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0. Introduction 

The Ito stochastic calculus - in particular, the theory of stochastic differential 
equations (SDE) and Ito's formula - has proved itself a versatile and powerful 
technique in the development of nonlinear filtering and control theory. It is 
convenient to begin with a brief description of the filtering problem. 

Let the unobserved signal process X = ( X , )  be a Markov process taking 
values in IR a . It is assumed that its generator is known. The canonical model of 
the observation process is given by 

t h 
(0.1) Yt=~ ~(Xu)du+Wt, O<~t<_r, 

0 

where h: [0, T]  x N a ~ IR" is a measurable function such that 

T 

(0.2) ~lhu(Xu)I2du<oo a.s., 
0 

and W=(Wt) is a standard, m-dimensional Wiener process. 
The problem is to derive an SDE for the optimal nonlinear filter and to 

prove uniqueness of its solution under suitable conditions, There have been 
essentially three types of equations considered in the literature: 

(1) Under very general assumptions on the dependence between X and W, 
Fujisaki, Kallianpur and Kunita obtained a gneral SDE for the conditional 
expectations Ht(f)=E[f(Xt)LY~, O<s<t] for a class of f ' s  belonging to the 
domain of the generator of X. This equation will be referred to as the F K K  
equation [5]. 

(2) An equivalent and sometimes easier equation to work with is the one 
for the unnormalized conditional expectation called the Zakai equation [-14]. 

Under suitable conditions, the conditional probability density and hence 
the unnormalized density exist and satisfy stochastic partial differential equa- 
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tions derived from the F K K  and Zakai equations. Most of the interesting 
recent work on the subject has centered around the study of these stochastic 
PDE's. (Krylov and Rozovskii [9], Pardoux [11]). Recently, Clark and Davis 
have used the Kallianpur-Striebel or Bayes formula and the Zakai equation for 
the unnormalized density to obtain a robust solution to the filtering problem 
[2, 33. 

(3) When the signal and observation noise are independent, Kunita in- 
troduced a third equation, a stochastic equation for the conditional probability 
measure for which he proved the existence of a unique solution [10]. Kunita's 
equation is not an SDE and analogues of this equation will be called Kunita 
type equations in this paper. It was left to Szpirglass to show the equivalence 
of the Kunita and F K K  equations in the sense that a solution of one is a 
solution of the other [13]. It was further shown in [13] that the Zakai 
equation and the corresponding Kunita equation are also equivalent. 

A point of view put forward by Balakrishnan and discussed in his recent 
papers ([1] and the references in [8]) questions the practical utility of the 
observation model (0.1) on the ground that the results obtained cannot be 
instrumented. A theoretical model for Gaussian white noise proposed in [1], 
that permits us to deal directly with the observed phenomena requires us to 
use the theory of weak distributions or cylinder measures (first introduced by 
Segal in connection with problems of physics and later developed further by 
Gross [12, 6]). The reason is that the space of observations is a Hilbert space 
of zero Wiener measure. 

In our earlier paper [8] the finitely additive white noise approach to 
nonlinear filtering theory was systematically developed in the important special 
case when the signal and observation noise are independent. Since many of the 
difficulties inherent in the calculus of semimartingales simply do not arise in 
this theory it was possible to obtain the results under less restrictive con- 
ditions. The theory naturally lends itself to robust procedures. Moreover, it was 
shown in [8] that the robust solutions obtained by Davis can be recovered via 
the white noise approach. A body of results more or less parallel to the 
existing theory based on stochastic calculus was created in [8]. 

Our purpose in the present paper is to study the finitely additive white 
noise theory in a more general framework so as to include applications to 
signal and observation processes taking values in infinite dimensional separable 
Hilbert spaces. The chief difficulty here is that we have no conditional density 
since there is no Lebesgue measure (or any natural measure) in Hilbert space. 
In place of the partial differential equations of [8] we work with finitely 
additive analogues of measure-valued equations of FKK,  Zakai and Kunita 
types. These equations (of which the first two are differential equations) are 
introduced in Sect. 3. The equivalence and the uniqueness of solutions of these 
equations are established in the four principal results of this paper~ 
Theorems 3.1-3.4. An approximation procedure for obtaining the solution as 
well as a certain robustness property are also derived. These theorems are 
based on auxiliary results proved in Sect. 2, on equations governing measures 
induced by multiplicative transformations of Markov processes. 
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Before formulating the white noise version of the nonlinear filtering prob- 
lem in Sect. 1, we summarize properties of weak distributions essential for our 
purpose and state the finitely additive Bayes formula which is one of the main 
tools of our investigation and whose proof is given in detail in [8]. 

A feature worth mentioning both of this paper and its predecessor is that 
the finitely additive white noise approach stands by itself and is entirely 
different in spirit from the methods involving approximations to solutions of 
Ito or Stratonovich stochastic differential equations, discussed, for example, in 
Ikeda and Watanabe's recent book [7]. 

