Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © Springer-Verlag 1985

Generalized Bounded Variation and Applications to Piecewise Monotonic Transformations*

Gerhard Keller

Universität Heidelberg, Institut für Angewandte Mathematik, Im Neuenheimer Feld 294, 6900 Heidelberg 1, Federal Republic of Germany

Summary. We prove the quasi-compactness of the Perron-Frobenius operator of piecewise monotonic transformations when the inverse of the derivative is Hölder-continuous or, more generally, of bounded *p*-variation.

Introduction

One of the most successfully used tools for the investigation of invariant measures for piecewise monotonic transformations T on [0, 1] is the Perron-Frobenius-operator. If $0=a_0 < a_1 < ... < a_N=1$, if $T_i = T_{|(a_i-1,a_i)}$ is strictly monotone and continuous (i=1, ..., N), and if m is a Borel-probability on [0, 1] with respect to which T is nonsingular, then the Perron-Frobenius-operator (PFO) of T and m is the linear, positive contraction

$$P: L^{1}_{m} \to L^{1}_{m}, \quad Pf(x) = \sum_{i=1}^{N} (f \cdot g)(T_{i}^{-1}x) \cdot 1_{T(a_{i-1}, a_{i})}(x),$$

where $\frac{1}{g} = \frac{d}{dm}(m \circ T)$ is the Radon-Nikodym-derivative of T with respect to m.

P reflects very well the ergodic properties of the system (T, m), namely:

 $-\mu = h \cdot m$ is a *T*-invariant probability if and only if

 $0 \leq h \in L_m^1$, $\int h dm = 1$, and Ph = h.

- Mixing properties of T are closely related to spectral properties of P (cf. [7]).

A particularly favorable situation for the investigation of P occurs if

- (1) $||(g \circ T^{n-1}) \cdot \ldots \cdot (g \circ T) \cdot g||_{\infty} < 1$ for some $n \in \mathbb{N}$ and
- (2) g is of bounded variation.

^{*} This work has been supported by the Deutsche Forschungsgemeinschaft

It has been shown in [7] that under these assumptions

(3) There is a $h: [0, 1] \rightarrow \mathbb{R}_+$ of bounded variation such that $\mu = h \cdot m$ is a T-invariant probability on [0, 1].

(4) For some power T^k the measure μ splits up into finitely many ergodic components, on each of which T^k is weakly Bernoulli with exponential mixing rate. This is good enough to imply central limit theorems and almost sure invariance principles for stochastic processes $(f \circ T^{nk})_{n \in \mathbb{N}}$ with f of bounded variation.

Partial results in this direction can be found e.g. in [10] and [15]. M. Rychlik [12] has given a new, very elegant proof of (3) and (4), which applies also to a broad class of transformations with a countable number of monotonicity intervals. For further references see [7].

In [16] an attempt has been made to replace (2) in the case where m is Lebesgue-measure by "g is Hölder-continuous", but the result was unsatisfactory since some additional conditions had to be imposed, which in general cannot be checked effectively. Nevertheless a result in this direction is desirable because of two reasons:

a) Some problems related to the Lorenz-attractor can be reduced to problems concerning a piecewise monotonic transformation with Hölder-continuous derivative (cf. [16]). These problems could be solved setting m = Lebesguemeasure and g = 1/|T'|.

b) If $g = \lambda \cdot e^{\phi}$, $\lambda > 0$, Ph = h, and $\mu = h \cdot m$, then μ is called an equilibrium state for ϕ . For a particular class of transformations including the β -transformation $(x \rightarrow \beta x \mod 1, \beta > 1)$ and Markov-transformations it has been shown in

[7, 8] that for each ϕ of bounded variation satisfying $\sum_{i=1}^{\infty} \operatorname{var}_i(\phi) < \infty$ (var_i(ϕ) = sup { $|\phi(x) - \phi(y)| | x, y \in I, I$ an interval on which T^i is monotone}) there is a measure *m* and a real $\lambda > 0$ such that $g = \lambda \cdot e^{\phi}$ and g satisfies (1) and (2) above. For topological Markov-chains over a finite alphabet however (and hence for Markov-transformations), the same result was already known when ϕ is only Hölder-continuous (this implies $\sum \operatorname{var}_i(\phi) < \infty$, see [1]), although in this case ϕ is not necessarily of bounded variation.

The aim of this paper is to replace (2) above by

(2') g is of universally bounded p-variation, i.e.

$$\operatorname{var}_{p}(g) = \sup_{0 \leq x_{0} < \dots < x_{n} \leq 1} \left(\sum_{i=1}^{n} |g(x_{i}) - g(x_{i-1})|^{p} \right)^{1/p} < \infty.$$

These are those functions which are called functions of bounded *p*-variation in [3]. At the end of Sect. 2 the word "universally" will be justified. The main result is Theorem 3.3 which asserts that under (1) and (2') the transformation T has the properties briefly sketched in (3) and (4).

As each Hölder-continuous function with Hölder-exponent $0 < r \le 1$ is of universally bounded 1/r-variation, this solves the problems described under a)

and b). As a matter of fact, problem a) can be solved under the weaker assumption that 1/|T'| is of universally bounded 1/r-variation. I want to mention that Marek Rychlik orally announced me a solution of problem a) using basically the same idea.

In Sect. 1 we define a generalized concept of functions of bounded variation adapted to a quasi-compact, pseudo-metric space X equipped with a finite Borel-measure. This concept unifies Lipschitz-continuity, Hölder-continuity, Riemann-integrability, bounded variation, bounded p-variation, and gives many intermediate notions of bounded variation, some of which play an important role in Sect. 2 and 3. The main result is about compact embeddings of spaces of functions of generalized bounded variation into suitable L^p -spaces (Theorem 1.13). As in the theory of Sobolev-spaces, next to embedding theorems, trace theorems are the most fundamental ones. In Sect. 2 we prove such a theorem, when the underlying space is the unit-interval (not necessarily equipped with its Euclidean metric). This is the situation that occurs in Sect. 3, where results of Sects. 1 and 2 are used to show that PFO's satisfying (1) and (2) are quasi-compact as operators on some suitable space of functions of generalized bounded variation, which implies (3) and (4) as in [7] and [12].

1. Generalized Bounded Variation

Let (X, d) be a quasicompact topological space whose topology is defined by the pseudo-distance d. (This means that we do not require the Hausdorffproperty and allow d(x, y)=0 for $x \neq y$, cf. XII.4 and Ex. XII.3.6 of [5].) \mathscr{B} denotes the Borel- σ -algebra of (X, d) and m is a finite Borel-measure on \mathscr{B} . Open balls in X are denoted by $S_{\varepsilon}(x) = \{y \in X | d(x, y) < \varepsilon\}$. $F = \bigcap_{\substack{A \text{ closed} \\ m(X > A) = 0}} A$ is the support of m.

1.1. Definition. For an arbitrary function $h: X \to \mathbb{C}$ and $\varepsilon > 0$ define $osc(h, \varepsilon, .): X \to [0, \infty]$ by

$$\operatorname{osc}(h,\varepsilon,x) = \begin{cases} \operatorname{ess\,sup}\left\{ |h(y_1) - h(y_2)| \mid y_1, y_2 \in S_{\varepsilon}(x) \right\} & \text{if } m(S_{\varepsilon}(x)) > 0 \\ 0 & \text{if } m(S_{\varepsilon}(x)) = 0, \end{cases}$$

where the essential supremum is taken with respect to the product measure m^2 on X^2 . As $osc(h, \varepsilon, .)$ is lower semi-continuous and hence measurable, one can define for $1 \le p \le \infty$:

 $\operatorname{osc}_p(h, \varepsilon) = \|\operatorname{osc}(h, \varepsilon, \cdot)\|_p$, where we admit the *p*-norm to take the value $+\infty$. $\operatorname{osc}_p(h, \varepsilon)$ can be interpreted as an isotonic function (in the variable ε) from (0, A] to $[0, \infty]$, where A is any positive constant. This motivates the next

