On the Transformation of Martingales with a Two Dimensional Parameter Set by Convex Functions

Nguyen-Minh-Duc and Nguyen-Xuan-Loc
Institute of Computer Science and Cybernetics
Nghia Do-Tu Liem, Hanoi, R.S. Vietnam

Introduction

It is a well-known fact that the transformation of a martingale with real parameters by a convex function leads to a submartingale. P.A. Meyer remarked in his review paper on processes with a two dimensional parameter set [4] that besides the result which states that the square of a martingale is a weak submartingale ${ }^{1}$ he has not found in the literature any other result on the transformation of martingales with two dimensional parameter sets by convex functions.

Recently X. Guyon showed in [3] that for the two dimensional parameter set case the transformation of a strong martingale adapted to the Brownian fields by a convex function u gives a weak submartingale provided that u belongs to the class $C^{4}(R)$ and furthermore its fourth derivative $u^{(4)}$ is non-negative. However since Guyon derives the above mentioned result from his very sophisticated Ito-formula (see [2], Chap. 6), it should be understood that the validity of his result depends on the huge set of conditions of his Ito-formula for stochastic integrals with respect to martingales with a two dimensional parameter set.

The aim of this note is twofold:
a) We reduce the problem of the transformation of martingales with a two dimensional parameter set by convex functions to that for the one-dimensional case and thus give an elementary proof of the following result:

The transformation of a "strong" martingale by a convex function u is a weak submartingale provided that u belong to the class $C^{2}(R)$ and furthermore its derivative $u^{(2)}$ is convex (Theorem 1).
b) We give an example which shows that the sufficient conditions of our main Theorem 1 are also "nearly" necessary.

[^0]
The Main Theorem

We mostly follow the notation and terminology of Cairoli and Walsh's paper [1] or those of the proceedings [4]. The two-dimensional parameter set will always be the subset $\left\{z \mid z<z_{0}\right\}$ of R_{+}^{2} equipped with the usual partial ordering of the plane. If a probability system $\left(\Omega, \mathscr{F}_{z}, z<z_{0}, \mathscr{F}, P\right)$ is given, then it is always assumed in this note that the family $\left\{\mathscr{F}_{z}, z<z_{0}\right\}$ of sub- σ-fields of \mathscr{F} satisfies the four standard regularity conditions:
(F1) \mathscr{F}_{0} contains all null sets of \mathscr{F};
(F2) If $z<z^{\prime}<z_{0}$ then $\mathscr{F}_{2} \subset \mathscr{F}_{z^{\prime}}$;
(F3) For each $z \ll z_{0}, \mathscr{F}_{z}=\bigcap_{z^{\prime}>z} \mathscr{F}_{z^{\prime}}$;
(F4) For each $z<z_{0}, \mathscr{\mathscr { F }}_{s t_{0}}$ and $\mathscr{F}_{s_{0} t}$ are conditionally independent given \mathscr{F}_{z} where $z=(s, t)$ and $z_{0}=\left(s_{0}, t_{0}\right)$.

We recall that a process with a two-dimensional parameter set $M=\left\{M_{z}\right.$, $\left.z<z_{0}\right\}$ is said to be a weak submartingale (resp. martingale, strong martingale) if it is adapted to $\left\{\mathscr{F}_{z}, z<z_{0}\right\}$ and integrable (i.e. $\left.E\left(\left|M_{z}\right|\right)<+\infty, \forall z<z_{0}\right)$ and if

$$
\begin{equation*}
E\left\{M\left(z, z^{\prime}\right] \mid \mathscr{F}_{z}\right\} \geqq 0 \quad \text { for all } z=(s, t) \ll z^{\prime}=\left(s^{\prime}, t^{\prime}\right)<z_{0} \tag{1}
\end{equation*}
$$

where $M\left(z, z^{\prime}\right]$ denotes the quantity

$$
M_{s^{\prime} t^{\prime}}+M_{s t}-M_{s t^{\prime}}-M_{s^{\prime} t}
$$

resp.

$$
\begin{align*}
E\left\{M_{z^{\prime}}-M_{z} \mid \mathscr{F}_{z}\right\} & =0, \\
E\left\{M\left(z, z^{\prime}\right] \mid \mathscr{F}_{s t_{0}} \vee \mathscr{F}_{s_{0} t}\right\} & =0 .
\end{align*}
$$

Theorem 1. Let $M=\left\{M_{z}, z<z_{0}\right\}$ be a right-continuous, square-integrable martingale which is null on the axes of R_{+}^{2}, and let f be a function of the class $C^{2}(R)$ such that $f^{\prime \prime}$ is convex and non-negative.