1. Finitely Additive White Noise Version of the Nonlinear Filtering Model 

For the sake of completeness and the convenience of the reader we summarize 
below the basic concepts of weak distributions (or cylinder measures) on 
Hilbert space which are essential to the understanding of the finitely additive 
white noise approach adopted in this paper. The definitions regarding integra- 
tion with respect to cylinder measures in Hilbert space are taken from Gross 
[6]. The definition of conditional expectation and the Bayes formula (in the 
finitely additive set up) are from our earlier paper [8] to which we refer the 
reader for details. 

Let H be a separable Hilbert space and ~ the set of orthogonal projections 
on H having finite dimensional range. For P ~ ,  let (~p= { P - 1 B :  B a Borel set 
in Range P}. Let cg = U Cge. A cylinder measure n on H is a finitely additive 

Pe~ 
measure on (H, cg) such that its restriction to c6p is countably additive for each 
Pe~ a. 

Let L be a representative of the weak-distribution corresponding to the 
cylinder measure n. This means that L is a linear map from H* (identified with 
H) into ~(~I, ,~gl,HI) - the space of all random variables on a countably 
additive probability space (Q,, d~, I11) - such that 

(1.1) n(h: ((h, hl) . . . .  ,(h, hk))EB)=171((L(hl),L(h2) , . . . ,L(hk))eB ) 

for all Borel sets B in IR k, h l , . . . , h k e H  , k > l .  (Two maps L, E are said to be 
equivalent if both satisfy (1.1) and the equivalence class of such maps is the 
weak distribution corresponding to n). 

A function f on H is called a tame function if it is of the form 

(1.2/ f (y)  = 4((y, h 0, ..., (Y, h0) 

for some k > l ,  h 1 . . . .  , hkeH and a Borel function 4: IRk--+IR. For a tame 
function f given by (1.2), we associate the random variable 4(L(h l )  . . . . .  L(hk) ) 
(on ( t? l ,dl , / /1))  and denote it by f - .  We extend this map f - - * f ~  to a larger 
class of functions as follows: 

Definition. Let Y(H, eg, n) be the class of continuous functions f on H such that 
the net { ( f o P ) - :  P e N }  (here P~<P2 if Range P~cRange P2) is Cauchy in II1- 
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measure. Furthermore, for feZ~(H, cg, n), let 

f ~  = l imin  Probability ( fop)- .  
PeN 

It can be easily seen that the map f - + f ~  is linear, multiplicative. It is easy 
to see that for a tame function f the distribution of f and f ~  are identical. 
Furthermore, the distribution o f f -  for f~Z,('(H, Cg, n) depends only on f and n 
and is independent of the representative of the weak distribution. In view of 
this we make the following definition: 

Definition. The function f ~ ( H ,  Cg, n) is integrable (with respect to n) if 
~l f - ldHl<OO and then for C~cg define the integral of f w.r.t, n over C, 
denoted by Sfdn by 

C 

(1.3) S f dn= ~ (lc)~ f ~ dH 1. 
C g?l 

The finitely additive cylinder measure m on (H, Cg) such that for all hell ,  

_ 1 i e x p (  1 x 2 )  
( 1 . 4 )  m{yeH: (y ,h )<a}  1/~Tl jhl  I -~  2 ]lhll 2 dx  

is called the canonical Gauss measure on H. The identity map e on H, consid- 
ered as a map from (H, cg, n) into (H, cg) is called the Gaussian white noise. 

The abstract version of the white noise nonlinear filtering model is given by 

(1.5) y=~ +e 

where ~ is an H-valued random variable defined on a countably additive 
probability space ((2, d ,  H), independent of e. To be more precise, let E = H x (2 
and 

~=U%| 
Pe,~ 

where cgp| is the usual product a field. For P e ~ ,  let cq, be the product 
measure (m[cge)| (Observe that the restriction m[Cgp is countably additive.) 
It is easily seen that cq, = %, on (cgp | d)c~ (c@, | sg). Thus we can get a unique 
finitely additive probability measure e on (E, J~) such that e = ~, on cgp | sO. 

Now, let e, 4, Y be H-valued maps on E defined by 

(1.6) 

e(h, co) = h 

(h, co) = ~ (co) 

y(h, co) = e(h, co) + ( (h, co), (h, co)ell x (2. 

Now (1.5) is the abstract version of our filtering model on (E, ~ e). 
Let g be an integrable function on (f2, d,, H). As usual, we are interested in 

E(g[y). In analogy with the usual definition of conditional expectation, we 
make the following definition. 
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Definition. If there exists a v~5:(H,~f,n) such that for all C ~  

(1.7) ~ g(co) lc(y(h , co)) d~(h, co) = ~ v(y) dn(y), 
C 

then we define v to be the conditional expectation of g given y and express it 
as  

E(gly )=v .  