1.2. Definition. Fix A > 0 and denote by Φ the class of all isotonic maps $\phi(0, A] \rightarrow [0, \infty]$ with $\phi(x) \rightarrow 0$ ($x \rightarrow 0$). Set

$$R_{p} = \{h: X \to \mathbb{C} \mid \operatorname{osc}_{p}(h, .) \in \Phi\},\$$

and for $\phi \in \Phi$ set

$$R_{p,\phi} = \{h \in R_p | \operatorname{osc}_p(h, \cdot) \leq \phi\},\$$

$$S_{p,\phi} = \bigcup_{n \in \mathbb{N}} R_{p,n \cdot \phi}.$$

If $\phi(x) = x^r$, we simply write $S_{p,r}$ instead of $S_{p,\phi}$. The following lemma is trivial:

The following femilia is triviar:

1.3. Lemma. a) $\phi, \psi \in \Phi, \phi \leq \psi \Rightarrow R_{p,\phi} \subseteq R_{p,\psi}, S_{p,\phi} \subseteq S_{p,\psi}$. b) $R = \bigcup_{k=1}^{n} R_{p,\psi} = \bigcup_{k=1}^{n} S_{p,\psi}$.

$$K_p = \bigcup_{\phi \in \Phi} K_{p,\phi} = \bigcup_{\phi \in \Phi} S_{p,\phi}.$$

c) If $1 \leq p \leq q \leq \infty$ then $S_{q,\phi} \subseteq S_{p,\phi}$ for all $\phi \in \Phi$.

d) If M is one of the classes introduced in Definition 1.2, then $h \in M \Rightarrow \operatorname{Re} h$, $\operatorname{Im} h \in M$.

The next lemma provides some elementary facts about the oscillationfunctions:

1.4. Lemma. For $1 \leq p \leq \infty$ holds:

a) If $h_1 = h_2$ m-a.e., then $osc(h_1, \varepsilon, .) = osc(h_2, \varepsilon, .)$.

b) Each $h \in R_p$ is bounded and \mathcal{B}_0 -measurable, where \mathcal{B}_0 is the m-completion of \mathcal{B} .

c) If $\{P_1, \ldots, P_N\}$ is a measurable partition of X and if

ess inf $h(P_n) \leq f(x) \leq ess \sup h(P_n)$ for all $x \in P_n$ (n = 1, ..., N),

then $||f-h||_p \leq \operatorname{osc}_p(h, \varepsilon)$, where $\varepsilon = \sup \{\operatorname{diam}(P_n) | n = 1, \dots, N\}$.

- d) $\operatorname{osc}(h, \varepsilon, .)$ is bounded on X for each $h \in R_p$ and $\varepsilon > 0$.
- e) For each $h \in R_p$ there are elementary functions $\underline{h}_n, \overline{h}_n$ with

$$\underline{h}_1 \leq \ldots \leq \underline{h}_n \leq \ldots \leq h \leq \ldots \leq \overline{h}_n \leq \ldots \leq \overline{h}_1,$$

such that $\|\bar{h}_n - \underline{h}_n\|_p \leq \operatorname{osc}_p\left(h, \frac{1}{n}\right) \to 0.$

Proof. a) is obvious. We next prove c): For a.e. $x \in P_n$ holds:

$$|f(x) - h(x)| \le \operatorname{ess\,sup} h(P_n) - \operatorname{ess\,inf} h(P_n) \le \operatorname{osc}(h, \varepsilon, x),$$

hence $||f-h||_p \leq \operatorname{osc}_p(h, \varepsilon)$ by definition.

d) is proved for small ε first: $h \in R_p$ implies that for sufficiently small $\varepsilon > 0$: $\operatorname{osc}(h, 4\varepsilon, .) \in L_m^p$. By the quasi-compactness of X one can choose $x_1, \ldots, x_n \in X$ with $X = \bigcup_{i=1}^n S_{\varepsilon}(x_i)$. As $\operatorname{osc}(h, 4\varepsilon, .) \in L_m^p$ and as for each

$$y \in S_{2\varepsilon}(x_i)$$
: osc $(h, 4\varepsilon, y) \ge$ osc $(h, 2\varepsilon, x_i)$,

it follows that $M = \max \{ \operatorname{osc}(h, 2\varepsilon, x_i) | i = 1, ..., n \} < \infty$. Hence $\operatorname{osc}(h, \varepsilon, y) \leq M$ for all y. In order to prove e) we choose for each $n \in \mathbb{N}$ a partition $\mathscr{P}_n = \{P_1(n), \ldots, P_{N(n)}(n)\}$ of X finitely generated from balls with diameter less than

 $\frac{1}{n}. We may assume that <math>\mathscr{P}_{n+1}$ is finer than \mathscr{P}_n . Define $\underline{h}_n, \overline{h}_n$ by $\underline{h}_n(x) = \operatorname{ess\,inf} h(P_i(n)), \ \overline{h}_n(x) = \operatorname{ess\,sup} h(P_i(n))$ if $x \in P_i(n)$. $\underline{h}_n, \overline{h}_n$ are \mathscr{P} -measurable elementary functions, $\underline{h}_n \leq h \leq \overline{h}_n$, and they are bounded for big *n*, as we know that d) holds for small ε at least. Furthermore $\|\overline{h}_n - \underline{h}_n\|_p \leq \|\operatorname{osc} (h, \frac{1}{n}, \cdot)\|_p$ $= \operatorname{osc}_p (h, \frac{1}{n}) \to 0 \ (n \to \infty)$. Finally e) implies b), and because of b) assertion d) holds for arbitrary ε . \Box

The next lemma helps finding "smooth" versions of functions $h \in R_p$:

1.5. Lemma. a) For each $h \in R_p$ $(1 \le p \le \infty)$ and $\varepsilon > 0$ holds:

ess inf $\{h(y)|d(y, x) < \varepsilon\} \leq h(x) \leq \varepsilon$ sup $\{h(y)|d(y, x) < \varepsilon\}$ *m-a.e.*

b) For each $h \in \mathbb{R}_{\infty}$ there is a $h^*: X \to \mathbb{C}$ with $h_{|F}^* \in C(F)$ and $h = h^*$ m-a.e. If $h \in \mathbb{R}_{\infty,\phi}$ for continuous ϕ , then $|h^*(x) - h^*(y)| \leq \phi(d(x, y))$ for all $x, y \in F$.

Proof. a) If there were $x \in X$ and $\varepsilon > 0$ such that $h(y) > \varepsilon ss \sup \{h(z)|d(z, y) < 2\varepsilon\}$ for y in a subset of positive measure of $S_{\varepsilon}(x)$, then it would follow that $h(y) > \varepsilon ss \sup \{h(z)|d(x, z) < \varepsilon\}$ on a set of y's of positive measure in $S_{\varepsilon}(x)$ contradicting the definition of the essential supremum. As X can be covered by a finite number of such balls $S_{\varepsilon}(x)$ and as the same reasoning applies to the essential infimum, this proves a).

b) As $\operatorname{osc}(h, \varepsilon, .)$ is lower semi-continuous and bounded (by d of Lemma 1.4), $\sup_{x \in F} \operatorname{osc}(h, \varepsilon, x) = \operatorname{ess} \sup_{x \in F} \operatorname{osc}(h, \varepsilon, x)$, such that $\operatorname{osc}(h, \varepsilon, x) \to 0$ ($\varepsilon \to 0$) uniformly for all $x \in F$. For these x define now

$$h^*(x) = \lim_{\varepsilon \to 0} \operatorname{ess\,sup} \left\{ h(y) | d(y, x) < \varepsilon \right\} = \lim_{\varepsilon \to 0} \operatorname{ess\,inf} \left\{ h(y) | d(y, x) < \varepsilon \right\},$$

and set $h^*(x)=0$ for $x \in X \setminus F$. As $h=h^*$ *m*-a.e. by part a), we only have to show that $h_F^* \in C(F)$. But for $x, y \in F$ and arbitrary $\delta > 0$ we have

$$|h^*(x) - h^*(y)| \leq \operatorname{osc}(h, d(x, y) + \delta, x) \leq ||\operatorname{osc}(h, d(x, y) + \delta, .)||_{\infty} \leq \phi(d(x, y) + \delta)$$

for some $\phi \in \Phi$. Hence $h_{iF}^* \in C(F)$, and if ϕ is continuous,

$$|h^*(x) - h^*(y)| \leq \phi(d(x, y)). \quad \Box$$

1.6. Examples. a) For $1 \le p < \infty$ R_p is the class of all Riemann-integrable functions on X (mod m). This follows from e) of Lemma 1.4 (cf. [11], Chap. 7).

b) $R_{\infty|F} = C^*(F)$, the class of all continuous functions on F (mod m), by Lemma 1.5.

c) $S_{p,1/p}$ will be called the class of functions of bounded *p*-variation. If X = [0, 1] and *m* is the Lebesgue-measure, one can show that this class contains those functions of bounded *p*-variation considered in [3]. See Lemma 2.7.

d) $S_{\infty,r|F}$ is the class of Hölder-continuous functions on F with exponent r (mod m). This follows from Lemma 1.5.