Suppose that the corresponding increasing process $\langle M\rangle$ has the property:

$$
M^{2}-\langle M\rangle=\left\{M_{z}^{2}-\langle M\rangle_{z}, z<z_{0}\right\} \quad \text { is a martingale. }
$$

Then the process $f(M)=\left\{f\left(M_{z}\right), z<z_{0}\right\}$ is a weak submartingale provided that one of the two following conditions is satisfied:
(a) For all $t \in\left[0, t_{0}\right], M_{\cdot t}=\left\{M_{s t}, 0 \leqq s \leqq s_{0}\right\}$ is a continuous process, and there is a constant K such that

$$
\operatorname{Sup}_{z<z_{0}}\left|M_{z}\right| \leqq K \quad \text { a.e. } ;
$$

(b) $\left\{\mathscr{F}_{z}, z<z_{0}\right\}$ is the Brownian filtration, and for all $t \in\left[0, t_{0}\right]$,

$$
\begin{aligned}
& E\left\{\int_{0}^{s_{0}}\left|f^{\prime}\left(M_{s t}\right)\right|^{2} d_{s}\langle M\rangle_{s t}\right\}<\infty \\
& E\left\{\operatorname{Sup}_{0 \leqq s \leqq s_{0}} f^{\prime \prime}\left(M_{s t}\right) \cdot\langle M\rangle_{s_{0} t}\right\}<\infty
\end{aligned}
$$

Remarks. Before proving Theorem 1 let us give some remarks which justify in some sense the hypotheses stated here.

1) By symmetry we can permute the indices t and s in the conditions (a) or (b) of the theorem.
2) If M is supposed to be a continuous strong martingale, then our additional condition on the increasing process ($M^{2}-\langle M\rangle$ is a martingale) becomes superfluous (see [1], Theorem 1.9).
3) The inequality $\operatorname{Sup}\left|M_{z}\right| \leqq k$ a.e. and its equivalent form $\left|M_{z_{0}}\right| \leqq k$ imply the two inequalities in (b), and on the other hand if the filtration is brownian, then the continuity of the process $M_{\cdot t}$ is a consequence of the Wong-Zakai representation theorem. In other words if the filtration is brownian, then the hypotheses in (a) of the Theorem 1 are less good than those in (b).
4) On the one hand by the Schwarz inequality

$$
E\left(\operatorname{Sup}_{0 \leqq s \leqq s_{0}} f^{\prime \prime}\left(M_{s t}\right) \cdot\langle M\rangle_{s_{0} t}\right) \leqq E\left(\operatorname{Sup}_{0 \leqq s \leqq s_{0}} f^{\prime \prime}\left(M_{s t}\right)^{2}\right)^{1 / 2} \cdot E\left(\langle M\rangle_{s_{0} t}^{2}\right)^{1 / 2},
$$

and on the other hand it follows from the convexity of $f^{\prime \prime}$, the Doob inequality and the Burkholder inequality for the martingale $M_{s_{0}}$. that

$$
\begin{gathered}
E\left(\operatorname{Sup}_{0 \leqq s \leqq s_{0}} f^{\prime \prime}\left(M_{s t}\right)^{2}\right) \leqq 4 E\left(f^{\prime \prime}\left(M_{s_{0} t}\right)^{2}\right) \leqq 4 E\left(f^{\prime \prime}\left(M_{z_{0}}\right)^{2}\right), \\
E\left(\langle M\rangle_{s_{0}}^{2}\right) \leqq E\left(\langle M\rangle_{z_{0}}^{2}\right) \leqq \text { const. } E\left(M_{z_{0}}^{4}\right) .
\end{gathered}
$$

We conclude that the last inequality in (b) is satisfied if

$$
E\left(f^{\prime \prime}\left(M_{z_{0}}\right)^{2}\right)<\infty \quad \text { and } \quad E\left(M_{z_{0}}^{4}\right)<\infty
$$

It is noted that in the Ito-formula for the two dimensional case used by Guyon it is supposed that $E\left(\mid M_{z_{0}}{ }^{6}\right)<\infty$ (see [3]).
Lemma 2. Under the same hypotheses as in Theorem 1 , let $z_{1}=\left(s_{1}, t_{1}\right) \ll z_{2}$ $=\left(s_{2}, t_{2}\right)<z_{0}$ and let $s_{1}=s_{n}^{0}<s_{n}^{1}<\ldots<s_{n}^{n}=s_{2}$ be a subdivision of the interval [s_{1}, s_{2}] into n equal intervals. Put

$$
f_{n}^{\prime \prime}\left(M_{s t}\right)=f^{\prime \prime}\left(M_{s_{n}^{k} t}\right) \quad \text { if } s_{n}^{k} \leqq s<s_{n}^{k+1}
$$