Remark. It is easy to see that the integrand in (1.7) is ~ p |  measurable, 
where C s ~ e ,  and since the restriction of ~ to <gp |  is countably additive, the 
integral appearing on the left hand side of (1.7) is well defined. 

It was shown in [8] that such a v does exist. We state the related result 
below. 

Theorem 1.1 (see [8]). (Bayes Formula in the f initely additive set up). 
Let  y, ~ be as in (1.5). Let g be an integrable function on (0,,4,, 17). Then 

g(co) exp ((y, ~ (co)) - �89 [I ((co)[I 2) dfl(co) 
E ( g ] y ) -  ~exp((y,~(co))-�89 

The specific nonlinear filtering model of interest to us can now be for- 
mulated in the form (1.5). 

L e t  (S,5:) be a measurable space, S being the state space of the signal 
process X,. X t is further assumed to be a Markov process defined on a 
probability space (O, sr 17). 

Let X be a separable Hilbert space and let H=L2([0, T], Y). Let h =(h~) be 
a measurable function from [0, T] x S into Y such that 

T 
(1.8) E ~ II hs(Xs)[I 2 ds < o0. 

0 

Let e = (et) be • valued white noise. Consider the nonlinear filtering model 

(1.9) Ys = hs(Xs) + e~: 0 <_ s <_ T. 

Applying Theorem 1.1 to the model (1.9) with s~[0, t], (0 < t <  T), we have for 
yffH, 

1 
(1.10) E ( f ( X t )  ly s: 0 < s < t) = ~ ~ f ( x )  dC?'ix) 

where for B E 5: 

(1.11) F~ ' (B )=EI , (X , ) exp  (y~ ,hs (Xs) )ds - �89  IIh~(X~)ll 2 ds . 

In view of (1.10), FrY is called the unnormalized conditional distribution of X t 
given {y~: O<-s<_t}. Let Ft y be defined by 

1 
(1.12) FrY(B) --~ty(~ ) - FrY(B), Be5~. 
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Then we have from (1.10) and (1.12), for y e H  

(1.13) E(f(X,)[ Ys: 0 < s < t) = ~ f(x)  dF~Y(x). 

Thus, F~Y is the conditional distribution of X t given {Ys: O<s <t}. 
As mentioned in the Introduction, when X t is a diffusion Markov process 

taking values in 1R ~ and h: [0, T]  x lRd---,N m, then x(f=IR m and we have 
discussed the situation in [8]. The measure F~ y (and also the measure FrY ) then 
admits a density with respect to Lebesgue measure in ]R d and further satisfies a 
partial differential equation under certain conditions. This equation has a 
unique solution and thus F~Y can be computed. In some cases (as in Kunita's 
paper [10]), S is taken to be a compact Hausdorff space in which case ~ can 
again be assumed to be IR m (m> 1). If S is an infinite-dimensional Hilbert 
space, it is natural for :(( also to be infinite dimensional. As will be seen, the 
dimensionality of ~ plays no role in the proofs of our results. The derivation 
of the main results of this paper follows a general pattern which has nothing to 
do with filtering theory as such but is concerned with transformations of 
distributions of a Markov process by multiplicative functionals of the type 
(1.12). It is convenient to study the latter problem separately in the next section 
and apply it to nonlinear filtering theory in Sect. 3. 

2. Multiplicative Transformations of Markov Processes 

Let (E,g) be a measurable space. Let N(E) be the class of bounded g measur- 
able functions on E. For  f,,, fEN(E) ,  we say that f , ~ f  weakly if f , , - 4 f  
pointwise and f ,  is uniformly bounded. 

Let (Zt) be an E-valued homogeneous Markov process with the associated 
semigroup (P,) (acting on N(E)). Let 

N o = { feN(E) :  P,f--+f weakly as t-4 0}. 

Assume that (Z,) is such that 

(i) For  all f eN (E ) ,  3f , ,eN o such that f , , ~ f  weakly. 

(2.1) (ii) For all f eN (E ) ,  (P,f)(x) is a jointly measurable function of (t, x). 

(iii) For  all f eN (E ) ,  f(Z~) is a ~-progressively measurable function 
where f f t=a(Zs :  s<=t). 

Let ~ be the class of functions of f in N o such that there exists fo~No 
satisfying 

t 

(2.2) (Ptf)(x) = f (x)  + ~ (PJo)(X) ds, Vx~E. 
o 

It is easy to see that (2.2) determines fo uniquely. Define a map L from ~ into 
.~o as follows. For  f e ~ ,  let L f = f o  where f fo are related by (2.2). L is called 
the extended generator of Pr 

For  a measure # on (E,g) and f e N ,  let ( f # )  denote ~fd,u. 
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The lemma proved below has been used by Szpirglas in a similar con- 
nection [13]. 