Examples c) and d) suggest the following restriction of the class Φ :

1.7. Definition. $\Phi_1 = \{ \phi \in \Phi | \phi(x) \ge a \cdot x \ (0 < x \le A) \text{ for some } a > 0 \}.$

Now we can prove the following density-result for S-classes:

1.8. Proposition. a) $S_{p,\phi}$ is dense in $(L^p_m, \|.\|_p)$ for $1 \leq p < \infty$ and $\phi \in \Phi_1$.

b) $S_{\infty, \phi|F}$ is dense in $(C^*(F), \|.\|_{\infty})$ for all $\phi \in \Phi_1$.

Proof. We first show b): $S_{\infty,\phi|F} \subseteq C^*(F)$ by Lemma 1.5. Furthermore, a) of Lemma 1.3 implies that for

$$\phi \in \Phi_1 \colon S_{\infty, \phi} = \bigcup_{n \in \mathbb{N}} R_{\infty, n \cdot \phi} \supseteq \bigcup_{n \in \mathbb{N}} R_{\infty, (\varepsilon \to n\varepsilon)} = S_{\infty, 1},$$

and $S_{\infty,1|F}$ is dense in $C^*(F)$, as it is the space of Lipschitz-continuous functions on F (see Ex. 1.6.d).

We now show a): By b) of Lemma 1.4, $S_{p,\phi} \subseteq L_m^p$. By c) of Lemma 1.3, $S_{\infty,\phi} \subseteq S_{p,\phi}$, and the denseness of $C^*(X)$ in L_m^p together with part b) implies the denseness of $S_{p,\phi}$ in L_m^p . \Box

In order to make the S-spaces into Banach-spaces we pass to *m*-equivalence classes of functions and introduce a norm on them:

1.9. Definition. For $p \ge 1$ and $\phi \in \Phi$ we define:

a) $BV_{p,\phi}$ is the space of *m*-equivalence classes of functions in $S_{p,\phi}$.

b) For $h: X \to \mathbb{C}$ set $\operatorname{var}_{p,\phi}(h) = \sup_{0 < \varepsilon \leq A} \frac{\operatorname{osc}_p(h,\varepsilon)}{\phi(\varepsilon)}$.

c) For $h \in BV_{p,\phi}$ set $||h||_{p,\phi} = \operatorname{var}_{p,\phi}(h) + ||h||_p$. $(||\cdot||_{p,\phi})$ is well defined because of a) of Lemma 1.4.)

If $\phi(\varepsilon) = \varepsilon^r$ we simply write $BV_{p,r}$, $\|\cdot\|_{p,r}$, $\operatorname{var}_{p,r}$. Observe that the definition depends on the constant A!

The proof of the following lemma is straightforward:

1.10. Lemma. $BV_{p,\phi}$ is a linear space, and $\|\cdot\|_{p,\phi}$ is a norm on it $(1 \le p \le \infty, \phi \in \Phi)$.

In order to show that $(BV_{p,\phi}, \|.\|_{p,\phi})$ is a Banach-space with a compact embedding into L_m^p we need two preparatory lemmas:

1.11. Lemma. If $h \in BV_{p,\phi}$ and if $\mathscr{P} = \{P_1, ..., P_N\}$ is a measurable partition of X, then $||h - E_m[h|\mathscr{P}]||_p \leq \operatorname{var}_{p,\phi}(h) \cdot \phi(d)$, provided $d = \sup_{P \in \mathscr{P}} \operatorname{diam}(P) \leq A$. Here $E_m[h|\mathscr{P}] = \sum_{i=1}^N m(P_i)^{-1} \cdot \int_{P_i} h \, dm \cdot 1_{P_i}$.

Proof. By c) of Lemma 1.4 we have $||h - E_m[h|\mathscr{P}]||_p \leq \operatorname{osc}_p(h, \varepsilon)$, where $\varepsilon = \sup_{P \in \mathscr{P}} \operatorname{diam}(P)$. As $\operatorname{osc}_p(h, \varepsilon) \leq \operatorname{var}_{p, \phi}(h) \cdot \phi(\varepsilon)$, this proves the lemma. \Box

1.12. Lemma. Let $(h_n)_{n \in \mathbb{N}}$ be a sequence in $BV_{p,\phi}$ converging in $\|\cdot\|_p$ -norm to some element $h \in L^p_m$. Then

$$\operatorname{var}_{p,\phi}(h) \leq \liminf_{n \to \infty} \operatorname{var}_{p,\phi}(h_n).$$

Proof. Passing, if necessary, to a subsequence we can assume that $\liminf_{n \to \infty} \operatorname{var}_{p, \phi}(h_n) = \lim_{n \to \infty} \operatorname{var}_{p, \phi}(h_n)$. Passing to a subsequence again we also can assume that $h_n(x) \to h(x)$ for all $x \in X \setminus N$, where N is some set of measure 0. Fix $x \in X$, $\varepsilon > 0$. There is a subset $N_x \subseteq X^2$ with $m^2(N_x) = 0$, such that for all $(y, z) \in X^2 \setminus N_x$ with $d(x, y), d(x, z) < \varepsilon$ holds:

$$|h(y) - h(z)| = \lim_{n \to \infty} |h_n(y) - h_n(z)| \le \liminf_{n \to \infty} \operatorname{osc}(h_n, \varepsilon, x).$$

Hence $osc(h, \varepsilon, x) \leq lim inf osc(h_n, \varepsilon, x)$. By Fatou's lemma we get:

$$\int \operatorname{osc}(h,\varepsilon,x)^p dm(x) \leq \liminf_{n \to \infty} \int \operatorname{osc}(h_n,\varepsilon,x)^p dm(x)$$

for $1 \leq p < \infty$, while (for $p = \infty$) obviously

 $\operatorname{ess\,sup}_{x \in X} \operatorname{osc}(h, \varepsilon, x) \leq \liminf_{n \to \infty} \operatorname{ess\,sup}_{x \in X} \operatorname{osc}(h_n, \varepsilon, x).$

Hence, for $1 \leq p \leq \infty$,

$$\operatorname{osc}_{p}(h, \varepsilon) \leq \liminf_{n \to \infty} \operatorname{osc}_{p}(h_{n}, \varepsilon) \leq \phi(\varepsilon) \cdot \liminf_{n \to \infty} \operatorname{var}_{p, \phi}(h_{n})$$

for all $\varepsilon \leq A$ implying $\operatorname{var}_{p,\phi}(h) \leq \liminf_{n \to \infty} \operatorname{var}_{p,\phi}(h_n)$. \Box

The main result of this section is:

1.13. Theorem. For $1 \leq p \leq \infty$ and $\phi \in \Phi$ we have:

a) $E = \{f \in BV_{p,\phi} | ||f||_{p,\phi} \leq c\}$ is a compact subset of L^p_m for each c > 0.

b) $(BV_{p,\phi}, \|\cdot\|_{p,\phi})$ is a Banach-space.

c) For $\phi \in \Phi_1$, $BV_{p,\phi}$ is dense in L^p_m (in case $1 \leq p < \infty$) or in $C^*(F)$ (in case $p = \infty$) respectively.

