (n -1 ) . . . ( n - r+ l )  ~~ > - -  
= 2  n ' - l ( r -  1)! ~ 17P{suplX~(y.(z))l>eB.}e"~~ "-~ dz, 

0 ieIk 
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where in the last inequality the variable was changed to z=nH(y), as in the 
steps leading to (4.4). 

By Fatou's  Lemma,  we now deduce 

> ~ e-Zzr- ldz>O lira infP{[(')S,-A,[ >lmeB,} = ( r -  1)v ~mm 
h e n  �9 0 

which, since m is arbitrary, means limsup[(r)S,-A,[/B,= + oo a.s., a contradic- 
nEN 

tion. 
This shows that X(f +~) /B"~O,  giving further nP(fXl[>eB,)~O for e > 0  

(Lemma 5.3), and so, as in [-28] or [12], nB2 z V(eB,)~O. Hence (S,-~,,)/B, P ~ 0 
for some 0~ n .  

To prove the Corollary, we have by Theorem 3 that lim sup [(r)S,[/B, < + oo 
a.s. implies (S , -e , ) /B,P-~O,  equivalently (Lemma 5.3), ( (~ )S , - e , ) /B ,~O.  
Since c% may be chosen as nv(B,), we must have n[v(B,)]/B, bounded away 
from 0 and +oo ;  if not, ( r ) S , / B , ~ O  or _+oe for a subsequence and 
(r)S,/B,~O or _+ oo a.s. for a further subsequence, contradicting (1.9). Thus 
every sequence of integers contains a subsequence through which nv (B,)/B, ~ - C, 
0 < [ C ] <  +oo,  i.e. SJB, e~ C through this subsequence. By Theorem 2 of 
[17] this means S, is relatively stable so ( r ) S , / C , ~  __+_ 1 for some C,. If C,/B, 
contained a subsequence converging to 0 or + oo we could take a further 
subsequence through which (r)S,/C,~ _+ 1 a.s. yet 

(r)S, (r)S, C, C~. 
B, - C, B, +__-~0  or _+~ a.s. 

as n--++ oo through this sequence. Again this contradicts (1.9) so C,/B, is 
bounded away from 0 and + oo. This implies lira sup I(r)s,]/C, < + oo a.s., hence 
lira sup [X~ + 1)]/C, < + ~ a.s. by (2.1), so, as in Lemma 5.4, (5.2) holds for some 
e > 0 ;  but then it holds for every e > 0  since C, is regularly varying with index 
1. Thus (1.7) and hence (1.3) hold. 

5. Some Lemmas 

Lemma5.1 .  Suppose c~, and B , > 0 ,  B,q'+oo, are constants for which (S, 
- ~ , ) / B , ~  O. Given s o > 0, fi > 0 there is a constant n o depending only on e o, 
6, for which 

( 1 - 6 ) P {  sup ((r)sj-~j)>xB,} 
O < j < n  

< P{S '~-~ ,>(x- (r  + 3) e)B,} + P{lX(,r+ ~)[>eB,} 

< P {r > (x-(2r  + 4) e) B,} + 2P {[X~r+ I)[ > EB,} 
k 

.~- n for every x and e>eo whenever n>no, where Sg-  ~ XiI([Xi[<eB,). 
i = 1  

Proof. Since (S,-~,)/B,P-Z~O, given eo, 6 > 0  we can find constants no, ko, 
n o > ko, for which n > n o implies 

sup [~,--~k--~,_kl <eOB, (5.1) 
k o < = k ~ n  
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and 
sup P{IS._k-- % kl>goB.}<�89 (5.2) 

ko<=k<=n 

cf. [19]. (Let S o = % = 0 ) .  We can actually take ko=0 in (5.1) and (5.2) because 

max [a.-%_k[= max I % - % 1 -  < _ max I%-ak-G_kl+O(1)<eoB.+o(B.) 
O <_k <_ko n -  ko_<_k <=n n -  ko <=k <=n 

by (5.1), if n - k o > k  o, which holds if no>2k o and n>n o. Thus also 

max I%--O~n_k--akl=O(B.), 
O<_k<_ko 

so (5.1) holds with ko=0;  similarly for (5.2). Thus if e>e  o 

inf P{IS:-S~-% +%I<=2~B.} 
o_<k_<. ( .-k ) 

> inf P{tS:-S~,-% kl<eB.} = inf P~ ~XiI(IXi[<eB.)-G_k<eB. 
O<k<=n O<_k<_n (.1i= 1 

