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Summary. We prove the quasi-compactness :of the Perron-Frobenius opera- 
tor of piecewise monotonic transformations when the inverse of the de- 
rivative is Htilder-continuous or, more generally, of bounded p-variation. 

I n t r o d u c t i o n  

One of the most successfully used tools for the investigation of invariant 
measures for piecewise monotonic transformations T on [0, 1] is the Perron- 
Frobenius-operator. If O=ao<al<...<aN=l, if T~=TI( . . . . . . .  ) is strictly mo- 
notone and continuous ( i= 1 . . . . .  N), and if m is a Borel-probability on [0, 1] 
with respect to which T is nonsingular, then the Perron-Frobenius-operator 
(PFO) of T and m is the linear, positive contraction 

N 
1 1 P: Lm~L,,, Pf(x)= ~ ( f .g ) (T~- lx) .  lr( . . . . . .  )(x), 

i = l  

where -1 = ,d~(mo T) is the Radon-Nikodym-derivative of T with respect to m. 
g am 

P reflects very well the ergodic properties of the system (T, m), namely: 

- # = h- m is a T-invariant probability 

if and only if 

O<=heL~, Shdm=l, and Ph=h. 
- Mixing properties of T are closely related to spectral properties of P (cf. 

[73). 
A particularly favorable situation for the investigation of P occurs if 

(1) II(goT"-l) . . . . . ( g o T ) . g l l ~ < l  for some h e n  and 

(2) g is of bounded variation. 

* This work has been supported by the Deutsche Forschungsgemeinschaff 
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It has been shown in [7] that under these assumptions 

(3) There is a h: [0 ,1]~N.+ of bounded variation such that # = h . m  is a T- 
invariant probability on [0, 1]. 

(4) For some power T k the measure # splits up into finitely many ergodic 
components, on each of which T k is weakly Bernoulli with exponential mixing 
rate. This is good enough to imply central limit theorems and almost sure 
invariance principles for stochastic processes (fo Tnk)nsN with f of bounded 
variation. 

Partial results in this direction can be found e.g. in [10] and [15]. M. Rychlik 
[12] has given a new, very elegant proof of (3) and (4), which applies also to a 
broad class of transformations with a countable number of monotonicity 
intervals. For further references see [7]. 

In [16] an attempt has been made to replace (2) in the case where m is 
Lebesgue-measure by "g is H61der-continuous', but the result was unsatisfac- 
tory since some additional conditions had to be imposed, which in general 
cannot be checked effectively. Nevertheless a result in this direction is desirable 
because of two reasons: 

a) Some problems related to the Lorenz-attractor can be reduced to prob- 
lems concerning a piecewise monotonic transformation with H/Alder-continuous 
derivative (cf. [16]). These problems could be solved setting m=Lebesgue- 
measure and g =  1/[r'l. 

b) If g = 2  �9 e ~, 2>0,  P h = h ,  and # = h  �9 m, then # is called an equilibrium 
state for ~b. For a particular class of transformations including the fl-transfor- 
mation ( x ~ f l x  rood 1, f l> 1) and Markov-transformations it has been shown in 

[7, 8] that for each ~b of bounded variation satisfying ~ vari(~b)< oo (vari(q~) 
i = 1  

=sup {14~(x)-,~(y)[ Ix, y e I ,  I an interval on which r i is monotone}) there is a 
measure in and a real 2 > 0  such that g = 2 - e  ~ and g satisfies (1) and (2) above. 
For topological Markov-chains over a finite alphabet however (and hence for 
Markov-transformations), the same result was already known when q~ is only 
H61der-continuous (this implies ~vari(~b)< o% see [1]), although in this case q~ 
is not necessarily of bounded variation. 

The aim of this paper is to replace (2) above by 

(2') g is of universally bounded p-variation, i.e. 

varv (g) = sup Ig(x/) -g(x i_  1)[ v < oo. 
O < x o < . . . < x n < l  i= 

These are those functions which are called functions of bounded p-variation in 
[3]. At the end of Sect. 2 the word "universally" will be justified. The main 
result is Theorem 3.3 which asserts that under (1) and (2') the transformation T 
has the properties briefly sketched in (3) and (4). 

As each H61der-continuous function with H61der-exponent 0<r__<l is of 
universally bounded 1/r-variation, this solves the problems described under a) 
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and b). As a matter of fact, problem a) can be solved under the weaker 
assumption that 1/]T'I is of universally bounded 1/r-variation. I want to men- 
tion that Marek Rychlik orally announced me a solution of problem a) using 
basically the same idea. 

In Sect. 1 we define a generalized concept of functions of bounded variation 
adapted to a quasi-compact, pseudo-metric space X equipped with a finite 
Borel-measure. This concept unifies Lipschitz-continuity, H/51der-continuity, 
Riemann-integrability, bounded variation, bounded p-variati0n, and gives 
many intermediate notions of bounded variation, some of which play an 
important role in Sect. 2 and 3. The main result is about compact embeddings 
of spaces of functions of generalized bounded variation into suitable LP-spaces 
(Theorem 1.13). As in the theory of Sobolev-spaces, next to embedding theo- 
rems, trace theorems are the most fundamental ones. In Sect. 2 we prove such 
a theorem, when the underlying space is the unit-interval (not necessarily 
equipped with its Euclidean metric). This is the situation that occurs in Sect. 3, 
where results of Sects. 1 and 2 are used to show that PFO's satisfying (1) and 
(2) are quasi-compact as operators on some suitable space of functions of 
generalized bounded variation, which implies (3) and (4) as in [7] and [12]. 