Proof. a) Let f_n be in E $(n \ge 1)$. From Lemma 1.11 and Theorem IV.8.18 in [6] it follows that there is a subsequence (g_n) of (f_n) and an element $f \in L_m^p$ with $\lim \|f - g_n\|_p = 0$. Hence Lemma 1.12 implies that

$$\|f\|_{p,\phi} = \|f\|_{p,\phi} + \operatorname{var}_{p,\phi}(f) \leq \lim_{n \to \infty} \|g_n\|_p + \liminf_{n \to \infty} \operatorname{var}_{p,\phi}(g_n)$$
$$= \liminf_{n \to \infty} \|g_n\|_{p,\phi} \leq c, \quad \text{i.e.: } f \in E.$$

b) follows immediately from I.1.6 in [13] now, and c) from Proposition 1.8. \Box

The following lemma will be used in the next section:

1.14. Lemma. For fixed f and p, $osc_p(f, \varepsilon)$ is continuous from below and isotone as a function of ε .

Proof. $\operatorname{osc}(f, \varepsilon, x)$ is continuous from below and isotone as a function of ε for fixed x. For $1 \leq p < \infty$ the assertion then follows from the monotone convergence theorem, while for $p = \infty$ it is enough to observe the fact that " $g_n \uparrow g$ pointwise" implies " $||g_n||_{\infty} \rightarrow ||g||_{\infty}$ " if $g_n, g > 0$. \Box

2. The One-Dimensional Case with p=1(Trace Theorem, Products and Transformations)

Working with variation-norms one often needs theorems of the following type: Let Y be a "nice" subset of X, $f \in BV$. Then

$$\operatorname{var}(f \cdot 1_Y) \leq C_1 \cdot \operatorname{var}(f_{|Y}) + C_2 \cdot \int_Y |f| \, dm,$$

where C_1 , C_2 are constants depending on Y only. (This is a combination of an extension- and a trace theorem, cf. [14].) In general such theorems are hard to establish. The constants C_1 and C_2 will depend on the dimension and shape of the boundary of Y, and there are many combinations of p and ϕ for which var_{p, \phi} does not satisfy such a relation at all. Therefore we restrict our interest here to the one-dimensional case needed in Sect. 3, i.e. X is the unit interval, m is an atom-free Borel-measure on X, and d is the pseudo-distance given by $d(x, y) = m\{z | x \le z \le y \text{ or } y \le z \le x\}$. As the d-topology is coarser than the usual topology on [0, 1] = X, (X, d) is quasicompact, and m can be restricted to the σ -algebra \mathcal{B} , which – in accordance with Sect. 1 – denotes the Borel- σ -algebra of the d-topology. Throughout this section all topological and measure-theoretical statements will refer to d and \mathcal{B} .

2.1. Theorem. Let $Y \subseteq X$ be an interval, $m(Y) \ge 4A$. For each $f: Y \to \mathbb{C}$ and each $0 < \tilde{\epsilon} \le A$ we have

$$\operatorname{osc}_{1}(f \cdot 1_{Y}, \tilde{\varepsilon}) \leq \left(2 + \frac{8A}{m(Y) - 2A}\right) \cdot \int_{Y} \operatorname{osc}(f_{|Y}, \tilde{\varepsilon}, x) dm(x) + \frac{4\tilde{\varepsilon}}{m(Y)} \cdot \int_{Y} |f(x)| dm(x).$$

Proof. Fix $0 < \tilde{\epsilon} \leq A$ and $0 < \epsilon < \tilde{\epsilon}$. There is a $n \in \mathbb{N}$ such that

(5)
$$2(n-1)\varepsilon < m(Y) \leq 2n\varepsilon.$$

We introduce the following notations: Let f be a function from $Y \rightarrow \mathbb{C}$. Observe the different meanings of

$$\operatorname{osc}(f_{1Y}, \varepsilon, x) = \operatorname{ess\,sup}\{|f(y_1) - f(y_2)| | y_1, y_2 \in S_{\varepsilon}(x) \cap Y\}$$

and

$$\operatorname{osc}(f \cdot 1_{Y}, \varepsilon, x) = \operatorname{ess\,sup}\{|\tilde{f}(y_{1}) - \tilde{f}(y_{2})| | y_{1}, y_{2} \in S_{\varepsilon}(x)\},\$$

where $\tilde{f}(y) = f(y)$ $(y \in Y)$ and $\tilde{f}(y) = 0$ $(y \in X \setminus Y)$. Now suppose that a_1 and a_2 are the left and the right endpoint of Y. Set

$$I_i = S_{\varepsilon}(a_i) \quad (i = 1, 2), \qquad I_0 = Y \setminus (I_1 \cup I_2),$$

$$h_i(x) = \operatorname{osc}(f_{|Y}, \varepsilon, x) \cdot 1_{I_i}(x) \quad (i = 0, 1, 2),$$

$$s_i(x) = \operatorname{ess\,sup}_{y \in S_{\varepsilon}(x) \cap Y} |f(y)| \cdot 1_{I_i}(x) \quad (i = 1, 2).$$

Then

(6)
$$\operatorname{osc}(f \cdot 1_{Y}, \varepsilon, x) = h_{0}(x) + \sum_{i=1, 2} \max\{h_{i}(x), s_{i}(x)\}$$

Set

$$x(t) = \begin{cases} \sup \{y \in X | d(a_1, y) = t\} & \text{if } t \ge 0\\ \inf \{y \in X | d(a_1, y) = -t\} & \text{if } t < 0 \end{cases}$$

and consider the intervals $J_k = Y \cap S_{\varepsilon}(x(2k\varepsilon))$ (k=1, ..., n-1). As the J_k are pairwise disjoint, there is a $k_0 \in \{1, ..., n-1\}$ with

(7)
$$\int_{J_{k_0}} \operatorname{osc}(f_{|Y}, \tilde{\varepsilon}, x) \, dm(x) \leq \frac{1}{n-1} \cdot \int_{Y} \operatorname{osc}(f_{|Y}, \tilde{\varepsilon}, x) \, dm(x).$$

For $\xi \in [-\varepsilon, \varepsilon]$ define now $z_k(\xi) = x(\xi + 2k\varepsilon)$ $(k=0, ..., k_0)$ and $z_k(\xi) = x(\xi + \delta + 2(k-1)\varepsilon)$ $(k=k_0+1, ..., n)$, where $\delta = m(Y) - 2(n-1)\varepsilon > 0$ according to (5). Furthermore set $F_i(\xi) = \operatorname{ess} \sup \{|f(y) - f_0| | y \in U_i(\xi) \cap Y\}$ where $U_1(\xi) = S_{\varepsilon + \xi}(a_1)$, $U_2(\xi) = S_{\varepsilon - \xi}(a_2)$, and $f_0 = m(Y)^{-1} \cdot \int_Y f dm$. Then

(8)
$$s_1(x) \leq F_1(\xi) + |f_0|$$
 for $x = x(\xi) \in I_1$,
 $s_2(x) \leq F_2(\xi) + |f_0|$ for $x = x(m(Y) + \xi) \in I_2$,

and

(9)
$$\max \{h_1(x(\xi)), F_1(\xi)\} + \max \{h_2(x(m(Y) + \xi)), F_2(\xi)\}$$
$$\leq \frac{m(Y)}{m(Y) - 2\varepsilon} \sum_{k=0}^n \operatorname{osc}(f_{|Y}, \tilde{\varepsilon}, z_k(\xi)).$$

In order to show the latter inequality one has to consider four cases:

i) $h_1(x(\xi)) \ge F_1(\xi), h_2(x(m(Y) + \xi)) \ge F_2(\xi)$. This case is trivial.

ii) $h_1(x(\xi)) < F_1(\xi)$, $h_2(x(m(Y) + \xi)) < F_2(\xi)$. In this case there is a $k \in \{1, ..., n -1\}$ such that

$$\operatorname{ess inf}_{\mathbf{y} \in S_{\widetilde{z}}(\mathbf{z}_{\mathbf{k}}(\xi))} f(\mathbf{y}) \leq f_0 \leq \operatorname{ess sup}_{\mathbf{y} \in S_{\widetilde{z}}(\mathbf{z}_{\mathbf{k}}(\xi))} f(\mathbf{y}),$$

which proves the inequality in this case.

iii) $h_1(x(\xi)) \ge F_1(\xi)$, $h_2(x(m(Y) + \xi)) < F_2(\xi)$. This case is more delicate and is responsable for the factor $\frac{m(Y)}{m(Y) - 2\varepsilon}$. If there is a $k \in \{1, ..., n\}$ as in ii), the inequality again is true (even without the factor). Otherwise, setting $u = x(\xi + \varepsilon)$ we can suppose w.l.o.g. that $c = \operatorname{ess\,inf}(f(y) - f_0) > 0$. Then

$$F_2(\xi) \leq \sum_{k=1}^n \operatorname{osc}(f_{|Y}, \tilde{\varepsilon}, z_k(\xi)) + c$$

and

$$m([u, a_2]) \cdot c \leq \int_{u}^{a_2} (f(y) - f_0) dm(y) = -\int_{a_1}^{u} (f(y) - f_0) dm(y)$$

$$\leq 2\varepsilon \cdot F_1(\xi) \leq 2\varepsilon \cdot h_1(x(\xi)),$$

i.e.