Lemma 2.1. Let @2 = { f e N "  L f  ~@}. Let txl, tr be finite measures on (E, g) such 
that for all f ~ ' 2  

(2.3) ( f ,  P, ) = ( f ,  #2). 

Then #1 =g2.  

Proof In view of the assumption (i) (2.1), it suffices to show that (2.3) holds for 
all f e d  o. 

For 2>0 ,  let R a be the resolvent of Pt, i.e. for f e d ,  

oo 

(Rzf)(x)  = y e-;"(PJ)(x)dt.  
0 

Then it is well known that (i) R z f ~ ,  L ( R z f ) = 2 R z f -  f and (ii) for f ~ N 0 ,  
2 R ~ f ~ f w e a k l y  as 2 ~ o 0  (see [4]). 

Now, fix f ~ .  Since L ( R z f ) ~ - 2 R ; . f - f  it follows that 2R z ~ 2  and hence 
(2.3) holds for 2 R a f  Since 2 R ~ f ~ f  weakly, this and the dominated con- 
vergence theorem imply that (2.3) holds for f 

Now for f ~ N o ,  2 R x f s ~  and (2.3) holds for 2 R a f  implies as above that 
(2.3) holds for f As remarked earlier, this completes the proof. 

The following Grownwall-type inequality will be useful later in this paper. 

T 
Lemma 2.2. Let c~ be a positive measurable function such that ~ a(s)ds < co. 

0 

(i) I f  a(t) is a positive bounded measurable function such that 

t 

a(t)<ycqs)a(s)ds, O<_t<<_r 
0 

then a(t)=-O. 
(ii) I f  a,(t) is a sequence of bounded measurable functions such that 

t 

a,+l(t)~f~.(s)a,(s)ds, O<t<_T, n > l  
0 

then a~(t) --* O. 
t 

Proof. Let t/(s) = .[ ~(u) du, t o -=- tl(T ) + T and for 0 < t _< to, 
0 

fi(t)~-inf{s>O: (s+tl(s))>t }. 

Then fi(t) is a continuous strictly increasing function and fi(t)+ ~l(fl(t))-= t. Thus 

dt - 

Now let b(t)= a(fi(t)). Then 
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Mr) 

b (t) = a (fl(t)) < ~ a(s) dtl (s) 
0 

= ~ a (fl (s)) drl (fl (s)) = b (s) drl (fl (s)) < ~ b (s) ds.  
0 0 0 

Now, by Grownwall's inequality, it follows that b(t)=_O. 
Similarly, letting b,(t)= a,(fl(t)), we have 

t 

b,+l(t)<=~b,(s)ds, t<=t o 
0 

and hence by induction, we have 

t n 
bn+ l(t)< C.~T. , 0_<t_<to, n=>l 

where C is the bound of al(t ). Thus b,(t)-*O Vt. 
We now consider transformation of the distribution of Zt by a multiplica- 

tire functional of the type (1.5) and characterize the transformed measure as a 
unique solution to certain equations. 

Let g be a real-valued measurable function on [0, T] x E such that 
T 

(2.4) (i) Igs(x)l<~(s), where ~a( s )d s< ~ .  
0 

t 

(ii) ~ gs(x) ds < C, 0 < C < o0. 
0 

For 0 < t < T, defien Gt, N t on g by 

( i )  G~(A) = E  1A(Zt) exp gs(Zs) ds 

and 
1 

Ct(A), 

Then it can be easily seen that 

(2.5) for 0<t_<T, G t is a finite positive measure on (E,g) such that for all 
A~g,  Gt(A ) is a bounded Borel function of t and Go(A ) =E IA(Z0) , 

and 

(2.6) for 0<t_<T, N t is a probability measure on (E,g) such that for all A~g,  
N~(A) is a Borel function of t and No(A)=E 1A(Z0). 

Theorem 2.3. (a) G, satisfies 

t 

(2.7) ( f ,  G,) = (P,f,  6o )  + ~ (g~(Pt-sf), G~) ds. 
0 
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(b) (G,) is the unique solution of (2.7) in the class of measures (Kt) satisfying 
(2.5). 

(c) Let G~ be defined inductively as follows: 

and 

(2.8) 

C~ = E 1A(Z,) 

t 

Gt + 1(A) = C~ q- f (gs(Pt-s 1A), Gns ) ds. 
0 

Then G t converges un!flormly in t (in the total variation norm) to G t. 