1. Generalized Bounded Variation 

Let (X,d) be a quasicompact topological space whose topology is defined by 
the pseudo-distance d. (This means that we do not require the Hausdorff- 
property and allow d(x,y)=O for x4=y, cf. XII.4 and Ex. XII.3.6 of [5].) 
denotes the Borel-o--algebra of (X,d) and m is a finite Borel-measure on N. 
Open balls in X are denoted by S~(x)={y~XId(x,y)<5}. F= ~ A is the 

A closed support of m. m~X', A)= 0 

1.1. Definition. For  an arbitrary function h: X--+G and 5>0  define 
osc(h, e, .)' X ~ [ 0 ,  oo] by 

x)=J'ess sup {]h(yl)-h(y2) I ]Yl, y2eS~(x)} if m(S~(x))>0 
OSC (h, G [0 if m(S~(x))=O, 

where the essential supremum is taken with respect to the product measure m 2 
on X 2. As osc(h, ~, .) is lower semi-continuous and hence measurable, one can 
define for 1 =< p < oc : 

os%(h, e)= Ilosc(h, ~,-)lip, where we admit the p-norm to take the value + o0. 

oscp(h, 5) can be interpreted as an isotonic function (in the variable 5) from 
(0, A] to [0, o0], where A is any positive constant. This motivates the next 

1.2. Definition. Fix A > 0  and denote by �9 the class of all isotonic maps 
~b(0, A ] ~ [ 0 ,  o0] with ~b(x)--,0 (x~0).  Set 

Rp={h: X ~ C l o s % ( h , . ) e ~ } ,  
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and for ~b ~ cb set 

G. Keller 

Rp, ~ = {h ~ Rp ]oscp (h,.) < ~b}, 

Sp,~= Q) Rp, n.4~. 
n ~ N  

If r  ~, we simply write Sp, r instead of Sv,4,. 
The following lemma is trivial: 

1.3. Lemma.  a) r 4)<=O~Rv,4~Rp,r Sp,r q,. 

b) Rp= ~) Rpe=4~? Sp, 

c) I f  1 <p<=q< oo then Sq, e~_Sp,r for all Oecb. 
d) I f  M is one of the classes introduced in Definition 1.2, then h ~ M ~ Re h, 

Imh ~ M. 

The next lemma provides some elementary facts about  the oscillation- 
functions: 

1.4. Lemma.  For 1 <p< oo holds: 
a) I f  h I = h  2 m-a.e., then osc(hl,  e, . )=osc (h  2, e, .). 
b) Each h~Rp is bounded and ~o-measurable, where ~o is the m-completion 

of~. 
c) I f  {P1, --', PN} is a measurable partition of X and if 

essinfh(Pn)< f(x)<=esssuph(P,) for all x~P, ( n = l ,  . . . ,N) ,  

then [If-h[]p<=OSCp(h, e), where e = s u p  {diam(P,)]n= 1 . . . .  , N}. 

d) osc (h, e,.) is bounded on X for each h ~ Rp and e > 0. 
e) For each h ~ Rp there are elementary functions h_,, hn with 

h_l ~...N_hn~...K-hK-.,.K-hn~...~Fll, 

such that ][ff,-_h, llp_<osc p (h, 1)--*0. 

Proof. a) is obvious. We next prove c): For  a.e. xeP, holds: 

If(x) -h(x)[ < ess sup h(P,) - e s s  inf h(P,) < osc (h, e, x), 

hence ]lf-hl]p<oscp(h, e) by definition. 
d) is proved for small e first: hffRp implies that  for sufficiently small 

e>O:osc(h, 4e , . )~L p. By the quasi-compactness of X one can choose 

Xl, . . . , x , ~ X  with X =  6 S~(xi). As osc(h, 4e, . ) e L ~  and as for each 
i = 1  

Y~S2~(xi): osc (h, 4e, y )>  osc(h, 2e, xi), 

it follows that  M = m a x  {osc(h, 2e, xi)li= 1 . . . . .  n} < oo. Hence osc(h, e, y)<M 
for all y. In order to prove e) we choose for each n ~ N  a parti t ion ~, 
= {Pl(n), ..., PN(,)(n)} of X finitely generated from balls with diameter less than 
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1. We may assume that ~,+1 is finer than N,. Define _h,,/Y, by h,(x) 
H 

=essinfh(Pi(n)), h.(x)=esssuph(Pi(n)) if x~Pi(n), h_,,h, are ~-measurable ele- 
mentary functions, h, < h < h,, and they are bounded for big n, as we know that 

holds/..f~ small ~ at least. Furthermore Ll/T,-_h,[]v__< osc .(h'-~"-~) p d) 

=OSCpth, n ) ~ O ( n ~ o o ) . F i n a l l y e  ) implies b), and because of b)asser t ion d) 

holds for arbitrary e. [] 

The next lemma helps finding "smooth"  versions of functions h s Rp: 

1.5. Lemma. a) For each heRp (l<__p< oo) and ~>0 holds: 

ess inf{h(y)[d(y, x)<~} <h(x)<ess  sup {h(y)ld(y, x)<~} m-a.e. 

b) For each h ~ R ~  there is a h*: X--+~ with h~e~C(F ) and h=h* m-a.e. I f  
h ~ R~o" ~ for continuous dp, then Ih*(x)-h* (Y)L <--dp(d(x, y)) for all x, y ~ F. 