Then for all $t \in\left[0, t_{0}\right]$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left\{\int_{s_{1}}^{s_{2}}\left|f_{n}^{\prime \prime}\left(M_{s t}\right)-f^{\prime \prime}\left(M_{s t}\right)\right| d_{s}\langle M\rangle_{s t}\right\}=0 \tag{2}
\end{equation*}
$$

Proof. Let $Q=\left[s_{1}, s_{2}\right] \times \Omega, \mathscr{B}=\mathscr{B}\left(s_{1}, s_{2}\right] \otimes \mathscr{F}$ and let μ^{t} be the Doléans measure generated by the increasing process $d_{s}\langle M\rangle_{s t}$.

It follows from the last condition of (b) that the following function φ belongs to $\mathscr{L}^{1}\left(Q, \mathscr{B}, \mu^{t}\right)$,

$$
\varphi:=\operatorname{Sup}_{s_{1} \leqq s \leqq s_{2}} f^{\prime \prime}\left(M_{s t}\right) .
$$

Since $f^{\prime \prime}$ is continuous and since $M_{\cdot t}$ is a continuous process, we get

$$
\text { a.e. }-\mu^{t} \lim _{n \rightarrow \infty} f_{n}^{\prime \prime}\left(M_{s t}\right)=f^{\prime \prime}\left(M_{s t}\right) \leqq \varphi
$$

for all $s \in\left[s_{1}, s_{2}\right]$. (2) is now an immediate consequence of the Lebesgue convergence theorem. qed.
Proof of Theorem 1. By the Ito formula for martingales with a one dimensional parameter set, we have

$$
\begin{equation*}
f\left(M_{s t}\right)-f(0)=\int_{0}^{s} f^{\prime}\left(M_{v t}\right) d_{v} M_{v t}+\frac{1}{2} \int_{0}^{s} f^{\prime \prime}\left(M_{v t}\right) d_{v}\langle M\rangle_{v t} \tag{3}
\end{equation*}
$$

(Note that $M_{0 t}=0$ a.e.)
It follows from the condition (b) that the $1^{\text {st }}$ term in the right-hand side member of (3) is a martingale and that $f\left(M_{s t}\right)$ must belong to \mathscr{L}^{1}. Thus

$$
\begin{aligned}
& E\left\{f\left(M_{s_{2} t_{i}}\right)-f\left(M_{s_{1} t_{i}}\right) \mid \mathscr{F}_{s_{1} t_{i}}\right\} \\
& \quad=\frac{1}{2} E\left\{\int_{s_{1}}^{s_{2}} f^{\prime \prime}\left(M_{v t_{i}}\right) d_{v}\langle M\rangle_{v t_{i}} \mid \mathscr{F}_{s_{1} t_{i}}\right\}, \quad(i=1,2) .
\end{aligned}
$$

Since $f^{\prime \prime} \geqq 0, \mathscr{F}_{s_{1} t_{1}}=\mathscr{F}_{z_{1}} \subset \mathscr{F}_{s_{1} t_{2}}$, and $d_{v}\langle M\rangle_{v t_{2}} \geqq d_{v}\langle M\rangle_{v t_{1}}$ we have

$$
\begin{align*}
& E\left\{f(M)\left(z_{1}, z_{2}\right] \mid \mathscr{F}_{z_{1}}\right\} \\
& \quad \geqq \frac{1}{2} E\left\{\int_{s_{1}}^{s_{2}}\left(f^{\prime \prime}\left(M_{v t_{2}}\right)-f^{\prime \prime}\left(M_{v t_{1}}\right)\right) d_{v}\langle M\rangle_{v t_{1}} \mid \mathscr{F}_{z_{1}}\right\} . \tag{4}
\end{align*}
$$

On the one hand it follows from Lemma 2 that

$$
\begin{aligned}
\frac{1}{2} I(n): & =\frac{1}{2} E\left\{\int_{s_{1}}^{s_{2}}\left(f_{n}^{\prime \prime}\left(M_{v t_{2}}\right)-f_{n}^{\prime \prime}\left(M_{v t_{1}}\right)\right) d_{v}\langle M\rangle_{v t_{1}} \mid \mathscr{F}_{z_{1}}\right\} \\
& \rightarrow \text { the right hand side term of (4) } \\
& \text { in } \mathscr{L}^{1} \text { when } n \rightarrow \infty .
\end{aligned}
$$