$$c \leq h_1(x(\xi)) \cdot \frac{2\varepsilon}{m(Y) - 2\varepsilon}$$

such that

$$\begin{split} h_1(x(\xi)) + F_2(\xi) &\leq \sum_{k=0}^n \operatorname{osc}(f_{|Y}, \tilde{\varepsilon}, z_k(\xi)) + h_1(x(\xi)) \cdot \frac{2\varepsilon}{m(Y) - 2\varepsilon} \\ &\leq \frac{m(Y)}{m(Y) - 2\varepsilon} \cdot \sum_{k=0}^n \operatorname{osc}(f_{|Y}, \tilde{\varepsilon}, z_k(\xi)). \end{split}$$

iv) $h_1(x(\xi)) < F_1(\xi), h_2(x(m(Y) + \xi)) \ge F_2(\xi)$. This case is analogous to iii). From (6), (8), and (9) it follows that

$$\begin{aligned} \operatorname{osc}_{1}\left(f \cdot 1_{Y}, \varepsilon\right) \\ &= \int \operatorname{osc}\left(f \cdot 1_{Y}, \varepsilon, x\right) dm(x) \\ &\leq \int h_{0}(x) dm(x) + |f_{0}| \cdot 4\varepsilon + \frac{m(Y)}{m(Y) - 2\varepsilon} \cdot \int_{-\varepsilon}^{\varepsilon} \left(\sum_{k=0}^{n} \operatorname{osc}\left(f_{|Y}, \widetilde{\varepsilon}, z_{k}(\zeta)\right)\right) d\zeta \\ &\leq \int h_{0}(x) dm(x) + |f_{0}| \cdot 4\varepsilon + \frac{m(Y)}{m(Y) - 2\varepsilon} \cdot \int_{x(-\varepsilon)}^{x(m(Y) + \varepsilon)} \operatorname{osc}\left(f_{|Y}, \widetilde{\varepsilon}, x\right) dm(x) \\ &+ \frac{m(Y)}{m(Y) - 2\varepsilon} \cdot \int_{J_{k_{0}}} \operatorname{osc}\left(f_{|Y}, \widetilde{\varepsilon}, x\right) dm(x) \end{aligned}$$

according to the choice of the $z_k(\xi)$,

$$\leq \frac{m(Y)}{m(Y) - 2\varepsilon} \cdot \left(2 + \frac{1}{n-1}\right) \cdot \int_{Y} \operatorname{osc} \left(f_{|Y}, \tilde{\varepsilon}, x\right) dm(x) + 4\varepsilon \cdot |f_{0}|$$

by (7) and since
$$\sup_{x \in S_{\varepsilon}(a_{i}) \smallsetminus Y} \operatorname{osc} \left(f_{|Y}, \tilde{\varepsilon}, x\right)$$

$$\leq \inf_{x \in S_{\varepsilon}(a_{i}) \cap Y} \operatorname{osc} \left(f_{|Y}, \tilde{\varepsilon}, x\right) \quad (i = 1, 2),$$

$$\leq \left(2 + \frac{8\varepsilon}{m(Y) - 2\varepsilon}\right) \int_{Y} \operatorname{osc} \left(f_{|Y}, \tilde{\varepsilon}, x\right) dm(x) + 4\varepsilon \cdot |f_{0}|$$

by (5) and as
$$m(Y) \geq 4A \geq 4\varepsilon.$$

As $\operatorname{osc}_1(f \cdot 1_Y, \varepsilon)$ is continuous from below in the variable ε (see Lemma 1.14), this implies that for each $0 < \tilde{\varepsilon} \leq A$:

$$\operatorname{osc}_{1}(f \cdot 1_{Y}, \tilde{\varepsilon}) \leq \left(2 + \frac{8A}{m(Y) - 2A}\right) \cdot \int_{Y} \operatorname{osc}(f_{|Y}, \tilde{\varepsilon}, x) dm(x) + 4\tilde{\varepsilon} \cdot m(Y)^{-1} \cdot \int_{Y} |f| dm. \quad \Box$$

The proof of the following lemma is similar but easier. We skip it:

2.2. Lemma. For bounded $f: Y \to \mathbb{C}$ ($Y \subseteq X$ an interval) and $0 < \varepsilon \leq A$ we have

$$\|f\|_{\infty} \leq \varepsilon^{-1} \cdot \left(\int_{Y} \operatorname{osc} \left(f_{|Y}, \varepsilon, x \right) dm(x) \right) + m(Y)^{-1} \cdot \int_{Y} |f| dm$$

(This estimate is quite rough but sufficient for our purposes.)

470

2.3. Lemma. Let $Y, Z \subseteq X$, $T: Y \rightarrow Z$ be bijective, and $f: Y \rightarrow \mathbb{C}$. Set

$$\tilde{\varepsilon}(z) = \sup \left\{ d(T^{-1}y, T^{-1}z) | y \in S_{\varepsilon}(z) \cap Z \right\}.$$

Then $\operatorname{osc}(f \circ T^{-1}|_{Z}, \varepsilon, z) \leq \operatorname{osc}(f|_{Y}, \tilde{\varepsilon}(z), T^{-1}z)$ for each $z \in Z$. The proof is straightforward.

2.4. Lemma. Let $Y, Z \subseteq X$ be intervals, $T: Y \rightarrow Z$ an order-isomorphism or -antiisomorphism, non-singular with respect to m, and call $T' = \frac{d}{dm} (m \circ T)$ the Radon-Nikodym derivative of T with respect to m. Suppose that $T'(y) \ge \alpha > 0$ for a.e. $y \in Y$. Then for each $f: Y \rightarrow \mathbb{C}$

$$\int_{Z} \operatorname{osc}\left(\frac{f}{T'} \circ T^{-1}|_{Z}, \varepsilon, z\right) dm(z) \leq \int_{Y} \operatorname{osc}(f|_{Y}, \alpha^{-1}\varepsilon, y) dm(y) + 5 \cdot \int_{Z} \operatorname{osc}\left(\frac{1}{T'} \circ T^{-1}|_{Z}, \varepsilon, z\right) dm(z) \left(m(Y)^{-1} \cdot \int_{Y} |f| dm + \frac{1}{A} \cdot \int_{Y} \operatorname{osc}(f|_{Y}, A, y) dm(y)\right).$$

Proof. Using a) of Lemma 1.5 one easily shows that for a.e. $z \in Z$

(10)
$$\operatorname{osc}\left(\frac{f}{T'}\circ T^{-1}|_{Z}, \varepsilon, z\right) \leq |f(T^{-1}z)| \cdot \operatorname{osc}\left(\frac{1}{T'}\circ T^{-1}|_{Z}, \varepsilon, z\right) \\ + \frac{1}{T'(T^{-1}z)} \cdot \operatorname{osc}\left(f\circ T^{-1}|_{Z}, \varepsilon, z\right) \\ + 2 \cdot \operatorname{osc}\left(\frac{1}{T'}\circ T^{-1}|_{Z}, \varepsilon, z\right) \cdot \operatorname{osc}\left(f\circ T^{-1}|_{Z}, \varepsilon, z\right).$$

We first treat the integral over the second term in this sum:

(11)
$$\int_{Z} \operatorname{osc} (f \circ T^{-1}|_{Z}, \varepsilon, z) \cdot (T^{-1})'(z) dm(z)$$
$$\leq \int_{Z} \operatorname{osc} (f|_{Y}, \tilde{\varepsilon}(z), T^{-1}z) \cdot (T^{-1})'(z) dm(z) \quad (by 2.3)$$
$$\leq \int_{Y} \operatorname{osc} (f|_{Y}, \alpha^{-1}\varepsilon, y) dm(y)$$

by integral transformation and observing that $T' \ge \alpha > 0$ implies $\tilde{\varepsilon} \le \alpha^{-1} \varepsilon$. The integral over the first and the third term is estimated as follows:

(12)
$$\int_{Z} \operatorname{osc} \left(\frac{1}{T'} \circ T^{-1}|_{Z}, \varepsilon, z \right) \cdot \left(|f(T^{-1}z)| + 2 \cdot \operatorname{osc} (f \circ T^{-1}|_{Z}, \varepsilon, z) \right) dm(z)$$
$$\leq 5 \cdot \|f|_{Y}\|_{\infty} \cdot \int_{Z} \operatorname{osc} \left(\frac{1}{T'} \circ T^{-1}|_{Z}, \varepsilon, z \right) dm(z)$$
$$\leq 5 \cdot \int_{Z} \operatorname{osc} \left(\frac{1}{T'} \circ T^{-1}|_{Z}, \varepsilon, z \right)$$
$$\cdot \left(m(Y)^{-1} \cdot \int_{Y} |f| dm + \frac{1}{A} \cdot \int_{Y} \operatorname{osc} (f|_{Y}, A, y) dm(y) \right) dm(z) \quad \text{(by 2.2)}$$

(10), (11), and (12) together prove the lemma. \Box

If *m* is not the Lebesgue-measure on [0, 1] and *d* is not the Euclidean metric, it is hard to recognize functions in $BV_{p,\phi}$. As we shall deal with such situations in Sect. 3, it is important to characterize subclasses of $BV_{p,\phi}$ at least.

2.6. Definition. For a function $f: [0, 1] \rightarrow \mathbb{C}$ define the universal p-variation by

$$\operatorname{var}_{p}(f) = \sup_{0 \le a_{0} < a_{1} < \dots < a_{n} \le 1} \left(\sum_{i=1}^{n} |f(a_{i}) - f(a_{i-1})|^{p} \right)^{1/p}$$

and denote the space of functions of universally bounded *p*-variation by $UBV_p = \{f: [0, 1] \rightarrow \mathbb{C} | var_p(f) < \infty\}$.

These are exactly the functions of bounded p-variation in the sense of [3]. The following lemma justifies the notation:

2.7. Lemma. $UBV_p \subseteq \bigcap_m BV_{p,1/p}$ for all $1 \le p < \infty$, where the intersection ranges over all spaces $BV_{p,1/p}$ which stem from any atom-free finite Borel-measure m on [0,1] and its associated pseudo-distance d. In particular, if m is a probability-measure, then $\operatorname{var}_{p,1/p}(f) \le 2^{1/p} \cdot \operatorname{var}_p(f)$.

Proof. As each $f \in UBV_p$ is bounded, $\int |f| dm < \infty$ for any finite measure *m*. With a similar argument as in the proof of Theorem 2.1 one shows that $\int \operatorname{osc}(f, \varepsilon, x)^p dm(x) \leq 2\varepsilon \cdot (\operatorname{var}_p(f))^p$. We leave the details to the reader. \Box

Problem. Can the inclusion in Lemma 2.7 be replaced by equality?

3. Perron-Frobenius Operators for Piecewise Monotonic Transformations Acting on BV₁-Classes

As in [7] we now assume the following situation: Let $\{I_1, ..., I_N\}$ be a finite partition of X = [0, 1] into intervals, and let $T: X \to X$ be a transformation which is monotone and continuous on each I_i . (We call such a transformation piecewise monotonic.) Assume that

(13) there is a Borel-probability *m* on *X* with respect to which *T* is non-singular. Call $g = \left(\frac{d}{dm}(m \circ T)\right)^{-1} = \frac{1}{T'}$, and suppose $g(x) \leq \alpha^{-1} < \infty$ *m*-a.e.

Define

(14)
$$P: mb(X) \rightarrow mb(X) (= \{f: X \rightarrow \mathbb{C} | f \text{ measurable and bounded}\})$$
 by

$$Pf(x) = \sum_{i=1}^{N} (f \cdot g) \circ T_i^{-1} \cdot 1_{TI_i}, \text{ where } T_i = T_{|I_i|}.$$

Then $m(P1_B) = \sum_{i=1}^N \int_{T(B \cap I_i)} \frac{d}{dm} (m \circ T_i^{-1}) dm = \sum_{i=1}^N \int_{B \cap I_i} dm = m(B)$ for each $B \in \mathscr{B}$, such that

(15) m(Pf) = m(f) for all $f \in mb(X)$, and P extends to a positive linear contraction on L_m^1 .

From these assumptions it follows that m is atom-free (cf. Lemma 2 in [7]), and with $d(x, y) = m(\{z | x \le z \le y \text{ or } y \le z \le x\})$ we are in the situation of Sect. 2. Our goal is to find a spectral decomposition for P as in [7]. To this end we need:

3.1. Lemma. (Remember that $\operatorname{var}_{p,\phi}(f) = \sup_{0 < \varepsilon \leq A} \frac{\operatorname{osc}_p(f,\varepsilon)}{\phi(\varepsilon)}$ depends on the constant A!)

If $g \in UBV_p$ $(1 \le p < \infty)$, then for each $\delta > 0$ there are constants $A = A(\delta) > 0$ and $K = K(\delta) > 0$ such that for $f: X \to \mathbb{C}$

$$\operatorname{var}_{1,1/p}(Pf) \leq \frac{2+\delta}{\alpha^{1/p}} \operatorname{var}_{1,1/p}(f) + K \cdot ||f||_{1}$$

Proof. Set $M = \frac{\delta}{20} \cdot \alpha^{-1/p} \cdot \left(\frac{\delta}{16+2\delta}\right)^{1-1/p}$. Refining, if necessary, the partition $\{I_1, \dots, I_N\}$ we can assume that

(16)
$$\operatorname{var}_{p}(g_{|I_{i}|}) < M \quad (i = 1, ..., N).$$

This is possible because each g of universally bounded p-variation has onesided limits in each point and its set of discontinuities is at most countable. If

 d_j denotes the height of the *j*-th discontinuity, then $\sum_{j=1}^{\infty} d_j^p < \infty$. Hence there are only finitely many *j*'s with $d_j \ge M$, and these d_j can be taken as new partition-points. Refining the partition further one finally obtains (16). We remark that the refinement can be done in such a way that if

$$\Gamma_{-} = \min \{ m(TI_{i}) | i \in \{1, ..., N\}, m(I_{i}) > 0 \}$$

and

$$\Gamma_{+} = \max \{ m(TI_{i}) | i \in \{1, ..., N\} \},\$$

then

(17)
$$\Gamma_{+} \leq 2 \cdot \Gamma_{-}.$$

Now set

(18)
$$A = A(\delta) = \Gamma_{-} \cdot \frac{\delta}{16 + 2\delta}$$

Then we have for $0 < \epsilon \leq A$:

(19)
$$\operatorname{osc}_{1}(Pf,\varepsilon) \leq \sum_{\substack{i=1\\m(I_{i})>0}}^{N} \operatorname{osc}_{1}((f \cdot g) \circ T_{i}^{-1} \cdot 1_{TI_{i}},\varepsilon) \leq \sum_{\substack{i=1\\m(I_{i})>0}}^{N} \left(\left(2 + \frac{8A}{m(TI_{i}) - 2A} \right) \right)$$
$$\cdot \int_{TI_{i}} \operatorname{osc}\left(\frac{f}{T_{i}'} \circ T_{i}^{-1}|_{TI_{i}},\varepsilon,x \right) dm(x) + 4\varepsilon m(TI_{i})^{-1} \cdot \int_{TI_{i}} \left| \frac{f}{T_{i}'} \right| \circ T_{i}^{-1} dm \right) \text{ (by 2.1)}.$$

Furthermore

(20)
$$\int_{TI_i} (|f| \circ T_i^{-1}) \cdot \left(\frac{1}{T_i'} \circ T_i^{-1}\right) dm = \int_{I_i} |f| dm,$$