Proof. a) If there were x s X and e > 0 such that h (y) > ess sup {h(z) [ d(z, y) < 2 8} 
for y in a subset of positive measure of St(x), then it would follow that 
h(y)>esssup{h(z)]d(x,z)<e} on a set of y's of positive measure in St(x ) 
contradicting the definition of the essential supremum. As X can be covered by 
a finite number of such balls St(x ) and as the same reasoning applies to the 
essential infimum, this proves a). 

b) As osc(h, e,.) is lower semi-continuous and bounded (by d of Lem- 
ma 1.4), sup osc(h, 8, x)=ess  sup osc(h, e, x), such that osc(h, 8, x ) ~ 0  (e~0) uni- 

x e F  x e F  

formly for all x ~ F. For  these x define now 

h* (x) = lim ess sup {h (y) ld (y, x) < ~} -- lira ess inf {h (y) ld (y, x) < ~}, 
e ~ 0  e ~ 0  

and set h*(x)--0 for x ~ X \ F .  As h=h* m-a.e, by part a), we only have to show 
that h~F~ C(F). But for x, y ~ F  and arbitrary 6 > 0  we have 

Ih*(x)-h*(y)l < osc (h, d(x, y) § ~, x) < II osc (h, d(x, y) + c~, .)11 ~ <= (o( d(x, y) § 6) 

for some q~ s ~. Hence h~F ~ C(F), and if q~ is continuous, 

]h*(x)-h*(y) l<~(d(x ,  y)). [] 

1.6. Examples. a) For  l__<p<oe Rp is the class of all Riemann-integrable func- 
tions on X (modm). This follows from e) of Lemma 1.4 (el. [11], Chap. 7). 

b) RoolF ~ C*( f ) ,  the class of all continuous functions on F (modm), by 
Lemma 1.5. 

c) Sp,1/p will be called the class of functions of bounded p-variation. If X 
= [0, 1] and m is the Lebesgue-measure, one can show that this class contains 
those functions of bounded p-variation considered in [3]. See Lemma 2.7. 

d) S~,dF is the class of HiSlder-continuous functions on F with exponent r 
(rood m). This follows from Lemma 1.5. 
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Examples c) and d) suggest the following restriction of the class ~: 

1.7. Definition. ~1 = { r 1 6 2  x (0<x=<A) for some a>0} .  

Now we can prove the following density-result for S-classes: 

1.8. Proposition. a) Sp,4' is dense in (L~, ][. Irp) for 1 <p< ~ and ~scb 1. 

b) S~,OI F is dense in (C*(F), ][.1[~) for all ~6q~l. 

Proof. We first show b): S~,4"lr~_C*(F) by Lemma 1.5. Furthermore, a) of 
Lemma 1.3 implies that for 

~b~cbl: S~,~= ~) Roo,,.4'___ U R~ ( . . . .  )=Soo ' 
h e n  n E N  ' 1 ,  

and S~,11F is dense in C*(F), as it is the space of Lipschitz-continuous 
functions on F (see Ex. 1.6.d). 

We now show a): By b) of Lemma 1.4, Sp,~_L~. By c) of Lemma 1.3, 
Soo,4'~_Sp,4', and the denseness of C*(X) in L~ together with part b) implies the 
denseness of Sp,4' in L~. [] 

In order to make the S-spaces into Banach-spaces we pass to m-equivalence 
classes of functions and introduce a norm on them: 

1.9. Definition. For p_->l and ~b6q~ we define: 
a) B Vp, r is the space of m-equivalence classes of functions in S;, 4," 

oscv (h, e) 
b) For h: X ~ C  set varv,4'(h)= sup 

o<~__<A 4(~) 
c) For h~BVp,4' set []hHv,4'=varp,4'(h)+ ][hJ[p. ([I. Irv,4' is well defined because 

of a) of Lemma 1.4.) 

If qS(e)=e r we simply write BVp, r, ][. [[p,~, varp, r. Observe that the definition 
depends on the constant A! 

The proof of the following lemma is straightforward: 

1.10. Lemma. BVv,4" is a linear space, and I[.[]v,4' is a norm on it ( l < p < ~ ,  
eel) .  

In order to show that (BVp,4', [I-lip,4') is a Banach-space with a compact 
embedding into L~ we need two preparatory lemmas: 

1.11. Lemma. I f  h~BVp,4' and if ~ = { P I  . . . .  , Pu} is a measurable partition of X, 
then [[h-E~[hl~][lp< Varp,4"(h). c~(d), provided d = s u p  diam(P)=<A. Here 

N P~g~ 

Em[hl~] = ~ re(P/) -x .  ~ hdm. le .  
i= 1 Pi 

Proof. By c) of Lemmal .4  we have Hh-Em[hl~]llp<OSCp(h,e), where 
=sup  diam(P). As OSCp(h, e)<varp,4'(h). ~b(e), this proves the lemma. [] 

P s ~  

1.12. Lemma. Let (h , ) ,~  be a sequence in BVp,4' converging in [[. ][p-norm to 
some element h ~ L~. Then 

vary, r (h) =< lira inf varp, 4' (h,). 



Generalized Bounded Variation and Interval Transformations 467 

Proof. Passing, if necessary, to a subsequence we can assume that  
l iminfvarp ,~(h , )=  lira Varp, o(h,). Passing to a subsequence again we also can 

assume that  h,(x)--*h(x) for all x ~ X \ N ,  where N is some set of measure 0. Fix 
x e X ,  ~>0. There is a subset Nxcc_X z with m2(Nx)=0, such that  for all 
(y, z )~XZ\N~  with d(x, y), d(x, z ) < z  holds: 

Ih(y)-h(z)l  : lira Ih,(y)-h~(z)l < l i m  inf osc(h,,  e, x). 