On the other hand,

$$
\begin{align*}
I_{(n)} & =\sum_{k=0}^{n-1} E\left\{\left(f^{\prime \prime}\left(M_{s t_{2} t_{2}}\right)-f^{\prime \prime}\left(M_{s_{n}^{k} t_{1}}\right)\right)\left(\langle M\rangle_{s_{n}^{k+1} t_{1}}-\langle M\rangle_{s t_{n} t_{1}}\right) \mid \mathscr{F}_{z_{1}}\right\} \\
& :=\sum_{k=0}^{n-1} E\left\{I_{k} \mid \mathscr{F}_{z_{1}}\right\}, \tag{5}
\end{align*}
$$

but for each $0 \leqq k \leqq n-1$

$$
\left\{f^{\prime \prime}\left(M_{s_{n}^{k} t}\right), \mathscr{F}_{s_{0} t}, 0 \leqq t \leqq t_{0}\right\}
$$

is a non-negative submartingale. It follows that

$$
E\left\{I_{k} \mid \mathscr{F}_{s_{0} t_{1}}\right\}=\left(E\left\{f^{\prime \prime}\left(M_{s_{n}^{k} t_{2}}\right) \mid \mathscr{F}_{s_{0} t_{1}}\right\}-f^{\prime \prime}\left(M_{s \hbar t_{1} t_{1}}\right)\right) \cdot\left(\langle M\rangle_{s_{n}^{k}+t_{t_{1}}}-\langle M\rangle_{s_{k_{n} t_{1}}} \geqq \geqq \quad\right. \text { a.e. }
$$

Therefore

$$
\begin{equation*}
E\left\{I_{k} \mid \mathscr{F}_{z_{1}}\right\}=E\left\{E\left\{I_{k} \mid \mathscr{F}_{s_{0} t_{1}}\right\} \mid \mathscr{F}_{F_{1}}\right\} \geqq 0 . \tag{6}
\end{equation*}
$$

Thus, it follows from (4)-(6) that
$E\left\{f(M)\left(z_{1}, z_{2}\right] \mid \mathscr{F}_{z_{1}}\right\} \geqq 0$. qed.

Corollary 3. Under the same hypotheses as in Theorem 1 we suppose furthermore that the process, $f(M)=\left\{f\left(M_{z}\right) \mid z<z_{0}\right\}$ is right-continuous in \mathscr{L}^{1} and that f is bounded from below. Then there exists an increasing process A such that $f(M)$ $-A$ is a weak martingale.

In particular if f is non-negative and is either such that \sqrt{f} is convex or such that

$$
E\left\{f\left(M_{z_{0}}\right)\left(\log ^{+} f\left(M_{z_{0}}\right)\right)^{2}\right\} \quad \text { is finite },
$$

then there exists an increasing process A such that

$$
f(M)-A \quad \text { is a weak martingale. }
$$

Proof. Since f is bounded from below,

$$
\operatorname{Inf}_{x \in R} f(x)=-c>-\infty
$$

Let $\varphi=f+c$, then φ and M also verify all the hypotheses of Corollary 3 as f and M do. Since $\varphi \geqq 0$, it follows from a known result (see for instance Theorem 3.1, [4]) that there exists an increasing process A such that

$$
\varphi(M)-A \quad \text { is a weak martingale }
$$

and so is $f(M)-A$.
Suppose that φ is a non-negative convex function on R. Then it follows from the Doob-Cairoli inequality [1] that

$$
\begin{equation*}
E\left\{\operatorname{Sup}_{z<z_{0}} \varphi\left(M_{z}\right)^{2}\right\} \leqq 16 E\left\{\varphi\left(M_{z_{0}}\right)^{2}\right\} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left\{\operatorname{Sup}_{z<z_{0}} \varphi\left(M_{z}\right)\right\} \leqq \text { const. } E\left\{\varphi\left(M_{z_{0}}\right)\left(\log ^{+} \varphi\left(M_{z_{0}}\right)\right)^{2}\right\}+\text { const. } \tag{8}
\end{equation*}
$$

If we put either $\varphi=\sqrt{f}$ or $\varphi=f$, the inequalities (7) or (8) imply that

$$
E\left(\operatorname{Sup}_{z<z_{0}} f\left(M_{z}\right)\right)<\infty .
$$

The right continuity of $z \mapsto f\left(M_{z}\right)$ in \mathscr{L}^{1} follows at once from the Lebesgue dominated convergence theorem. q.e.d.