(21)
$$2 + \frac{8A}{m(TI_i) - 2A} \leq 2 + \frac{\delta}{2}$$
 (by (18)),

(22)
$$\int_{TI_{i}} \operatorname{osc} \left(\frac{f}{T_{i}^{\prime}} \circ T_{i}^{-1}|_{TI_{i}}, \varepsilon, x \right) dm(x)$$
$$\leq \int_{I_{i}} \operatorname{osc} \left(f|_{I^{i}}, \alpha^{-1}\varepsilon, y \right) dm(y) + 5 \cdot \int_{TI_{i}} \operatorname{osc} \left(\frac{1}{T_{i}^{\prime}} \circ T_{i}^{-1}|_{TI_{i}}, \varepsilon, z \right) dm(z)$$
$$\cdot \left(m(I_{i})^{-1} \int_{I_{i}} |f| dm + \frac{1}{A} \int_{I_{i}} \operatorname{osc} \left(f|_{I_{i}}, A, y \right) dm(y) \right) \quad \text{(by 2.4),}$$

and

(23)
$$\int_{TI_{i}} \operatorname{osc} \left(\frac{1}{T_{i}'} \circ T_{i}^{-1}|_{TI_{i}}, \varepsilon, z \right) dm(z)$$

$$\leq \left(\int_{TI_{i}} \operatorname{osc} \left(\frac{1}{T_{i}'} \circ T_{i}^{-1}|_{TI_{i}}, \varepsilon, z \right)^{p} dm(z) \right)^{1/p} \cdot (m(TI_{i}))^{(1-1/p)}$$

$$\leq (2\varepsilon)^{1/p} \cdot \operatorname{var}_{p} \left(\frac{1}{T_{i}'} \circ T_{i}^{-1}|_{TI_{i}} \right) \cdot \Gamma_{+}^{(1-1/p)} \quad \text{(by 2.7)}$$

$$= (2\varepsilon)^{1/p} \cdot \Gamma_{+}^{(1-1/p)} \cdot \operatorname{var}_{p}(g_{|I_{i}}), \quad \text{as the universal } p\text{-variation} \text{ is invariant under order-iso-and -antiisomorphisms,}$$

$$< 2 \cdot \varepsilon^{1/p} \cdot \Gamma_{-}^{(1-1/p)} \cdot M \qquad \text{(by (16) and (17)).}$$

If we set $\gamma = \min \{m(I_i) | i \in \{1, ..., N\}, m(I_i) > 0\}$, then (19)-(23) imply

$$\operatorname{osc}_{1}(Pf,\varepsilon) \leq \left(2 + \frac{\delta}{2}\right) \left(\int_{X} \operatorname{osc}\left(f, \alpha^{-1}\varepsilon, y\right) dm(y) + 10 \cdot \varepsilon^{1/p} \cdot \Gamma_{-}^{1-1/p} \cdot M \right)$$
$$\cdot \left(\frac{1}{\gamma} \cdot \int_{X} |f| dm + \frac{1}{A} \cdot \int_{X} \operatorname{osc}\left(f, A, y\right) dm(y) \right)$$
$$+ 4\varepsilon \cdot \Gamma_{-}^{-1} \cdot \int_{X} |f| dm,$$

such that

$$\frac{\operatorname{osc}_{1}(Pf,\varepsilon)}{\varepsilon^{1/p}} \leq \left(\left(2 + \frac{\delta}{2}\right) \cdot \alpha^{-1/p} + 10 \cdot \Gamma_{-}^{1-1/p} \cdot M \cdot A^{1/p-1} \right) \cdot \operatorname{var}_{1,1/p}(f) + \left(\left(2 + \frac{\delta}{2}\right) \cdot 10 \cdot \Gamma_{-}^{1-1/p} \cdot M \cdot \frac{1}{\gamma} + 4 \cdot A^{1-1/p} \cdot \Gamma_{-}^{-1} \right) \cdot \int_{X} |f| \, dm \leq (2 + \delta) \cdot \alpha^{-1/p} \cdot \operatorname{var}_{1,1/p}(f) + K \cdot \int_{X} |f| \, dm$$

by definition of M and A, which proves the lemma. \Box

474

The following theorem is an easy consequence of this lemma:

3.2. Theorem. Let T, P, and m be as described in (13)-(15). If $g \in UBV_p$ $(1 \leq p < \infty)$ and if there is a $n \in \mathbb{N}$ with $||g_n||_{\infty} < 1$ (where $g_n(x)$ $= \left(\frac{d}{dm}(m \circ T^n)\right)^{-1}(x) = g(T^{n-1}x) \cdot \ldots \cdot g(Tx) \cdot g(x)$), then there are $k \in \mathbb{N}$, $0 < \beta < 1$, and C > 0 such that for each $f \in BV_{1, 1/p}$

$$||P^{k}f||_{1,1/p} \leq \beta \cdot ||f||_{1,1/p} + C \cdot ||f||_{1}.$$

Proof. It is easy to see that T^j is piecewise monotonic and $g_j \in UBV_p$ for all $j \in \mathbb{N}$. $(UBV_p$ is closed under product and order-(anti)isomorphism.) Hence there is a $k \in \mathbb{N}$ with $g_k \in UBV_p$ and $\|g_k\|_{\infty} \leq (\frac{1}{4})^p$. Applying Lemma 3.1 with $\delta = 1$ to P^k gives

$$\begin{aligned} \|P^{k}f\|_{1,1/p} &= \operatorname{var}_{1,1/p}(P^{k}f) + \|P^{k}f\|_{1} \\ &\leq \frac{3}{4}\operatorname{var}_{1,1/p}(f) + (K+1) \cdot \|f\|_{1} \leq \frac{3}{4}\|f\|_{1,1/p} + (K+1) \cdot \|f\|_{1}. \end{aligned}$$

As P is a L_m^1 -contraction, the last theorem and Theorem 1.13 allow to apply an ergodic theorem of Ionescu-Tulcea and Marinescu [9] stating in an abstract Banach space setting the results 3.3.1-3.3.3 of the following theorem (they are formulated here for the special situation under consideration). From this 3.3.4-3.3.8 can be derived as in [7].

3.3. Theorem. Under the assumptions of the preceding theorem holds:

3.3.1. P: $L^1_m \to L^1_m$ has a finite number of eigenvalues $\lambda_1, \ldots, \lambda_r$ of modulus 1.

3.3.2. $E_i = \{f \in L^1_m | Pf = \lambda_i f\} \subseteq BV_{1, 1/p} \text{ and } \dim(E_i) < \infty \ (i = 1, ..., r).$

3.3.3. $P = \sum_{i=1}^{r} \lambda_i \Psi_i + Q$, where the Ψ_i are projections onto the eigenspaces E_i , $\|\Psi_i\|_1 \leq 1$, and Q is a linear operator on L_m^1 with $Q(BV_{1,1/p}) \subseteq BV_{1,1/p}$, $\sup_{n \in \mathbb{N}} \|Q^n\|_1 < \infty$, and $\|Q^n\|_{1,1/p} = O(q^n)$ for some 0 < q < 1. Furthermore $\Psi_i \Psi_j = 0$ (i $\pm j$) and $\Psi_i Q = Q \Psi_i = 0$ for all i. (This means that P is quasi-compact as operator on $(BV_{1,1/p}, \|.\|_{1,1/p})$.)

3.3.4. 1 is an eigenvalue of P, and assuming $\lambda_1 = 1$ and $h = \Psi_1(1)$, $\mu = h \cdot m$ is the greatest T-invariant probability on X absolutely continuous with respect to m, i.e. if $\tilde{\mu}$ is T-invariant and $\tilde{\mu} \ll m$, then $\tilde{\mu} \ll \mu$.

3.3.5. There is a partition $\{C_{k,l}|k=1, ..., r, l=1, ..., L_k\}$ of X such that $TC_{k,l} = C_{k,(l+1) \mod L_k}$ and $T_{|C_{k,l}|}^{L_k}$ is weakly mixing for all k and l.

3.3.6. If (T, μ) is weakly mixing and Π is an arbitrary finite partition of X into intervals, then there are constants K > 0 and $0 < \rho < 1$ such that $\sum_{\substack{R \\ n-1}} \sum_{k=1}^{\infty} |\mu(R \cap S)|$

 $\begin{aligned} &-\mu(R)\cdot\mu(S)|\leq K\cdot\rho^l \text{ where the summation extends over all } R\in\bigvee_{i=0}^{n-1}T^{-i}\Pi,\\ &S\in\bigvee_{i=n+l}^{n+l+k-1}T^{-i}\Pi, \text{ and } k,l,n\in\mathbb{N} \text{ are arbitrary. This means that }\Pi \text{ is a weak} \end{aligned}$

Bernoulli-partition for (T, μ) with exponentially decreasing mixing-coefficients. In particular, the natural extension of (T, μ) is isomorphic to a Bernoulli-shift (cf. [2]). (The proof of this fact needs some minor modifications compared to [7], as g is no longer in UBV_1 but in UBV_n .)