Hence osc(h, e, x) < l i m i n f o s c ( h , ,  e, x). By Fatou 's  lemma we get: 
n - + o o  

osc(h, e, x)P dm(x) < lim inf ~ osc(h,, ~, x)V dm(x) 

for 1 <__ p < o% while (for p = oo) obviously 

ess sup osc (h, e, x ) < l i m  infess sup osc(h,,  ~, x). 
x e X  n ~ o o  x ~ X  

Hence,  for 1 < p < oo, 

oscp (h, e) < lim inf osc v (h,, e) < ~b (e). lim inf varp, 4 (h,) 

for all e < A implying varp, ~ (h) < lira inf varp, 4 (h,). [ ]  
n ~ o o  

The  main result of this section is: 

1.13. Theorem. For l <p<oo  and 6pe~ we have: 

a) g- -{ f~BVp,~ l  Ilfllp, o <=c} is a compact subset of L < for each c > 0 .  

b) (BVv, O, II. LIp,4) is a Banach-space. 

c) For 4)~q)l, BVp,4 is dense in L~ (in case l < p < o o )  or in C*(F) (in case p 
: oo) respectively. 

Proof. a) Let  f ,  be in E (n> l ) .  F r o m  L e m m a  1.11 and Theorem IV.8.18 in [6] 
it follows that  there is a subsequence (g,) of (f,) and an element f e  L~ with 
lim I I f - g ,  IIp=0. Hence  Lemma  1.12 implies that 

n ~ o o  

II f II p, ~ :- II f II p + varp, ~ ( f )  < lim I] g, II v + lim inf vary, 4 (g,) 

= lim inf [Ig, llv,,~ <c ,  i.e.: f e E .  
n ~ c o  

b) follows immediately from 1.1.6 in [13] now, and c) from 
Proposi t ion 1.8. [ ]  

The  following lemma will be used in the next section: 

1.14. Lemma.  For fixed f and p, OSCp(f, e) is continuous from below and isotone 
as a function of e. 

Proof. osc(f ,  e, x) is cont inuous from below and isotone as a function of e for 
fixed x. For  l < p < o o  the assertion then follows from the mono tone  con- 
vergence theorem, while for p =  oo it is enough to observe the fact that  "g,Tg 
pointwise" implies "[Ig.llo~--+llg]l| i fg . ,  g>O. []  
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2. The One-Dimensional Case with p = 1 
(Trace Theorem, Products and Transformations) 

Working with variation-norms one often needs theorems of the following type: 
Let Y be a "nice" subset of X, f~BV.  Then 

var ( f .  1 0 <  C1'  var (fL0 + Cz" ~ If[ din, 

where Ca, C 2 are constants depending on Y only. (This is a combination of an 
extension- and a trace theorem, cf. [14-1.) In general such theorems are hard to 
establish. The constants C a and C 2 will depend on the dimension and shape of 
the boundary of Y, and there are many combinations of p and q5 for which 
varp, o does not satisfy such a relation at all. Therefore we restrict our interest 
here to the one-dimensional case needed in Sect. 3, i.e. X is the unit interval, 
m is an atom-free Borel-measure on X, and d is the pseudo-distance given by 
d(x, y ) = m { z l x < z < y  or y < z < x } .  As the d-topology is coarser than the usual 
topology on [0, 1-1 =X,  (X, d) is quasicompact, and m can be restricted to the 
a-algebra ~ ,  which - in accordance with Sect. 1 - denotes the Borel-a-algebra 
of the d-topology. Th roughou t  this section all topological and measure- 
theoretical statements will refer to d and N. 

2.1. Theorem. Let Y ~ X  be an interval, m(Y)>=4A. For each f: Y~(I? and each 
0 < g < A  we have 

OSCl( f .  l r ,  e-)=< (2-~ 
8A 4g oscar, tf 

rn ( Y - ~  2A 

Proof. Fix 0 < ~ < A and 0 < e < g. There is a n e N such that 

(5) 2(n - 1)e <m(Y) <2he .  

We introduce the following notations: Let f be a function from Y ~ .  Ob- 
serve the different meanings of 

osc(h  r, e, x) =ess sup {If(Y1)-f(Y2)l lYl, Y2 ESe(x)~ Y} 
and 

osc ( f .  1y, e, x) = ess sup {If(Y0 -f(Y2)] lYt, Ya ~S~(x)}, 

where f ( y )=f (y )  (ye Y) and f ( y ) = 0  ( y e X \ Y ) .  Now suppose that a: and a 2 
are the left and the right endpoint of Y. Set 

Ii=S~(a 3 ( i= 1, 2), I o = Y \ ( I l w I 2 ) ,  

h~(x)= osc (fly, e, x)- li~(x ) ( i=0,  1, 2), 

si(x ) = ess sup ]f(Y)l " 11,(x) (i = 1, 2). 
y~ S~(x)c~ Y 

Then 

(6) osc ( f .  1y, e, x )=h0(x )+  ~ max {hi(x ), si(x) }. 
/ = 1 , 2  
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Set 
x ( t ) = J s u p  {yeX]d(al, y)= t}  if t>_0 

inf{yeX[d(al, y )=  - t }  if t < 0  

and consider the intervals Jk=Yc~S~(x(2k~)) ( k = l  . . . . .  n- l ) .  As the Jk are 
pairwise disjoint, there is a/c o e {1, . . . ,  n - 1 }  with 