Proof (a) Since 

f (Zt)exp(ig~(Zs)ds)=f(Zt)[l+iexp(ig,(Z,)ds)g, . (Z~)dr ], 

we have for f e~(E) ,  

( f  Gt) = Ef(Zt) + ~ Ef(Zt) exp g~(Zs) ds gr(Zr) dr 
0 

=E(Ptf)(Zo)+ 5E{Ef(Z*)IZ~: O<s<_r} exp gs(Zs)ds g~(Z~)dr 
0 

=E(Pt f ) (Zo)+SE(Pt_~f ) (Z~)  exp gs(Z~)ds g~(Z~)dr 
0 

t 

= (Ptf,  Co)  + 5 (g,.(Pt-r f ) ,  G,.) dr. 
0 

(b) Let (K,) satisfy (2.5) and (2.7). Then for fe~(E) ,  we have 

t 

(2.9) (f ,  G t - K, )  = 5 (g,(Pt-s f), Gs - Ks) ds. 
0 

Let a(t) = sup sup I(f, G~ - Ks)  I. ([I f 11 = sup ]f(x) l). Then (2.9) gives 
O<s~t  fe~(E)  xeE 

I ] f [ [  < 1  

t 

a(t) < ~ ~(s) a(s) ds 
0 

and hence, by L e m m a  2.2, we have a(t)=-O. Thus G , = K , .  
(c) Similarly, if we define 

a,(t)= sup sup [ ( f  G~-Gs) I ,  
0 <-s <-t f~J(E),  

ILfll <= 

then from (2.7) and (2.8), we get for n >  1, 

a n  i n -  ( f  t - G )  = (gse,_J, G ' - G )  ds 
0 
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and hence 
t 

a,(t) N ~ a(s) an_ l(s) ds. 
0 

Lemma2.2 now implies that an(t)-*O for all t. This is the same as the assertion 
that G~' converges to G t uniformly in the total variation norm. 

Lemma 2.4. Let K t satisfy (2.5). Then (Kt) satisfies (2.13) iff it satisfies (2.14). 

t 

(2.13) ( f ,  K,)  = (P~f, Ko)  + [ (gs(P,_~f), K~) ds, f~M(E) 
0 

t 

(2.14) (f ,  K t ) =( f ,  K o ) + f  (L f  +g~f,K~)ds, f e ~ .  
0 

Proof. Let us write fl~(f)=(f, Kt) and for f e ~ ,  let 6t(f) be the difference of 
the right hand sides of (2.13) and (2.14), i.e., 

t t 

(2.15) 3t(f)=rio(Ptf)+ l ri~(g~Pt_~f)ds-fio(f)-f ris(Lf +g,f)ds.  
0 0 

Since for f ~ ,  
t 

Ptf = f + ~ P~(Lf)ds, 
0 

we have, using Fubini's theorem 
t 

(2.16) rio(Pt f )  = rio(f) + ~ rio(P~ Lf) ds 
0 

and 
t - - s  

(2.17) ri~(gsPt_sf)= ri~(gsf) + ~ ris(g~P, Lf) d~. 
0 

From (2.15), (2.16), and (2.17) we get 

t t t - - s  t 

(2.1S) 6,(f)=~rio(P~Lf)ds+5 I ri~(g~P~Lf)d'cds-fri~(Lf)ds" 
0 0 0 0 

Again, using Fubini's theorem, we get 

(2.19) 
t t t - ~  t 

a,(f) = f rio(P~ Lf) ds + I I fis(gsP~ Lf) dsd~- f fi,(Lf) ds. 
0 0 0 0 

Now suppose (Kt) satisfies (2.13). Fix f ~ .  To show that (Kt) satisfies 
(2.14), we will show ,St(f)-=O. Applying (2.13) to Lf, we get 

u 

ri,(Lf) = rio(P~ Lf) + ,[ rir(gr P~_ r Lf) dr 
0 

and hence 

t t t u 

S ri,(Lf)du=S rio(P~Lf)du+S S fir(g,P~-r Lf)ardu" 
0 0 O 0  
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Substituting r =  s and u - r  = r, we have 

i t t t - s  

(2.20) ri,(Lf) du=~ rio(P, Lf) du+ ~ ~ ris(g~P~Lf)drds 
0 0 0 0 

and hence from (2.20) and (2.18) we have b t ( f )=0.  
Now, for the other part, assume that (K t) satisfies (2.14). Fix f~@2. By 

rearrangement of terms in (2.14), we have 

t 

(2.21) 5 ri~(g,~ f )  ds = ri,(f) - rio(f) - ~ ri~(Lf) ds. 
0 0 

Applying (2.21) to P~ Lf, we have 

t - - l :  t - - ~  

(2.22) ~ ris(gsP~Lf)ds=rit-~(P~Lf)-fio(P~Lf)- I ri~(P~LLf)ds. 
0 0 

Thus from (2.19) and (2.22), we have 

(2.23) 

N o w  

(2.24) 

t t t - ~  t 

(St(f) = ~ fit-~(P, Lf) dr - ~ ~ ri~(P~L Lf) ds dr - ~ ris(Lf) ds 
0 0 0 0 

t: t t - - s  t 

=~ ris(Pt-sLf)ds-~ f ris(P~LLf)drds-f  ris(Lf)ds" 
0 0 0 0 

t - s  

ris(Pt-sLf)=ris(Lf)+ ~ ris(P~LLf) dr. 
0 

From (2.23) and (2.24), it follows that (5,(f)=0. Thus (2.13) holds for all f e ~ 2 .  
In view of Lemma2.1 this implies that (2.13) holds for all feN(E) .  

