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Introduction 

It is a well-known fact that the transformation of a martingale with real pa- 
rameters by a convex function leads to a submartingale. P.A. Meyer remarked 
in his review paper on processes with a two dimensional parameter set [4] that 
besides the result which states that the square of a martingale is a weak sub- 
martingale 1 he has not found in the literature any other result on the trans- 
formation of martingales with two dimensional parameter sets by convex func- 
tions. 

Recently X. Guyon showed in E3] that for the two dimensional parameter 
set case the transformation of a strong martingale adapted to the Brownian 
fields by a convex function u gives a weak submartingale provided that u be- 
longs to the class C4(R) and furthermore its fourth derivative u (4) is non-nega- 
tive. However since Guyon derives the above mentioned result from his very 
sophisticated Ito-formula (see [21, Chap. 6), it should be understood that the 
validity of his result depends on the huge set of conditions of his Ito-formula 
for stochastic integrals with respect to martingales with a two dimensional pa- 
rameter set. 

The aim of this note is twofold: 
a) We reduce the problem of the transformation of martingales with a two 

dimensional parameter set by convex functions to that for the one-dimensional 
case and thus give an elementary proof of the following result: 

The transformation of a "strong" martingale by a convex function u is a 
weak submartingale provided that u belong to the class C2(R) and furthermore 
its derivative u (2) is convex (Theorem 1). 

b) We give an example which shows that the sufficient conditions of our 
main Theorem 1 are atso "nearly" necessary. 

1 This fact is essential for the proof of the existence of the Doob-Meyer decomposition for 
square-integrable martingales with a two dimensional parameter set 
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The Main Theorem 

We mostly follow the notation and terminology of Cairoli and Walsh's paper 
[-1] or those of the proceedings [-4]. The two-dimensional parameter set will 
always be the subset {z[Z<Zo} of RZ+ equipped with the usual partial ordering 
of the plane. If a probability system (f2, ~,~, z < Zo, ~,  P) is given, then it is 
always assumed in this note that the family {~,~, z < Zo} of sub-a-fields of 
satisfies the four standard regularity conditions: 

(F1) ~o contains all null sets of ~ ;  
(F2) I f z < z ' < z  o then ~ , ~ , ;  
(F 3) For each z ~ zo, ~,~ = (~ ~ , ;  

z',>~ 
(F4) For each Z<Zo, ~'~to and ~o~ are conditionally independent given 

where z-- (s, t) and z o = (So, to). 
We recall that a process with a two-dimensional parameter set M =  {Mz, 

z<zo} is said to be a weak submartingale (resp. martingale, strong martingale) 
if it is adapted to { ~ ,  Z<Zo} and integrable (i.e. E(IM~I)< + o% VZ<Zo) and if 

E{m(z,z'][~,~}>O for all z=(s,t)~z'=(s' , t ' )<z o (1) 

where M(z, z'] denotes the quantity 

Ms,,,+Ms,-M~,-M~,~ 
resp. 

E{M~,-  Mz[ ~ }  =0, (1') 

E{M(z, z']j~to v J~o,} =0. (1") 

Theorem 1. Let M--{M~, Z<Zo} be a right-continuous, square-integrable mar- 
tingale which is null on the axes of RZ+, and let f be a function of the class 
CZ(R) such that f "  is convex and non-negative. 

Suppose that the corresponding increasing process ( M)  has the property: 

m 2 - f  m ) =  { M } - ( m ) z ,  Z<Zo} is a martingale. 

Then the process f ( m ) =  {f(M~), Z<Zo} is a weak submartingale provided 
that one of the two following conditions is satisfied: 

(a) For all tel,0, to], M.t= {M~, 0<S<So} is a continuous process, and there 
is a constant K such that 

Sup . . . .  [M~[<K a.e.; 

(b) { ~ ,  Z<Zo} is the Brownian filtration, and for all t~[,0, to], 

E { i  ~ [f'(Mst)'Zds(M)sr} < ~ ,  

E{ Sup f"(Mst).(M)~o~}<~. 
O<s<--So 

Remarks. Before proving Theorem 1 let us give some remarks which justify in 
some sense the hypotheses stated here. 
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1) By symmetry we can permute the indices t and s in the conditions (a) or 
(b) of the theorem. 