Jko 

For  ~ e [ - ~ , e ]  define now zk(~)=x(~+2ke ) ( k = 0 , . . . , k o )  and z k ( { ) = x ( ~ + 5  
+ 2 ( k - 1 ) e )  ( k = k o + l , . . . , n ) ,  where cS=m(Y)-2(n-1)~>O according to (5). 
Fur the rmore  set Fi(~ ) = ess sup {If(Y) - f o l  lY ~ Ui(~) c~ II} where g~(~) =S~+~(a0, 
U2(~)=S~_~(a2), and fo=m(Y) -~. ~fdm. Then 

Y 

s~(x)<F,(~)+lfol for x=x(~)eI~, 
Sz(X)<F2(~)+lfol for x=x(m(Y)+~)e12, 

(s) 

and 

(9) max {hi(x({)), FI({)} + m a x  {h2(x(m(Y)+ {)), F2({)} 

< re(Y) ~ osc(fl~, ~, zk(~)). 
= m ( Y ) - 2 e  k=o 

In order  to show the latter inequality one has to consider four cases: 

i) hl(x(~))>Fl(~ ), h2(x(m(Y)+ ~))>F2(~ ). This case is trivial. 

ii) hl(x(~))<Fl(~), hz(x(m(Y)+~))<F2(~ ). In this case there is a k~{1 . . . .  , n 
- 1} such that  

ess inf f(y) <= fo < ess sup f(y), 
ye S~(zk(~)) y~  S'~(zk(~)) 

which proves the inequality in this case. 

iii) hl(x(~))>Fl(~) , h2(x(m(Y)+~))<F2(~). This case is more  delicate and is 
re(Y) 

responsable for the factor m ( Y ) - 2 ~ "  If there is a ke{1  . . . .  ,n} as in ii), the 

inequality again is true (even without  the factor). Otherwise, setting u=x(~ +~) 
we can suppose w.l.o.g, that  c =  ess i n f ( f ( y ) - f o ) > 0 .  Then  

y>_u 

F2(~)<-_ ~ osc(fly, ~, zk(~))+c 
k = l  

and 

i.e. 

m([u, a2] ) �9 c < i 2 ( f  (y) -fo) din(y) = - i ( f  (Y) -fo) din(y) 
u al  

<2~. _q(r h,(x(~)), 

2~ 
c<hl(x(~)) 

re(Y) - 2~ 



470 G .  K e l l e r  

such that 
2 g  

hl(x(O)+G(O< k:o ~' ~ ~' zk(O)+G(x(O)'m(~)-2a 

< m(~) ~ osc(fl~, ~, z~(O). 
= m ( Y ) - 2 e  k=o 

iv) h 1 (x(O) < F 1 (0, hz(x(m(Y)+ 4))>F2(O-This case is analogous to iii). 
From (6), (8), and (9) it follows that 

osc 1 (f" lr ,  e) 
=~ osc (f" i t ,  e, x)dm(x) 

< f ho(x) dm(x) + lfol . 4e -+ 

< ~ ho(x) dm(x) + lfo[ . 4 e -+ 

re(Y) 
re(Y) --2e 

m(Y) 
re(Y) - 2 e  

re(Y) 

i( ) �9 ~ osc(fL~, ~, zk(O) d~ 
--e \ k = O  

x (m (Y) + e) 

OSC (fl Y' ~' X) din(x) 
x ( -  0 

+ ~ osc(fl~, 5, x)dm(x) 
m ( Y ) - 2 a  Sko 

according to the choice of the zk(~), 

< re(Y) . ( 2 + n _ ~ ) . ! o s c ( f t r , ~ , x ) d m ( x ) + 4 e . ] f o  [ 
=re(Y) - 2 e  

by (7) and since sup osc (fir, g, x) 
xeS~(ai) \  Y 

< inf osc (fir, ~, x) (i = 1, 2), 
x~SdaOnY 

< (2-+ m(Y)-2e8~ ) ! o sc ( f l r ,  g,x)dm(x)+4e.[fo[ 

by (5) and as m ( Y ) > 4 A > 4 e .  

As oscl( f .  1 r, e) is continuous from below in the variable e (see Lemma 1.14), 
this implies that for each 0 < g < A :  

8A 

+4~.m(Y)-~.[ .  Jfldm. [] 
Y 

The proof of the following lemma is similar but easier. We skip it: 

2.2. Lemma. For bounded f:  Y--+• (Y~_X an interval) and 0 < ~ < A  we have 

[] f N 0o < e - l "  (~ osc (fir, ~, x) din(x)) + re(Y)-1. ~ [f[ din. 
Y Y 

(This estimate is quite rough but sufficient for our purposes.) 



Generalized Bounded Variation and Interval Transformations 471 

2.3. Lemma.  Let Y,Z~_X, T: Y ~ Z  be bijective, and f: Y---,(E. Set 

g(z)=sup {d(T- l y, T -  l z)[yeS~(z)c~Z}. 

Then osc( fo  Y- l l z ,  e, z )<osc ( f j y ,  g(z), T - l z )  for each z~Z.  
The proof  is straightforward. 