As a consequence of Theorem2.3 and Lemma2.4, we have the following 
theorem. 

Theorem 2.5. (a) G t satisfies 

(2.25) ( f ,  Gt) = ( f ,  Go) + i ( L f  + gsf, Gs) ds. 
0 

(b) (Gt) is the unique solution of (2.25) in the class of (Kt) satisfying (2.5). 

We will now obtain similar equations for the normalized measures N t. 

Lemma 2.6. N t satisfies the following equation: 

t 

(2.26) ( f ,  Nt)=-(f,  N o ) + j ' ( I f  +gsf, N~)ds -y  ( f ,  Ns)(g~,N~)ds. 
0 0 

Proof. ( f ,  Nt) - ( f ' G t )  and thus ( f ,  Nt) is absolutely continuous in view of 
(1, G,) 
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Theorem 2.5. Further, 

dt (f ,  Nt) = (1, Gt) ~_(f,,Gt ) - 1  z 

= ( L f  + gt f Nt)  - ( f  Nt)  (gt ,  Nt) .  

Hence (2.26) holds. 

Lemma 2.7. Let (Kt) satisfy (2.6). Then (gt) satisfies (2.27) iff (Kt) satisfies (2.28): 

(2.27) 
t t 

( f ,  Kt) = ( f ,  Ko)  +~ (Lf+gsf ,  Ks) ds-~  (f ,  Ks)(g~,K~)ds 
0 0 

(2.28) 
t 

(f ,  Kt) = (Ptf, Ko) + i (gsPt-sf, Ks) ds - ~ (gs, Ks) (Pt-J,  K~) ds. 
0 0 

Proof. The proof of this lemma is similar to that of Lemma2.4. Let fit(f) 
- - ( f  Kt) and let 6t(f) be the difference in the RHS of (2.27) and (2.28). As in 

t 

Lemma 2.3, using the identity P t f = f  + ~ P~Lf and Fubini's theorem, we have 
0 

(2.29) 
t t - s  

3t(f) = f flo(P~ Lf) as + i 5 fls(gsP~ Lf) d* as 
0 0 0 

t t - - S  i 

- ~ ~ fls(gs) fl~(P~ Lf) d'c ds - fis(Lf) ds 
0 0 0 

t t t - - t  

=5 flo(P~Lf)ds+~ ~ fi~(g~P~Lf)dsd~ 
0 0 0 

t t - z  t 

- ~ f fls(g~) fi~(P~ Lf) ds d'c - ~ fls(Lf) ds. 
0 0 0 

Now suppose (Kt) satisfies (2.28). Then for f E ~ ,  apply (2.28) to the function Lf  
and integrating over [0, t], we get that the RHS of (2.29) is zero, so that fit(f) 
= 0 and hence (Kt) satisfies (2.27). 

On the other hand, if (Kt) satisfies (2.27), we will show that 3 t ( f )=  0 for 
f ~ 2 ,  to complete the proof as in Lemma2.4. So fix f e n  z. Apply (2.27) to 
P~ Lf  and rearrange terms to get 

t - - z  t--~: 

(2.30) ~ fls(gsP~Lf)ds = flt_~(P~Lf)- fio(P~Lf)- S fls(P~LLf)ds 
0 0 

t - " J  

+ f Mgs) fls(P~Lf) ds. 
0 

t 

Also, using the identity Pt -s Lf  = Lf  + ~ P~L Lfd% we have 
0 
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(2.31) i [3~_ ~(P~ El)  d ,  = i fit( P , -~ El)  ds 
0 0 

- - i  t t - - s  
- fi,(Lf)ds+S ~ fi~(P~LLf)dzds 

0 0 0 

- - i  it--7: 
- fis(Lf)ds+5 ~ fi,(P~LLf)dsd~. 

0 0 0 

Now, (2.29), (2.30) and (2.31) imply that 6t ( f )=0.  As remarked earlier, this 
implies that (Kt) satisfies (2.28). 

Theorem 2.8. (a) (Nt) satisfies 

(2.32) (f ,  Nt) = (f ,  No) + } (L f  + g J ,  N~) ds 
0 

-} ( f ,N, ) (g~,Ns)ds ,  g f e ~ .  
0 

(b) (Nt) satisfies 

(2.33) (f ,  N,) = (Ptf, No> + i (g~Pt_J, Ns) ds 
0 

-i(g~,N~)(Pt_J,N~)ds,  V f ~ ( E ) .  
0 

(c) (i) (Nt) is the unique solution of (2.32) in the class of (Kt) satisfying (2.6). 
(ii) (Nt) is the unique solution of (2.33) in the class of (Kt) satisfying (2.6). 
(d) Define N," inductively by (f,N~t ) =Ef(Z~) and for n>O 

t t 
(f, No+ 1) = (p,f,, NO> + S (g~P,-~f, N2) ds -  ~ (gs, N2) (P,_J, N2) ds 

0 0 

7hen ~--+ N t uniformly in the total variation norm. 