2) If M is supposed to be a continuous strong martingale, then our ad- 
ditional condition on the increasing process (M 2 - ( M )  is a martingale) be- 
comes superfluous (see [1], Theorem 1.9). 

3) The inequality Sup lMzl<k a.e. and its equivalent form IMzol<k imply 
z<zo 

the two inequalities in (b), and on the other hand if the filtration is brownian, 
then the continuity of the process M., is a consequence of the Wong-Zakai 
representation theorem. In other words if the filtration is brownian, then the 
hypotheses in (a) of the Theorem 1 are less good than those in (b). 

4) On the one hand by the Schwarz inequality 

" f (Mat)) . . . .  oK, , E( Sup f (M~t).<M},ot)<=E( Sup " 2 1/2.Et(M.32 ]i/2 
O<_s<so O<_s<_So 

and on the other hand it follows from the convexity of f " ,  the Doob inequality 
and the Burkholder inequality for the martingale Mso. that 

E( Sup f"(Mst)2)<4E(f"(Msot)2)<4E(f"(M=o)2),  
O <_s<_So 

E(<M) 2sot) < E( (  M)2o) < const. E(M~o ). 

We conclude that the last inequality in (b) is satisfied if 

E(f"(Mzo)2)<oo and E(M4o)<Oe. 

It is noted that in the Ito-formula for the two dimensional case used by Guyon 
it is supposed that E(]M~o[6)< oe (see [-3]). 

Lemma 2. Under the same hypotheses as in Theorem 1, let Zl=(Sl, h ) ~ z 2  
~  2 be a subdivision of the interval =(s2, t2)<z 0 and let s l = s  ~ 

[sa, s2] into n equal intervals. Put 

f / ' (Ms t )=f" (M~t )  if Skn~s<skn+l 

Then for all t~ [0, to], 

t 1 lim E ]f2'(M~,)-f"(M~)ld~<M)s ~ =0. (2) 
n ~ o o  ~S1 

Proof. Let (2= [Sl, s2] x O, ~ = ~ ( s l ,  SE] |  and let ff be the Dol6ans measure 
generated by the increasing process ds<M)~ r 

It follows from the last condition of (b) that the following function <o be- 
longs to ~ I (Q ,  ~, #t), 

qo:= Sup f"(M~t ). 
Sl <=s<~s2 

Since f "  is continuous and since M. t is a continuous process, we get 

a.e.-/  lim f/ '(M~t)= f " (Ms , )<(  p 
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for all s~[sl,s2]. (2) is now an immediate consequence of the Lebesgue con- 
vergence theorem, qed. 

Proof of Theorem I. By the Ito formula for martingales with a one dimensional 
parameter set, we have 

- - i  ; i s  f(Ms~)-f(O)- f (M,n)dvMvt+~ S f"(M,~t)d,;(M)vt (3) 
0 0 

(Note that Mo t=0  a.e.) 
It follows from the condition (b) that the 1 st term in the right-hand side 

member of (3) is a martingale and that f(Mst ) must belong to ~r Thus 

E{f(M~2t~)-f(M~lt,)[~lt~} 

=�89 l ~ @  ( i= 1, 2). 

Since f " > 0 ,  ~ l t  = ~  c ~ m  , and dv(M)~t>dv(M)~,t ~ we have 

E{f(M)(zl,z2]l~} 

>=gE M,,t~)-f (M,,t,))d,,(M)vt~[~, . (4) 

On the one hand it follows from Lemma 2 that 

} t l  t t  �89189 (f. (M,t=)-fs (M~t,)ld~(M)~,,l~.~, 
k.St 

the right hand side term of (4) 

in ~ 1 when n ~ oo. 

On the other hand, 

n--1 
I(.) = ~ E { ( f " (Ms~ ,~  ) - f ' ' ( M , . t , ) ) ( ( M ) s . §  ,,, - (M)s~,l)l~., } 

k=O 

n - 1  

:= ~ E{IkIY,,}, (5) 
k = O  

but for each 0_< k _< n - 1 

{f"(Ms~t), ~o,, 0<t_-<to} 

is a non-negative submartingale. It follows that 

E{Ik[~.~sot,} =(E{f"(M,~t~)[~o~ } -f"(Ms~t,)).((M)s~§ -(M)s~,)>O a.e. 