2.4. Lemma.  Let Y , Z ~ X  be intervals, T: Y ~ Z  an order-isomorphism or 

-antiisomorphism, non-singular with respect to m, and call T'=d~m(mO T) the 

Radon-Nikodym derivative of T with respect to m. Suppose that T ' (y )~c~>0  for 
a.e. yeY .  Then for each f: Y--*(12 

i~, '2, z S osc(ft~ ' ~-1 
Y 

Proof. Using a) of L e m m a  1.5 one easily shows that for a.e. z e Z  

(10) o s c ( f o T - l i z , ' 2 ,  z)<=lf(T- 'z) l .ose(~7oT- ' iz , '2 ,  z ) 

1 
-t r , ( T - l z )  " ~ ~ '2, z) 

+2"osc(~- - - ;oT -1 ) o s c ( f o T  -1 z). I Z ' ' 2 '  Z - I Z '  '2' 

We first treat the integral over the second term in this sum: 

(11) ~ osc (fo T -  l[z , '2, z)- ( T -  x)'(z) din(z) 
z 

<~ osc(fly, 5(z), r - ~ z )  . ( r - t ) ' ( z ) d m ( z )  (by 2.3) 
Z 

-<~ osc (fly , 0~-1'2, y) dm(y) 
Y 

by integral t ransformation and observing that T'  > ~ > 0 implies ~__< ~- 1 '2. 
The integral over the first and the third term is est imated as follows: 

(12) !osc @o T-'l~, ~, ~). (if(T- ~ ~)i + 2-osc(fo T-'l~, ~, ~)) dm(~) 

(by 2.2) 
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(10), (11), and (12) together prove the lemma. [] 
If m is not the Lebesgue-measure on [0, 1] and d is not the Euclidean 

metric, it is hard to recognize functions in BVp, o. As we shall deal with such 
situations in Sect. 3, it is important to characterize subclasses of B Vp, ~ at least. 

2.6. Definition. For a function f :  [0, 1]--,02 define the universal p-variation by 

(~: ]:/P 
varp ( f ) =  sup [f(al) - f ( a  i - 1)lP! 

O < a o < a l < . . . < a n  < 1  i 

and denote the space of functions of universally bounded p-variation by UBV, 
= { f :  [0, 1]~021varp(f)< oc}. 

These are exactly the functions of bounded p-variation in the sense of [3]. 
The following lemma justifies the notation: 

2.7. Lemma. UBVpc_OBVp,1/p for all l < p < ~ ,  where the intersection ranges 
m 

over all spaces BV,,:/, which stem from any atom-free finite Borel-measure m on 
[0, 1] and its associated pseudo-distance d. In particular, if m is a probability- 
measure, then varp, :/p(f) __< 21/". var, (f). 

Proof. As each fGUBVp is bounded, ~[fldm<oe for any finite measure m. 
With a similar argument as in the proof of Theorem 2.1 one shows that 
~osc(f, e, x)'dm(x)<2e. (varp(f)) p. We leave the details to the reader. [] 

Problem. Can the inclusion in Lemma 2.7 be replaced by equality? 

3. Perron-Frobenius Operators 
for Piecewise Monotonic Transformations Acting on B V:-Classes 

As in [7] we now assume the following situation: Let {1:, ..., IN} be a finite 
partition of X = [ 0 ,  1] into intervals, and let T: X ~ X  be a transformation 
which is monotone and continuous on each I~. (We call such a transformation 
piecewise monotonic.) Assume that 

(13) there is a Borel-probability m on X with respect to which T is non- 

( d  ) - i  1 and supposeg(x)__<e-:<oo m-a.e. singular. Call g = ~mm (mo T) = T~, 

Define 

(14) P: mb(X)--,mb(X) (=  {f: X~IE [f  measurable and bounded}) by 

N 

Pf(x)= ~ ( f  .g)o Ti -1. lri  ,, 
i = l  

where T/= Tih. 

N 

Then m(P1B)---- Z 
such that i= 1 T(Bc~Id 

d 1) N 
~mm(moTi- d m = ~  ~ din=re(B) for each BG~,  

i =  1 Bc~Ii  
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(15) m(Pf)=m(J) for all femb(X),  and P extends to a positive linear con- 
traction on L~. 

From these assumptions it follows that m is atom-free (cf. Lemma 2 in [7]), 
and with d(x, y)=m({zlxNz<=y or y<z<x})  we are in the situation of Sect. 2. 
Our goal is to find a spectral decomposition for P as in [7]. To this end we 
need: 

3.1. Lemma.\ (Remember that Varp,r o<~_<ASUp OSCv(f'qs(e) 5) depends on the con- 

stant A ! ) 
I 

If  geUBVp ( l < p <  oe), then for each b>0  there are constants A = A ( 6 ) > 0  
and K=K(cS)>0 such that for f: X~(E 

2+6  
vart, 1/p (P f )  <-~i7F varl, lip(f) + K . [{ f rll- 

6 o__l/p. ( ~  1 - I /p  
Proof. Set M-=-~.  \ 16+26!  Refining, if necessary, the partition 

{I 1 . . . . .  IN} we can assume that 

(16) varp(glh)<M (i= 1 . . . .  , N). 

This is possible because each g of universally bounded p-variation has one- 
sided limits in each point and its set of discontinuities is at most countable. If 

dj denotes the height of the j-th discontinuity, then ~ d~ < oe. Hence there are 
j=a 

only finitely many j's with dr>M , and these d r can be taken as new partition- 
points. Refining the partition further one finally obtains (16)�9 We remark that 
the refinement can be done in such a way that if 

F_ --min {m(TIi)[i~ {1, ..., N}, m(Ii)>O } 
and 

F+ =max  {m(TIi)li~ {1 . . . . .  N}}, 
then 

F + < 2 . F  . 