3.3.7. If (T, μ) is weakly mixing, $f \in UBV_s$ for some $1 \leq s < \infty$, f real-valued, $\int f d\mu = 0$, and if S(t) is defined as $S(t) = \sum_{0 \leq i < t} f \circ T^i$, then the series $\sigma^2 = \int f^2 d\mu$

+2 · $\sum_{k=1}^{\infty} \int f \cdot (f \circ T^k) d\mu$ converges absolutely, $\int S(t)^2 d\mu = t \cdot \sigma^2 + O(1)$, and if $\sigma^2 \neq 0$ the following holds:

a)
$$\sup_{z \in \mathbb{R}} \left| \mu \left\{ \frac{1}{\sigma \sqrt{t}} S(t) \leq z \right\} - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^2/2} dx \right| = O(t^{-\theta}) \text{ for some } \theta > 0.$$

b) Without changing its distribution one can redefine the process $(S(t))_{t \ge 0}$ on a richer probability space together with a standard Brownian motion $(B(t))_{t \ge 0}$ such that $|\sigma^{-1} \cdot S(t) - B(t)| = O(t^{1/2 - \lambda})$ μ -a.e. for some $\lambda > 0$.

3.3.8. μ is an equilibrium state for log g on X, i.e.

$$h(\mu) + \int \log g \, d\mu$$

= sup { $h(v) + \int \log g \, dv | v$ is a T-invariant probability on X},

where h(v) is the entropy of (T, v).

3.3.9. In [4] it has been shown that 3.3.6 is sufficient for limit theorems for U-statistics and v. Mises' functionals based on data from a stationary process $X_n(\omega) = f(T^n \omega)$ ($\omega \in X$), where again $f \in UBV_s$ for some $1 \leq s < \infty$.

Recently, M. Rychlik [13] has shown for the case p=1 how one can derive the spectral decomposition 3.3.3 without referring to the theorem of Ionescu-Tulcea and Marinescu. Using a slightly refined version of the inequality of Theorem 3.2 he gives a direct proof that the operator $P: BV \rightarrow BV$ is quasicompact (that is what 3.3.1-3.3.3 mainly say) and a very short proof of 3.3.6. Furthermore, his technique allows him to treat transformations with countably many intervals of monotonicity in a very elegant way.

As in [7] and [8] one can show that the hypothesis of Theorem 3.2 (and hence of 3.3) are satisfied in the following situations:

3.4. Theorem. Let $\phi \in UBV_p$, $(\sup \phi - \inf \phi) < h_{top}(T)$. Then there is a probability m on X and a real $\lambda > 0$ such that m and $g = \lambda e^{\phi}$ satisfy (13)-(15) and the hypothesis of 3.3.

Proof. It easy to see that $\phi \in UBV_p$ implies $g \in UBV_p$. The existence of the measure *m* and of a natural number *n* with $||g_n||_{\infty} < 1$ can be proved as in [8].

3.5. Theorem. Suppose $T_{|I_i|}$ is differentiable for each i, $\frac{1}{T'} \in UBV_p$, and $|(T^n)'| \ge \alpha > 1$ for some $n \in \mathbb{N}$. Then the hypothesis of 3.3 are satisfied for m = Lebesgue-measure.

Let $\mathscr{P} = \{I_1, ..., I_N\}$ be a partition of [0, 1] into intervals on which T is monotone and continuous, and call $J_n(x)$ the element of $\bigvee_{i=0}^{n-1} T^{-i}\mathscr{P}$ containing x.

3.6. Definition. T is completely covering, if for each $x \in [0, 1]$ there is a $k \in \mathbb{N}$ and an infinite subset $B \subseteq \mathbb{N}$ such that for all $n \in B$:

$$\bigcup_{j=1}^{k} T^{n+j} J_n(x) = [0,1].$$

This is a kind of weak specification property that has been introduced in [8], \S 3. Also the following examples can be found there:

3.7. Examples. a) Irreducible Markov-transformations are completely covering.

(That are transformations with $T(I_i) \cap I_j \neq \emptyset \Rightarrow I_j \subseteq T(I_i)$ and $\bigcup_{n=0}^{\infty} T^n(I_i) = [0, 1]$ for all I_i .)

b) β -transformations ($x \rightarrow \beta x \mod 1, \beta > 1$) are completely covering.

c) $T(x) = \beta x + \alpha \mod 1$ ($\beta > 1$) is completely covering, if $1 \notin \operatorname{closure} \{T^k(0) | k \in \mathbb{N}\}\$ or $0 \notin \operatorname{closure} \{T^k(1) | k \in \mathbb{N}\}\$, particularly if 0 or 1 is periodic under T. b) is a special case of c), of course.

3.8. Theorem. If T is completely covering and

$$\operatorname{var}_{n}(\phi) = \sup \left\{ \left| \phi(x) - \phi(y) \right| \left| x, y \in J \in \bigvee_{i=0}^{n-1} T^{-i} \mathcal{P} \right\} = O(q^{n})$$

for some 0 < q < 1, then there is a probability-measure m satisfying (13)–(15), and for this m the hypothesis of 3.3 are satisfied.

Proof. From $\operatorname{var}_n(\phi) = O(q^n)$ it follows that $g \in UBV_p$ for $p > -\frac{\ln N}{\ln q}$, where N is the number of monotonicity-intervals of T. The existence of a measure m satisfying (13)-(15) is proved as in §1 of [8], and $||g_n||_{\infty} < 1$ for some $n \in \mathbb{N}$ is proved as Theorem 3 of [8].

Remark. The proofs from [8] carry over to 3.4 and 3.8 since in [8] the fact that ϕ is of bounded variation has been used only in order to show that one-sided limits of ϕ exist in every point and that ϕ has at most countably many discontinuities, and all this is true also for $\phi \in UBV_p$.

References

- 1. Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Math. 470. Berlin-Heidelberg-New York: Springer 1975
- 2. Bowen, R.: Bernoulli maps of the interval. Isr. J. Math. 28, 161-168 (1978)
- 3. Bruneau, M.: Variation totale d'une fonction. Lecture Notes in Math. 413. Berlin-Heidelberg-New York: Springer 1974
- 4. Denker, M., Keller, G.: Simulations for invariant measures of dynamical systems. Preprint

- 5. Dieudonné, J.: Treatise on analysis, Vol. II. New York: Academic Press 1970
- 6. Dunford, N., Schwartz, J.T.: Linear operators, Part I. New York: Interscience 1958
- 7. Hofbauer, F., Keller, G.: Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180, 119-140 (1982)
- 8. Hofbauer, F., Keller, G.: Equilibrium states for piecewise monotonic transformations. Ergodic Theory Dyn. Syst. 2, 23-43 (1982)
- 9. Ionescu-Tulcea, C., Marinescu, G.: Théorie ergodique pour des classes d'opérations non complètement continues. Ann. Math. (2) 52, 140-147 (1950)
- 10. Lasota, A., Yorke, J.A.: On the existence of invariant measures for piecewise monotonic transformations. Trans. Am. Math. Soc. 186, 481-488 (1973)
- 11. Oxtoby, J.C.: Measure and category. Graduate texts in Math. Vol.2. Berlin-Heidelberg-New York: Springer 1971
- 12. Rychlik, M.: Bounded variation and invariant measures. Studia math. 76, 69-80 (1983)
- 13. Schaefer, H.H.: Topological Vector Spaces. New York: Mac Millan 1966
- Suquet, P.: Fonctions à variation bornée sur un ouvert de R^N. Sém. d'Analyse Convexe, Montpellier 1978, Exposé N° 4.
- Wong, S.: Some metric properties of piecewise monotonic mappings of the unit interval. Trans. Am. Math. Soc. 246, 493-500 (1978)
- 16. Wong, S.: Hölder continuous derivatives and ergodic theory. J. Lond. Math. Soc. 22, 506-520 (1980)

Received December 1, 1982