> inf [P{IS._k-G_kl<eB.}-(n-k)H(eB.)]>I-6 
O<_k<_n 

because we can also make nH(eB.)<nH(eoB.)<=�89 if n>n o and e>e  o. Now by 
(2.2) and the fact that sup LX(k r+ 1)1 < LX~ + 1)1, 

r < k < n  

P{ sup (tr)Sg-%)>xB~} <P{ sup (S~--ak)>(x--(r+ 1)e)B~} 
O<_k<_n O<=k<=n 

+ P { sup [Ir~S k -  S~l > (r + 1) eB,} 
O < k < n  

" OB.}+P{IX,, [>eB.j.  < P {  sup (Sk--ak)>(x--(r+l) (~+l) 
0_<k~<n 

Finally by independence (interpret sup as -oo )  
O = < j < O  

P{ sup (S~-~k)>(x-(r+l)e)B,} 
O<=k<_n 

<__ ~ P{ sup (S~-c~j)<(x-(r+l)e)B n,S~-%>(x-(r+l)e)B.} 
k - O  O<=J< k 

< ( 1 - 3 )  -1 ~ P{ sup (S~-~a)<(x-(r+l)e)B,, 
k = O  O<=J <k 

n t '  Sk-%>(x- (  + 1)e)B n, IS : - s~ -c~ .+  ~1 <2eB.} 

< ( 1 - 6 ) -  1 P{S] - a .  > (x - ( r +  3) e) B.} 

-<_ (1 - 3 ) -  1 [ p  {(r)S~ - % > (x - (2r + 4) e) B~} + P {[X~ + *q > eB~}] 

using (2.2) again. Lemma 5.1 follows from these estimates. 
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Lemma 5.2. For any constants c~., B.>0,  B J  + oo, x > 0 :  

P {r ~" s . -  ~.[ > xB.} >__lp {IX~+ 1~ I > 5xB.) 

if n>no(X). 

Proof This is Lemma 1 of [20]. 

Lemma 5.3. I f  B.>0 ,  B.] '+ov, then X(~+I~/B . ._ .  , 0  for r>O if and only if 
(11 P X.  / B . - - ~  O. 

Proof Clearly X ~ I ) / B . ~ O  implies X ~ + I ) / B . ~ O ,  so let X ( f + I ) / B . ~ O .  
This implies nH(eB.)~O for every e>0,  which can be shown as follows: 
suppose n~H(eB.,)---,c>O for some e > 0  and a sequence n~o + oo. Choose 3>0,  
6 < 1, 6/(1 - 3) < c, and define a sequence C. by 

[ 1 - H ( e C . ) ] " =  1 -6 .  
Then 

n~ H(s C.)  ~ n~ log [1 - H(e C.,)]--* - log (1 - 3). 

We can assume B . <  C.~ for this subsequence; if not, we could take another 
subsequence (also denoted hi) for which B.~ > C.,, and then 
n i H(eB.,) < n i H(e C.)  shows that 

c<  - log (1-3)<3/(1  - 6) < c, 

a contradiction. Thus B. < C .  and so X(~+I)/C ~-P,O. But by the inequality 
i i n i  1 t i t  

of Lemma 5.6 

P{[X~+ I)[>~;Cn~} > ( ni ) Hr+ I(eCn~)[1-H( Cn~)] ~, n,:-r- 1 
= r + l  

- ( 1 - 3 )  log(1-6) / ( r+  1)! >0  

giving a contradiction. Thus nH(zB.)oO for every e > 0  and so X~I)/B. I" ,0. 

Lemma 5.4. Suppose Bn>0, B.T+oe and r>O. Then (r)Sn/Bn g-~• if and 
F only if S , / B , ~  +_1. I f  one of these holds, the following are equivalent to each 

other and to (1.7): 

X(r+ I)/B,--,O a.s.; 
n 

?2 
n__>l 

Y 
j>__l 

Y 
n > l  

?2 
j > l  

(5.3) 

nrHr+l(eB,)< + co for every e>0;  (5.4) 

2~+lHr+a(eB~j)<+o% for every e>0,  where 2j=[2J], 2 > 1 ;  (5.5) 

n- lp{ IX( f+l ) l>eB,}< + ~ for every e>0;  (5.6) 

(r+ 1) P{IXx~ I>eBx~}< + oe for every e>0. (5.7) 
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Proof. Suppose (")S,/B,P-Z~ 1. From Lemma 5.2 we deduce ,~(r+l)/,, P A. n / D  n ~ O, SO 

X ~ I ~ / B , ~ O  by Lemma 5.3, and this means S,/B, P ,1. Conversely if 
S,/B, P ,1 then by [8, p. 140], nH(~B,) e ~0 for every e>0, so X~,I)/B,,~O and 
this means (r)S,/B, e , 1. 

