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Summary. We prove the quasi-compactness of the Perron-Frobenius opera-
tor of piecewise monotonic transformations when the inverse of the de-
rivative is Holder-continuous or, more generally, of bounded p-variation.

Introduction

One of the most successfully used tools for the investigation of invariant
measures for piecewise monotonic transformations T on [0, 1] is the Perron-
Frobenius-operator. If 0=a,<a;<...<ay=1, if T,=T,,_, ., is strictly mo-
notone and continuous (i=1, ..., N), and if m is a Borel-probability on [0, 1]
with respect to which T is nonsingular, then the Perron-Frobenius-operator
(PFO) of T and m is the linear, positive contraction

M=

P:L,-L, Pf)=Y (f(T7'%) 1y, 0y,

1

where —;fzd—dn;(mo T) is the Radon-Nikodym-derivative of T with respect to m.
P reflects very well the ergodic properties of the system (T, m), namely:
— p=h-m is a T-invariant probability
if and only if
0<hel, {hdm=1, and Ph=h.
— Mixing properties of T are closely related to spectral properties of P (cf.

L7D.

A particularly favorable situation for the investigation of P occurs if

() @geTM-...-(goT) gl ,<1 for some neN and
(2) g is of bounded variation.

*  This work has been supported by the Deutsche Forschungsgemeinschaft
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It has been shown in [7] that under these assumptions

(3) There is a h: [0,1]—-IR, of bounded variation such that u=h-m is a T~
invariant probability on [0, 1].

(4) For some power T* the measure u splits up into finitely many ergodic
components, on each of which T* is weakly Bernoulli with exponential mixing
rate. This is good enough to imply central limit theorems and almost sure
invariance principles for stochastic processes (fo T™),_x with f of bounded
variation.

Partial results in this direction can be found e.g. in [10] and [15]. M. Rychlik
[12] has given a new, very elegant proof of (3) and (4), which applies also to a
broad class of transformations with a countable number of monotonicity
intervals. For further references see [7].

In [16] an attempt has been made to replace (2) in the case where m is
Lebesgue-measure by “g is Holder-continuous™, but the result was unsatisfac-
tory since some additional conditions had to be imposed, which in general
cannot be checked effectively. Nevertheless a result in this direction is desirable
because of two reasons: -

a) Some problems related to the Lorenz-attractor can be reduced to prob-
lems concerning a piecewise monotonic transformation with Holder-continuous
derivative (cf. [16]). These problems could be solved setting m=Lebesgue-
measure and g=1/]T"}.

b) If g=1-¢e®, >0, Ph=h, and p=h m, then p is called an equilibrium
state for ¢. For a particular class of transformations including the f-transfor-
mation (x—fBx mod 1, f>1) and Markov-transformations it has been shown in

[7,8] that for each ¢ of bounded variation satisfying Y var;(¢)<oo (var,(¢)
i=1

=sup {|¢(x)— ()| |x, yel, I an interval on which T% is monotone}) there is a
measure m and a real >0 such that g=1-e?® and g satisfies (1) and (2) above.
For topological Markov-chains over a finite alphabet however (and hence for
Markov-transformations), the same result was already known when ¢ is only
Holder-continuous (this implies Y var;(¢) < oo, see [1]), although in this case ¢
is not necessarily of bounded variation.

The aim of this paper is to replace (2) above by

(2) g is of universally bounded p-variation, i.e.

n 1/p
var,(g)=  sup (Zl|g(x,~)—g<x,~*1)|1') <.

0<xp<...<xn=1 \i=

These are those functions which are called functions of bounded p-variation in
[3]. At the end of Sect. 2 the word “universally” will be justified. The main
result is Theorem 3.3 which asserts that under (1) and (2" the transformation T
has the properties briefly sketched in (3) and (4).

As each Holder-continuous function with Holder-exponent 0<r=<1 is of
universally bounded 1/r-variation, this solves the problems described under a)
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and b). As a matter of fact, problem a) can be solved under the weaker
assumption that 1/|T7| is of universally bounded 1/r-variation. I want to men-
tion that Marck Rychlik orally announced me a solution of problem a) using
basically the same idea.