A = A ( 6 ) = F  . - -  
1 6 + 2 6  

(17) 

Now set 

(18) 

Then we have for 0 < e < A: 

(19) ~  i=1 ~ ~176 < i=1 ~ 2-~m(Ti i )_2n 
m(Ii) > 0 m(Ii) > 0 

(f7 T"-I )dm(x)+4em(TIi,-1 ~ f Ti- tdm)(by2.1) .  �9 ~ ONC o i i T i i  , g~ X �9 o 

TIi Tll 
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Furthermore 

(20) 

(21) 

(22) 

and 

(23) 

~([f[oTi-1). ( ~ o  Ti-1)dm= f If[din, 
TIi Ii 

8A ___2+~ (by (18)), 
2 +m(TI~)_2A - 

~ o s c ( f o T i - l , T h , ~ , x )  d m ( x )  
TI~ 

~-~ S Osc(Z[I i' 0~-1 5, y)dm(y)+ 5. ~ osc [1o  Ti - l r , , g  ' z) din(z) 

(m(Ii)-l [. lfldm 1 dm(y)) (by �9 I, + ~  ! osc (fib, A, y) 2.4), 

osc ) rIi \Zi ITIi, 8, Z 

~= OSC o T i -  IlTI, , ~, z dm(z) . (m(Tii))(1-1/p) 
i 

1 1 <(2e)l/P" vary (~;{~ Ti - I t , i ) "  F(+ 1-1/p) (by 2.7) 

=(2e) l/p- F(+ 1-1/p). varp(glr,), as the universal p-variation 
is invariant under order-iso- 
and -antiisomorphisms, 

<2-~'/P-F(_ 1-1/p). M (by (16) and (17)). 

If we set 7=min {m(Ii)]i~ {1 .... , N}, m(Ii) >0}, then (19)-(23) imply 

+ 4 e . F - t . ~ l f l d m ,  
X 

such that 

~-77 <__ 2+ .e-1/P+IO.F~_-I/P.M.A 1/v-1 .varl, i/p(f) 

+ ( (2+~) -  l O . F ~ - l / ' - M . l + 4 . A l - 1 / ' . F _ - l ) - ~ x l f l d m  

< (2 + fi). e-  1/p. var 1,1/p (f) + K- ~ I f l  d m 
x 

by definition of M and A, which proves the lemma. [] 
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The following theorem is an easy consequence of this lemma: 

3.2. Theorem. Let T,P, and m be as described 

( l < p < o o )  and if there is a h e n  with 

0 < f l <  1, and C > 0  such that for each f eBVI,1/v 

I{Pkfll 1,1/p< fl" I{f{I 1, l/V+ C. [If{I 1. 

in (13)-(15). I f  geUBVp  

IIg, l[~o< 1 (where g,(x) 
/ 

then there are k e N,  

Proof. It is easy to see that T j is piecewise monotonic and gje  UBVp for all 
j e N .  (UBV~ is closed under product and order-(anti)isomorphism.) Hence 
there is a k e N with gk e UB Vp and II gk II ~o < (1)p. Applying Lemma 3.1 with 15 = 1 
to pk gives 

IlPkf II l, 1/p = var l, 1/p(Pk f )  + II P• f II1 

< �88 1/p(f)+(K + l)" Ilflll < �88 + l) " Ilflll. []  

As P is a L~-contraction, the last theorem and Theorem 1.13 allow to apply 
an ergodic theorem of Ionescu-Tulcea and Marinescu [9] stating in an abstract 
Banach space setting the results 3.3.1-3.3.3 of the following theorem (they are 
formulated here for the special situation under consideration). F rom this 3.3.4- 
3.3:8 can be derived as in [7]. 

3.3. Theorem. Under the assumptions of the preceding theorem holds: 

3.3.1. P: L~--+L~ has a finite number of eigenvalues 2, ,  ..., 2~ of modulus 1, 

3.3.2. El= { f e L ~ ] P f = 2 i f }  c__BV,,I/p and dim(El)< oo ( i= 1 . . . .  , r). 

3.3.3. P =  ~ 2 i ~ + Q ,  where the ~ii are projections onto the eigenspaces Ei, 
i = 1  

I1~111<1, and Q is a linear operator on L~ with Q(BVI,1/p)~_BVI, 1/p, 
sup [I Q"111 < 0% and 11 Q" II 1,1/~ = O(q") f o r  some 0 < q < 1. Furthermore ~ ~. = 0 (i 
n~N, 

eej) and ~Q=Q_ ~ = 0  for all i. (This means that P is quasi-compact as operator 
on (Bgl,1/p,  II. II 1, l/p)') 

3.3.4. 1 is an eigenvalue of P, and assuming 21--=1 and h =  ~1(1), #=-h. m is the 
greatest T-invariant probability on X absolutely continuous with respect to m, i.e. 
if yt is T-invariant and ft ~ m, then yt ~ #. 

3,3.5. There is a partition {Ck, l l k = l  . . . .  , r ,  l = l , . . . , L k }  of X such that TCk, t 
~-Ck,(l+ 1)modLk and T)~,, is weakly mixing for all k and 1. 