Proof. (a) and (b) follow from Lemmas 2.6 and 2.7. In (c) we will prove (ii). 
Then (i) follows from Lemma 2.7 and (ii). 

Let (Kt) satisfy (2.6) and (2.33). Then 

(2.35) ( f , N , - K , ) = }  (g P , _ J , N , - K ~ ) d s - }  (gs, N -K~) . (P~_J ,  Ns)ds 
0 0 

+ 5 (g,, Ks) (g-s f ,  N~- K~> as. 
0 

Thus if a ( t )=sup  sup I(f,N~-Ks)l, then from (2.35) we have, for a suitable 
s<=t f~ ,~(E)  

Ilftl_-<l 
t 

constant C 1, a(t)<__ C1Sa(s)a(s)ds and hence, from Lemma2.2,  a(t)=0. This 
0 

proves (c). (d) is proved by proceeding as in the uniqueness proof above and 
in Theorem 2.3. 
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3. Equations of Nonlinear Filtering; 
Existence and Uniqueness of Solutions and Robust Filtering 

We now use the results of the previous section to obtain equations for the 
measures Fty and b] y related to the nonlinear filtering problem introduced in 
Sect. 1. Recall that FtY is the conditional distribution of X t given {Ys: 0_<s < t} 
in the model (1.9). (FrY is the unnormalized conditional distribution.) We will 
show that for all y~H, FrY and Ft y can be obtained by the method of successive 
approximation. Finally, we will show that the maps y ~ F t  y and y ~ F t  y are 
continuous (with the total variation norm on the range). Thus, Fty and FrY are 
robust filters. 

Let E=]-0, T] x S, OXe=~[0,T]@~. Let Zt=(t, Xt). Then Z t is a homogeneous 
Markov process (see Dynkin [4], p. 167). Assume that (Xt) is such that the 
process Z t satisfies the condition (2.1) imposed in Sect. 2. 

Let Qt be the two-parameter non-homogeneous semigroup on N(S) defined 
formally by the relation 

(QJ )  (x) = E ( f  (Xt) lX s = x). 

If Pt denotes, as in Section 2, the semigroup associated with (Zt), then we have 

(3.1) (Ptf)(s, x) = [Q~+tf (s + t, ")] (x). 

Assume that h satisfies 
T 

(3.2) I[hs(x)ll<q(s) V x ~ ,  jq2(s)ds<ov.  
0 

Condition (3.2) will be assumed to hold throughout the rest of this section. 

Theorem 3.1. (a) Fty satisfies the following equation 

t 

( 3 . 4 )  { f F t ' ) = ( Q ~  FoY)+S h 1 h 2 s ([( ~,Ys)-~-[[ sl] ]Qtf,  F~)ds. 
0 

(b) Fty is the unique solution of (3.4) in the class of measures (Kt) satisfying 
(3.5). 

(3.5) For B~5~, Ko(B)=E 1B(Xo), Kt(B ) is a bounded Borel measurable function 
of t .  

(c) Define FY inductively as follows: FtYo(B)=E1B(Xt), and for n>-O, t ,n  , - -  

( f ,  EYt,,+ 1) is defined by the right hand side of (3.4), with E yt,. replacing Fty. Then 
E y converges uniformly (in t) to Fty in the total variation norm. 

t , n  

(d) I f  y ,-* y in H, then Fty" -* Ft y in the total variation norm. 

Proof Fix ysH.  Define g: [0, T] x E ~ R  by 

(3.6) gs(t, x)  = (h~(x), y,) - �89 II hs(x)II 2 

We will also write g,(x)--gs(S, x). 



Measure-Valued Equations in Finitely Additive Filtering Theory 15 

and 

Observe that 

[gs(t,x)l <(q(s). Ib'~ll +�89 

Now for f~'~(E), 

T 

0 

u u 

~ g~(t,x) ds = ~ ~ I]y,[] 2 ds ~ i[Y[I~- 
0 0 

(f, Gt)=E (f(Zt)exp i gs(Z~)ds ) 

= E f (t, Xt) exp (i [ (h~(X s)' Ys)- t  l[ h~(X s)l[ 2] ds ) 

= (f(t, .), FRY), 

and hence we have 

(3.7) ( f  Gt) = (f(t, .), Ft y) for f ~ ( E ) .  

In view of (3.1) and (3.7), the Eq. (2.7) reduces to 

(3.8) (f(t, "), Ft y) = (Q~ .), F0Y ) 
t 

+ S (g~(x)(QJ(t, ")(x), FJ) ds, 
0 

f e~(E). 