In Sect. 1 we define a generalized concept of functions of bounded variation
adapted to a quasi-compact, pseudo-metric space X equipped with a finite
Borel-measure. This concept unifies Lipschitz-continuity, Hdlder-continuity,
Riemann-integrability, bounded variation, bounded p-variation, and gives
many intermediate notions of bounded variation, some of which play an
important role in Sect. 2 and 3. The main result is about compact embeddings
of spaces of functions of generalized bounded variation into suitable IF-spaces
(Theorem 1.13). As in the theory of Sobolev-spaces, next to embedding theo-
rems, trace theorems are the most fundamental ones. In Sect. 2 we prove such
a theorem, when the underlying space is the unit-interval (not necessarily
equipped with its Euclidean metric). This is the situation that occurs in Sect. 3,
where results of Sects. 1 and 2 are used to show that PFO’s satisfying (1) and
(2) are quasi-compact as operators on some suitable space of functions of
generalized bounded variation, which implies (3) and (4) as in [7] and [12].

1. Generalized Bounded Variation

Let (X,d) be a quasicompact topological space whose topology is defined by
the pseudo-distance d. (This means that we do not require the Hausdorfi-
property and allow d(x,y)=0 for x=%y, cf. XIi.4 and Ex. XIL3.6 of [5].) £
denotes the Borel-o-algebra of (X,d) and m is a finite Borel-measure on 4.
Open balls in X are denoted by S,(x)={yeX|d(x,y)<e}. F= (| Ais the

Aclosed
support of m. m(X~ A)=0

1.1. Definition. For an arbitrary function h: X—C and &>0 define
osc(h, ¢ .): X—[0, 0] by

osc(h e x):{ess sup {[h(y,) =h(y2)l y1, y,€8.(x)}  if m(S,(x))>0
0 if m(S,(x))=0,

where the essential supremum is taken with respect to the product measure m?
on X2 As osc(h,¢,.) is lower semi-continuous and hence measurable, one can
define for 1 <p<oo:

osc,(h, &)= |osc(h, ¢,.)| ,, where we admit the p-norm to take the value + oo.
osc,(h, &) can be interpreted as an isotonic function (in the variable ¢) from
(0, A] to [0, oo, where A is any positive constant. This motivates the next

1.2. Definition. Fix A>0 and denote by & the class of all isotonic maps
¢(0, A]1-[0, o] with ¢(x)—0 (x—0). Set

R,={h: X>Closc,(h,.)e P},
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and for ¢ e @ set
.p={heR Josc,(h,.)< ¢},

=JR,,

nelN

If ¢(x)=x", we simply write S, , instead of S, ,

The following lemma is trivial:
1.3. Lemma. a) ¢,y e®, ¢<y =R, ;SR ., S, ,<S, .

by R,=|)R, ,=1) S, ,.

) P ¢Lej¢ D, ¢ dydﬁ b, ¢

¢) If l1sp=q<ocothenS, ,=S, , for all ped.

d) If M is one of the classes introduced in Definition 1.2, then he M = Reh,
Imhe M.

The next lemma provides some elementary facts about the oscillation-
functions:

1.4. Lemma. For 1 <p=< oo holds:

a) If h,=h, m-a.e., then osc(h,¢,.)=o0sc(h,, ¢, .).

b) Each heR, is bounded and % ,-measurable, where %, is the m-completion
of B.

c) If {P,,..., Py} is a measurable partition of X and if

essinfh(P) < f(x)<esssuph(P) forall xeP, (n=1,...,N),

then || f —h| ,=osc,(h, &), where ¢=sup {diam (B)|n=1, ..., N}.
d) osc(h,¢,.) is bounded on X for each heR, and 3>0
e) For each heR,, there are elementary functions h h, with

—-n’ n

h<...Sh,<..Sh<...<h<..<h,,

Dl=rr =0y ===l =

- 1
such that |, —h,| <osc, (h, E)ﬁo_

Proof. a) is obvious. We next prove ¢): For a.e. xe P, holds:
|f () —h(x)|Zesssuph(P)—essinfh(P)=<osc(h, ¢, x),

hence | f—h|,<osc,(h, ¢) by definition.

d) is proved for small ¢ first: heR, implies that for sufficiently small
e>0: osc(h,4e,.)elf,. By the quasi-compactness of X one can choose

Xy, X, €X with X= () §,(x,). As osc(h, 4¢,.)e %, and as for each
i=1

yESZe(xi): 0sc (ha 485 J’)z OSC(h, 28: xi):

it follows that M =max {osc(h, 2¢, x)[i=1,...,n}<oco. Hence osc(h, & y)<M
for all y. In order to prove e¢) we choose for each nelN a partition 2,
={P,(n), ..., By,»(m)} of X finitely generated from balls with diameter less than
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L We may assume that #,., is finer than #,. Define h,,h, by h,(x)
n
=ess infh(P(n)), h,(x)=ess sup i(F(n)) if xeP(n). h En are %-measurable ele-