Remarks. 1) In [3] Guyon gave a counter-example showing that there exists a strong convex function f (i.e. $f^{(i)} \geqq 0, i=2,3,4$) and a martingale M with respect to the Brownian filtration such that $f(M)$ is not a weak submartingale. In fact his proof shows essentially that there exists a martingale M such that M^{2} $-\langle M\rangle$ is not a martingale and that $f(M)$ is not a weak submartingale. We conclude that the fact " $M^{2}-\langle M\rangle$ should be a martingale" is in some sense the weakest condition required for M in Theorem 1.
2) We give in the following a counter-example showing that there exists a positive convex function f such that

$$
f(w) \text { is not a weak submartingale, }
$$

where $w=\left\{w_{z}, z \in R_{+}^{2}\right\}$ is the Brownian sheet. Hence the condition " f " is convex" in the Theorem 1 is in some sense the weakest required for the given function f.

We take $f(x)=2+x^{2}+\sin x>0$.
We have $f^{\prime \prime}(x)=2-\sin x>0$ and $f^{(I V)}(x)=\sin x$, hence $f^{\prime \prime}$ is not convex.
Let $z=(s, t) \ll z^{\prime}=\left(s^{\prime}, t^{\prime}\right), \varphi(x)=2+x^{2}$ and put

$$
\begin{aligned}
A=\left(z, z^{\prime}\right], \quad A_{1} & =\left((0, t),\left(s, t^{\prime}\right)\right], \quad A_{2}=\left((s, 0),\left(s^{\prime}, t\right)\right], \\
z_{1} & =\left(s, t^{\prime}\right), \quad z_{2}=\left(s^{\prime}, t\right)
\end{aligned}
$$

Then

$$
E\left\{\varphi(w)\left(z, z^{\prime}\right] \mid \mathscr{F}\right\}=m(A)
$$

where $m(A)$ is the Lebesgue measure of the Borel set A. Consider $\xi>z$ and put

Then

$$
R_{\xi}=(0, \xi], \quad Q_{\xi}=R_{\xi} \backslash R_{z}
$$

$$
w_{\xi}=w((0, \xi])=w\left(R_{z}\right)+w\left(Q_{\xi}\right) .
$$

Since $w\left(R_{z}\right)$ and $w\left(Q_{\xi}\right)$ are two independent Gaussian random variables, it follows that

$$
E\left\{\sin \left(w\left(Q_{\xi}\right)\right)\right\}=0
$$

and

$$
E\left\{\sin \left(w_{\xi}\right) \mid \mathscr{F}_{z}\right\}=b_{\xi} \cdot \sin \left(w\left(R_{z}\right)\right)
$$

where

$$
b_{\xi}=E\left\{\cos \left(w\left(Q_{\xi}\right)\right)\right\} .
$$

It can be shown that

$$
b_{亏}^{5}=e^{-\frac{1}{2} m\left(Q_{\xi}\right)} .
$$

It turns out that

$$
\begin{aligned}
E\left\{f(w)\left(z, z^{\prime}\right] \mid \mathscr{F}_{z}\right\}= & m(A)+\left(1+b_{z^{\prime}}-b_{z_{1}}-b_{z_{2}}\right) \sin \left(w_{z}\right) \\
= & m(A)+\left(1+e^{-\frac{1}{2} m\left(A \cup A_{1} \cup A_{2}\right)}-e^{-\frac{1}{2} m\left(A_{1}\right)}-e^{-\frac{1}{2} m\left(A_{2}\right)}\right) \cdot \sin \left(w_{z}\right) \\
& I \quad I I \\
& :=I+I I \cdot \sin \left(w_{z}\right) .
\end{aligned}
$$

It is easy to see that if

$$
\begin{aligned}
z & =(1,000,1,000) \text { and } \\
z^{\prime} & =(1,000.1,1,000.1),
\end{aligned}
$$

then $I I>I>0$. Hence the variable $E\left\{f(w)\left(z, z^{\prime}\right] \mid \mathscr{F}_{z}\right\}$ could have negative values on a set of positive probability.

References

1. Cairoli, R., Walsh, J.R.: Stochastic integrals in the plane. Acta Math. 134, 111-183 (1975)
2. Guyon, X., Prum, B.: Semi-martingales à indice dans R^{2}. Thèse de Doctorat d'Etat, Univ. ParisSud, Orsay, 1980
3. Guyon, X.: Deux résultats sur les martingales browniennes à deux indices. C.R. Acad. Sci. Paris. sér. 1, t. 295, 359-361 (1982)
4. Meyer, P.A.: Théorie élémentaire des processus à deux indices. Lecture Notes in Math. 863. Berlin-Heidelberg-New York: Springer 1981

[^0]: ${ }^{1}$ This fact is essential for the proof of the existence of the Doob-Meyer decomposition for square-integrable martingales with a two dimensional parameter set