Therefore 
g{IklY~}=g{g{Ikl~ot,}l~} >O. (6) 

Thus, it follows from (4)-(6) that 

E{f(M)(z~,z2]l~}>=O. qed. 
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Corollary 3. Under the same hypotheses as in Theorem 1 we suppose furthermore 
that the process, f (M)={ f (M~) lZ<Zo}  is right-continuous in ~Lf 1 and that f is 
bounded from below. Then there exists an increasing process A such that f (M) 
- A  is a weak martingale. 

In particular if f is non-negative and is either such that ] / f  is convex or 
such that 

E{f(M~o)(Log+f(Mzo)) 2} is finite, 

then there exists an increasing process A such that 

f ( M ) - A  is a weak martingale. 

Proof. Since f is bounded from below, 

Inf f ( x )  = - c > - oo. 
x a R  

Let (p = J'+ c, then ~o and M also verify all the hypotheses of Corollary 3 as 
f and M do. Since q0 > 0, it follows from a known result (see for instance Theo- 
rem 3.1, [4]) that there exists an increasing process A such that 

q ) ( M ) - A  is a weak martingale 

and so is f ( M ) - A .  
Suppose that ~0 is a non-negative convex function on R. Then it follows 

from the Doob-Cairoli inequality [1] that 

E {Sup ~0 (Mz) 2} _<_ 16E {~0 (Mzo) ~-} (V) 
Z<2 o 

and 
E {Sup (p (Mz) } < const. E {(p (Mzo)(Log+ (p (Mzo)) 2} + const. (8) 

~<zo 

If we put either qo = l / f  or ~0 =f ,  the inequalities (7) or (8) imply that 

E(Sup f (Mz)  ) < co. 
z . < z  0 

The right continuity of z~--*f(Mz) in ~r follows at once from the Lebesgue 
dominated convergence theorem, q.e.d. 

Remarks. 1) In [3] Guyon gave a counter-example showing that there exists a 
strong convex function f (i.e. fli~>0, i=2,  3,4) and a martingale M with re- 
spect to the Brownian filtration such that f ( M )  is not a weak submartingale. In 
fact his proof shows essentially that there exists a martingale M such that M s 
-{M} is not a martingale and that f ( M )  is not a weak submartingale. We 
conclude that the fact "M 2 - < M >  should be a martingale" is in some sense 
the weakest condition required for M in Theorem 1. 

2) We give in the following a counter-example showing that there exists a 
positive convex function f such that 

f(w) is not a weak submartingale, 
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where w={w~, z~R 2} is the Brownian sheet. Hence  the condit ion " f "  is con- 
vex" in the Theorem 1 is in some sense the weakest  required for the given 
func t i on f  

We take f ( x )=2+xZ+s in  x > 0 .  
We have f " ( x ) = 2 - s i n x > O  and f~IV)(x)=sinx, hence f "  is not  convex. 
Let  z=(s, t)~z'=(s', t'), ( p ( X ) = 2 + X  2 and put  

A = (z, z '] ,  A ~ = ((0, t), (s, t ')],  A~ = ((s, 0), (s', t)], 

Z 1 =(S,  t'), Z 2 =(S' ,  t). 

Then 

and 

where 

It can be shown that  

It turns out  that  

E {~0(w)(z, z'] I ~%} = re(A) 

where re(A) is the Lebesgue measure of the Borel  set A. Consider  ~ > z and put  

Re =(0, ~], Qr 
Then 

w~ = w((0, ~ ] )=  w(Rz) + w(Q~). 

Since w(Rz) and w(Q~) are two independent  Gaussian r andom variables, it fol- 
lows that  

E {sin (w(Q~))} = 0 

E {sin (w~)l o%} = b~. sin (w(Rz)) 

b~ = E {cos (w(Q~))}. 

E {f(w)(z, z'] I ~ }  = re(A) + (1 + b:, - bz, - bz~) sin (wz) 
= re(A) + (1 + c -�89 - -  e-r _ e- �89 sin (wz) 

I I I  
.- = I + / / . s i n  (wz). 

It is easy to see that  if 
z = (1,000, 1,000) and 

z' = (1,000.1, 1,000.1), 

then I I  > 1 >  0. Hence  the variable E {f(w)(z,  z'] I ~ }  could have negative values 
on a set of positive probabili ty.  
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