Zas

mentary functions, h, <h<h,, and they are bounded for big n, as we know that

0sc (h, l, )
n P

=o0sc, (h, i) —0 (n—o0). Finally e) implies b), and because of b) assertion d)
n

d) holds for small ¢ at least. Furthermore Hﬁn —hl,=

holds for arbitrary . [
The next lemma helps finding “smooth” versions of functions heR

1.5. Lemma. a) For each heR, (1=p=< o) and £¢>0 holds:
essinf {h(y)|d(y, x)<e} £h(x)<esssup {h(y)]d(y, x)<e} m-a.e.

b) For each heR,, there is a h*: X —>C with hit€ C(F) and h=h* m-a.e. If
heR, , for continuous ¢, then \h*(x) —~h*(y)| £ P(d(x, y)) for all x, yeF.

Proof. a) If there were x€ X and &>0 such that h(y)>ess sup {h(z)|d(z, y)<2¢}
for y in a subset of positive measure of S,(x), then it would follow that
h(y)>esssup {h(z)|d(x, z)<e} on a set of y’s of positive measure in S,(x)
contradicting the definition of the essential supremum. As X can be covered by
a finite number of such balls S,(x) and as the same reasoning applies to the
essential infimum, this proves a).

b) As osc(h,¢,.) is lower semi-continuous and bounded (by d of Lem-

ma 1.4), sup osc(h, ¢ x)=ess sup osc (h, ¢, x), such that osc(h, ¢, x)—~>0 (¢—0) uni-
xeF xeF
formly for all xe F. For these x define now

h*(x)=lim ess sup {h(y)|d(y, x) <&} =lim ess inf {h(y)|d(y, x) <&},
e=0 e 0

and set h*(x)=0 for xe X\ F. As h=h* m-a.e. by part a), we only have to show
that hji.€ C(F). But for x, ye F and arbitrary 6>0 we have

|h*(x) —h* ()| = osc (h, d(x, y)+ 6, x) < [Josc (b, d(x, y)+6,.)]| , S P(d(x, y)+9)
for some ¢ € @. Hence hife C(F), and if ¢ is continuous,

I (x) =h*(NI £ od(x, y). O

1.6. Examples. a) For 1<p<co R, is the class of all Riemann-integrable func-
tions on X (modm). This follows from ¢) of Lemma 1.4 (cf. [11], Chap. 7).

b) R, p=C*(F), the class of all continuous functions on F (modm), by
Lemma 1.5

) S, 1, Will be called the class of functions of bounded p-variation. If X
=[0,1] and m is the Lebesgue-measure, one can show that this class contains
those functions of bounded p-variation considered in [3]. See Lemma 2.7.

d) S, r is the class of Holder-continuous functions on F with exponent r
(mod m). This follows from Lemma 1.5.
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Examples c) and d) suggest the following restriction of the class @:
1.7. Definition. &, ={pe®|d(x)Za- x (0<x L A) for some a>0}.
Now we can prove the following density-result for S-classes:

1.8. Proposition. a) S, ; is dense in (I}, ||.|,) for 1<p<oco and ¢ped,.
b) S, 4ir is dense in (C*(F), ||| ,) for all p€ ;.

Proof. We first show b): S ;< C*(F) by Lemma 1.5. Furthermore, a) of
Lemma 1.3 implies that for

('Z,)Edsl: Soo,¢= U Roo,nwj)2 U Roo,(e—»ns):Soo,D
nelN nelN

and S, ;) is dense in C*(F), as it is the space of Lipschitz-continuous
functions on F (see Ex. 1.6.d).

We now show a): By b) of Lemma 14, S, ,<If. By ¢) of Lemma 1.3,
S, 6 S5, 4 and the denseness of C*(X) in I, together with part b) implies the
denseness of §, , in If,. [

In order to make the S-spaces into Banach-spaces we pass to m-equivalence
classes of functions and introduce a norm on them:

1.9. Definition. For p=1 and ¢ € & we define:
a) BV, , is the space of m-equivalence classes of functions in S, ,.

h
b) FOI‘ h«' X—)(D Set Varp ¢(h):.— Sup Oscp( ’ 8)‘
’ o<ezda  @(8)

¢) For he BV, , set k||, ,=var, ,(W)+]h],. (., , is well defined because
of a) of Lemma 1.4)

If ¢(e)=¢" we simply write BV, , |.],, ,, var, .. Observe that the definition
depends on the constant A!