Now, (3.8) holds iff (3.4) holds and thus (a) and (b) follows from Theo- 
rem 2.3. It is easily seen that 

(f, Gt) = (f(t, .), FrY, n), f~'~(E) 

and thus (c) also follows from Theorem 2.3. 
For (d), let g, be defined by (3.6) for y =  y,. Then we have, since y, ~ y in H, 

t t 

gn, s( s, Xs) ds ~ ~ gs(s, Xs) ds pointwise 
0 0 

and for some constant C, 

g,,s(S, Xs)ds<�89 I[y,(s)ll 2 ds< Ihy.[12< c. 
0 0 

Thus 
t 

exp(!gn,s(s,X~)ds)~exp(igs(s, Xs)ds ) in Ll(~?,sur 

and hence FzY"~ FrY in total variation norm. 

Theorem 3.2. (a) Fty satisfies the Jbllowing equation 
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(3.9) 
t 

( f ( t ,  "), F[) = ( f ( t ,  "), Fo y) + ~ ((Lf)(s, "), FJ} ds 
0 

t 

+[. ([(hs, ys)- l l lh ,  ll2] f(s, "),FJ} ds, 
0 

f e ~ .  

(b) (FrY) is the unique solution of (3.9) in the class of measures (Kt) satisfying 
(3.5). 

Remark. Recall that L is the extended generator of (t, Xt) and ~ is its domain. 

Proof. In view of (3.7), the Eq. (2.25) reduces to (3.9) and hence (a) and (b) 
follow from Theorem 2.5. 

The following theorems on the conditional distribution Ft y can be deduced 
from Theorem 2.7 and 

(3.10) ( f ,  Nt) = ( f ( t ,  .), Ftr), 

(where for a fixed y, g is defined by (3.6)) in the same way as Theorems 3.1 and 
3.2 were deduced from Theorems 2.3 and 2.5. (Part (d) of Theorem3.3 follows 
from (d), Theorem 3.1.) 

Theorem 3.3. (a) Fty satisfies 

t 

(3.11) ( f ,  FtY}= o _~Llhsl I ]Q~fFY}ds  (Q t f ,  F~}+~([(hs,Ys) l 2 

0 

t 

h 1 h 2 - ~ ( (  ~,Y~)-gH ~1[ , F~r)(Q~f,F~') ds, f ~ ( S )  
o 

(b) FrY is the unique solution of (3.11) in the class of probability measures (Kt) 
satisfying (3.12): 

(3.12) Ko(B)=E ln(Xo) and Kt(B ) is a Borel measurable function of t for all 
B~5~. 

F y (c) Define s y inductively by FtY o(B)=E1B(Xt) and for n>_O, ( f ,  t , ,+i)  is t ,n  

defined by the right hand side of (3.11), with F r replacing Ftr. Then F y converges t , n  t, tl 

uniformly (in t) to Ft y in the total variation norm. 

(d) I f  y,--* y in H, then FrYe--* FrY in total variation norm. 

Theorem 3.4. (a) Ft r satisfies 

(3.13) ( f ( t ,  "), Ft y} = ( f (0 ,  "), F~} + i ((Lf)(s, .), FYs } ds 
0 

t 

+ S ([-(hs, Ys) - 1 [I hs II 2] f(s,  .), FJ} ds 
0 

t 

h 1 - S ( [ (  ~,ys)-~[Ih~N2], F~r}(f(s,'),F~Y}ds, f e ~ .  
0 
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(b) Ft y is the unique solution of (3.13) in the class of probability measures 
(K~) satisfying (3.12). 

Remark 1. Theorem 3.2 is concerned with the Zakai equation of the unnormal- 
ized conditional measure FrY while Theorem3.1 is the corresponding Kunita 
type equation. The FKK equation for the conditional probability measure FrY 
and its Kunita equation are studied in Theorems 3.4 and 3.3 respectively. All 
four of these equations are, of course, in the white noise set up. 

Remark2. If (Xt) is a homogenous Markov process, it suffices to consider 
functions of 'x' only (i.e., functions on S) in Theorems 3.2 and 3.4. Then L will 
be the generator of (X 3. In this case, in Theorems 3.1 and 3.3, Q~ is replaced by 
Qt-s, Qr being the one-parameter semigroup associated with (Xt). 

(8 ) C1,2(FOT ] Remark3. If (Xt) is an Re-valued diffusion, then L =  ~ + 5 ~  on ,L , 

x Ra), where for each t, S t is a second order differential operator of the form 
d 82 d 

a i j ( t ' x ) ~ +  ~ bi(t'X)~x;" Further, in this case, it suffices to demand 
i,j= 1 8x Ox i= 1 
that (3.9)and (3.13) hold for functions of x only (i.e.,f~C2(Ra)). 
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