3.3.6. I f  (T, g) is weakly mixing and H is an arbitrary finite partition of X into 
intervals, then there are constants K > O  and O < p < l  such that ~ [ # ( R c ~ S )  

R S 
n - 1  

- # ( R ) . # ( S ) I < = K . p  I where the summation extends over all R e  ~/ T - i l l ,  
n + l + k - - 1  i = O  

S e  V T-~H,  and k,l, n e N  are arbitrary. This means that 1I is a weak 
i = n + l  



476 G. Keller 

Bernoulli-partition for (T, I~) with exponentially decreasing mixing-coefficients. In 
particular, the natural extension of (T, I~) is isomorphic to a Bernoulli-shift (cf 
[2]). (The proof of this fact needs some minor modifications compared to [7], as 
g is nolonger in U B V  1 but in UBVp.) 

3.3.7. I f  (T,#) is weakly mixing, f e U B V  S for some l < s < o o ,  f real-valued, 
Sfdl~=O, and if S(t) is defined as S(t)= ~ f o  T ~, then the series a2=If2du 

O < i < t  

+2. ~ Sf  . ( f  o Tk)du converges absolutely, y S(t)2 dl~=t,  a2 +O(1), and if a 2 
k = l  

+0 the following holds: 

a) sup # { + S ( t ) < z }  1 i e - x~ /2dx=O( t -~  ] / ~  - 

b) Without changing its distribution one can redefine the process (S(t))t__> o on 
a richer probability space together with a standard Brownian motion (B(t))t>=o 
such that la-1 .  S( t ) -B( t )]  =O(t  ~/2.z) p-a.e, for some 2>0.  

3.3.8. # is an equilibrium state for log g on X, i.e. 

h(/~) + ~ log g d# 
= sup {h(v) + ~ log g dv]v is a T-invariant probability on X} ,  

where h(v) is the entropy of (T, v). 

3.3.9. In [4] it has been shown that 3.3.6 is sufficient for limit theorems for U- 
statistics and v. Mises' functionals based on data from a stationary process Xn(co ) 
=f(Tnco) (c~ ~X), where again f ~ U B Vs for some 1 <=s < o~. 

Recently, M. Rychlik [13] has shown for the case p =  1 how one can derive 
the spectral decomposition 3.3.3 without referring to the theorem of Ionescu- 
Tulcea and Marinescu. Using a slightly refined version of the inequality of 
Theorem 3.2 he gives a direct proof that the operator P: B V ~ B  V is quasicom- 
pact (that is what 3.3.1-3.3.3 mainly say) and a very short proof of 3.3.6. 
Furthermore, his technique allows him to treat transformations with countably 
many intervals of monotonicity in a very elegant way. 

As in [7] and [8] one can show that the hypothesis of Theorem 3.2 (and 
hence of 3.3) are satisfied in the following situations: 

3.4. Theorem. Let 0 ~ UBVp, (sup qS-infqb)<htop(T ). Then there is a probability 
m on X and a real )~>0 such that m and g = 2 e  4~ satisfy (13)-(15) and the 
hypothesis of 3.3. 

Proof. It easy to see that 4 6 U B V p  implies g~UBVp.  The existence of the 
measure m and of a natural number n with I]g~]] ~ < 1 can be proved as in [8]. 

1 
3.5. Theorem. Suppose TI, ~ is differentiable for each i, ~ ; ~ U B V p ,  and 

](T') 'l>=a>l for some n~]N. Then the hypothesis of 3.3 are satisfied for m 
= Lebesgue-measure. 
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Let  N = { I a  . . . .  ,IN} be a par t i t ion of [0, 1] into intervals on which T is 
n - 1  

m o n o t o n e  and cont inuous,  and  call J,(x) the element  of V T - i N  containing 
X. i = 0  

3.6. Definition. T is complete ly  covering, if for each x ~ [0, 1] there is a k ~ N 
and an infinite subset B _ N  such that  for all n~B: 

k 

T"+JJ,(x)=[O, 1]. 
j = l  

This is a k ind  of weak specification proper ty  that  has been in t roduced in [8], 
w 3. Also the following examples  can be found there: 

3.7. Examples. a) I r reducible  Markov- t r ans fo rma t ions  are complete ly  covering. 

(That  are t rans format ions  with T(Ii) c~ Ij + 0 ~ Ij c_ T(Ii) and G T"(Ii) = [0, 1] 
for all Ii. ) ,= o 

b) f i - t ransformat ions  ( x~ f l x  m o d  1, f i>  1) are complete ly  covering. 

c) T(x) = fix + ~ rood i (fi > 1) is complete ly  covering, if 
lq~c losure{Tk(0) lk~N} or Or part icular ly  if 0 or 1 is 
periodic under  T. b) is a special case of  c), of  course. 

3.8. Theorem.  I f  T is completely covering and 

v a r , ( 4 ) = s u p  L4)(x)-4)(y)l e J e  V r - ~  =O(q")  
i = 0  

for some 0 < q <  1, then there is a probability-measure m satisfying (13)-(15), and 
for this m the hypothesis of 3,3 are satisfied. 

l n N  
Proof. F r o m  varn(q~)=O(q" ) it follows that  g~UBVp for p >  lnq  ' where N is 

the n u m b e r  of  monotonic i ty- in tervals  of T. The  existence of a measure  m 
satisfying (13)-(15) is p roved  as in w of [8], and  LIg, l [ ~ < l  for some h e n  is 
p roved  as T h e o r e m  3 of [8]. 

Remark. The proofs,  f rom [8] carry over  to 3.4 and  3.8 since in [8] the fact 
tha t  ~b is of bounded  var ia t ion  has been used only in order  to show that  one- 
sided limits of ~b exist in every point  and  that  q~ has at mos t  countably  m a n y  
discontinuities,  and  all this is true also for q~ ~ UBVp. 
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