Suppose now that S,/B, P-Z~I. We show that then (5.4) and (1.7) are 
equivalent. By [17, Lemma 2], B,~B(n) where B is a positive nondecreasing 
function satisfying B(x)= xA(B(x)). By the monotonicity of H and B, then, (5.4) 
is equivalent to the convergence of 

oo 

j xrH r+ l(B(x))dx. (5.8) 
XO 

To change variable in this, note that 

B'(x)=A(B(x)) {1 -xG(B(x))} 1 = [1 +o(1)] v(B(x)) 

where xG(B(x))--.O since nH(eB,)--+O for 5>0. Thus B'(x)>0 for large x, so 
B(x) is ultimately strictly increasing, its inverse B-l(x)  exists for large x, 
diverges to +oo as x ~ + o e ,  and satisfies B'(B-l(x))~v(x). From B(x) 
= xA(B(x)) it follows that B-'(x)~x/v(x) ,  so convergence of (5.4) is equivalent 
to convergence of 

[B-'(x)]rH*+I(x)[B'(B l(x)] ldx, 
XO 

or to (1.7). Thus (5.4) and (1.7) are equivalent. 
For the remainder of the lemma: the equivalence of (5.3) and 

Lemma 3 of [22], while the equivalence of (5.4)-(5.7) follows easily from 
(5.4) is 

P{IX7 +l) l>eB.}= i ~ )  " HJ(eB,) [1 - H (eB,)]" j ~ n r+ 1Hr+ l (eB,,)/( r + 1)! 
j = r + l  

when nH(eB,)~O ([22, Lemma 2]). 

i Vat (Y/), then Lemma 5.5. I f  Yi are independent r.v.s; [Yi-EYI[<M and s,=2 
i = 1  

Proof. From inequality (8 b) of Bennett [2], 

P (Y~ >t <2exp{ - t [ ( l+s~ /Mt ) log ( l+ tM/s~ ) - l ] /M}  
i 

<2  exp { -  t[log (1 + tM/s~)- 1]/M} 
<2e,/M(1 + 2 - t i m  tiM 2 t/M tM/s,) <2e (s,/tM) . 

Lemma 5.6. If  n > r = 0, 1, 2 . . . .  and x > 0, 
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Proof. 

P{IX~ '+*~l >x} 

= P { ( r + l )  or more of JXil>x}= ~ (~)HJ(x)h"-J(x) 
j = r + l  

" 1 ( n - r - l )  HJ(x)h"-J(x) 
=n(n-1)'"(n-r)H~+l(x)h-~-l(x) j~-i j ( j + r +  1). . . ( j+ 1) 

< (x) h-~- 1 (x). 
= r + l  

For the other inequality, simply take the term for j = r + 1 from the sum. 

Lemma 5.7. Suppose r=0 ,  1,2 . . . .  , c5>0, and BnT+ oe. Then for some c(6), C(5) 
and N(6), 

c ~ n~Hr+I(xB,)<P{supIX(f+I)I/B,>x}<C ~, n~H~+l(xBn) 
n> l n> N n> l 

uniformly in x>=6, provided (for the lefthand inequality) the series converges 
when ~ replaces x. 

Proof For the right hand inequality, using Lemma 5.5, and the same argument 
used in deriving (2.4), 

P{ sup IX~r+x)l/B,>x} 
tl~- 2do 

=<P{sup sup iS~+~)l>xBz~ } < ~ cr+~ P{lXaj+, I >xBz~} 
j>=Jo kj<n<kj+l J > J o  

2 (/~j+ 1~ H~+l(xBz)h-~-l(xBx~) 
J>=Jo \r + l ] 

< 2 ~r+lHr+ h-~-t = ,oj+ 1 1 (xB&) (6B~,)/(r + 1)! 
J>-Jo 

<= ~ nrH ~+ ~ (xB~) 22 h-~- 1 (6B~,)/{(r + 1)! (2 -1)  ( 2 - 1  - 22-J~ 
n > l  

assuming x>6, Jo is such that 2 - 1 - 2 2 - J ~  and h(aBxl)>O. Defining the 
constants appropriately gives the inequality. 

For the left hand inequality choose N so large that 

{h-'-~(SB~)/(r+l)[} ~ n'H~+~(fB.)<�89 
n>N 

Then for Jo large enough, 

P{suplX~r+l)l/B,>x}>P{su p sup IX~r+I)I>xBxj } 
n>N J<=Jo Xj l < n = < 2 j  

> P(~. {(t"+ 1) or more of [X~j_~+ll . . . .  J x j ,  are > xBzj}) =P(~. E;), say. 
d d 
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By stationarity and Lemma  5.6, i f j > l o g  N 

P{IX.z, z,_,l>xB:,,} = < k r + l  ] H  '+*(xBz,)h r-t(xBz,) 

__<X]+*H~+t(xB~,)h ~ t ( , S B ~ , ) / ( r + l ) !  

i f x > 6 .  By the way we chose N we thus have ~ P(Ej)<�89 
j> logN 

Now when XnrHr+l(g)B,)<+o% nH(6B,)~O so h"(6B,)~l .  Again using 
Lemma 5.6 this gives the lower bound 

P(E2) > 2c' 2] + t Hr+ I (xB;~,) 

for some c' depending on 6 but not on x if x > 6 ,  Finally we use Bonferroni's 
inequality and the independence of the Ej to deduce that 

P(~ E j)>__ ~ P(~j)- zP(Ej) P(G)>--�89 }2 P(E) 
a j J 

>= c' E 25+* H "+ l (xBx,)>= c E nr Hr + I (xB,,) 
j n 

where c, c' depend on 6 but not on x if x__> O. This proves the Lemma.  
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