The proof of the following lemma is straightforward:

1.10. Lemma. BV, , is a linear space, and |.|, , is a norm on it (1<p=oco,
¢ed).

In order to show that (BV, 4 ., ,) is a Banach-space with a compact
embedding into I, we need two preparatory lemmas:

1.11. Lemma. If he BV, , and if #={P,, ..., By} is a measurable partition of X,
then |h—E,[hl2?]|,<var, ,(h) ¢(d), provided d=supdiam(P)<A. Here

N Pe?
E, [h2]1=Y m®B)~"- [ hdm-1,.

i=1 P;
Proof. By c¢) of Lemma 14 we have |h—E,[h|Z]|,<o0sc,(h,¢), where ¢
=sup diam(P). As osc,(h, e)<var, ,(h)- ¢(e), this proves the lemma. []

Pe?
1.12. Lemma. Let (h,),.n be a sequence in BV, , converging in | .| norm to
some element helf,. Then
var, ,(h) <liminfvar, ,(h,).

n—» o0
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Proof. Passing, if necessary, to a subsequence we can assume that
liminfvar, ,(h,)=lim var, ,(h,). Passing to a subsequence again we also can
L amdiv o}

n— oo

assume that h,(x)—>h(x) for all xe X\ N, where N is some set of measure 0. Fix
xeX, £>0. There is a subset N .=X? with m*(N,)=0, such that for all
(v, z)e XA\N, with d(x, y), d(x, z) <e holds:

lh(y) —h(z)| = lim |h,(y) —h,(z)] £lim inf osc(h,, &, x).

n— oo n— o

Hence osc(h, ¢, x) Zlim inf osc(h,, ¢, x). By Fatou’s lemma we get:

n— w0

{ osc(h, &, x)? dm(x) <lim inf | osc(h,, ¢, x)? dm(x)

for 1 £p< o0, while (for p=c0) obviously
ess sup osc(h, &, x) <lim inf ess sup osc(h,, ¢, x).
xeX n—w xeX
Hence, for 1<p=< oo,

osc,(h, ¢) <lim inf osc, (h,, &) S ¢(e) - liminfvar, ,(h,)

n— o0 n— oo

for all e< 4 implying var, ,(h)<liminfvar, ,(h,). O

n— o

The main result of this section is:

1.13. Theorem. For 1 <p< oo and ¢ € P we have:

a) E={feBV, ;I fll, ,=c} is a compact subset of L}, for each ¢>0.

b) (BV, 4, |l -1l,.4) is a Banach-space.

¢) For ¢e®,, BV, , is dense in I, (in case 1 <p<oo) or in C*(F) (in case p
= o0) respectively.

Proof. a) Let f, be in E (n=1). From Lemma 1.11 and Theorem 1V.8.18 in [6]
it follows that there is a subsequence (g,) of (f,) and an element feI? with
lim || f —g,l| ,=0. Hence Lemma 1.12 implies that

n~— o

1AW, o= 1SN, +var, ,(f)=lim [g,|,+liminfvar, ,(g,)

=liminf|g,l, ,S¢, ie.: feE.
b) follows immediately from I1.1.6 in [13] now, and ¢) from
Proposition 1.8. [

The following lemma will be used in the next section:

1.14. Lemma. For fixed f and p, osc,(f, ¢) is continuous from below and isotone
as a function of s.

Proof. osc(f, ¢, x) is continuous from below and isotone as a function of ¢ for
fixed x. For 1=p<oo the assertion then follows from the monotone con-
vergence theorem, while for p=co it is enough to observe the fact that “g, Tg
pointwise” implies “||g, |l .~ lgl,” if g, g>0. O
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2. The One-Dimensional Case with p=1
(Trace Theorem, Products and Transformations)

Working with variation-norms one often needs theorems of the followmg type:
Let Y be a “nice” subset of X, fe BV. Then

var (f- 1y)§01'Var(ﬁy)+Cz-£|fldm,

where C,, C, are constants depending on Y only. (This is a combination of an
extension- and a trace theorem, cf. [14].) In general such theorems are hard to
establish. The constants C; and C, will depend on the dimension and shape of
the boundary of Y, and there are many combinations of p and ¢ for which
var, , does not satisfy such a relation at all. Therefore we restrict our interest
here to the one-dimensional case needed in Sect. 3, i.e. X is the unit interval,
m is an atom-free Borel-measure on X, and d is the pseudo-distance given by
d{x, y)=mi{z|xLz<y or y£z=<x}. As the d-topology is coarser than the usual
topology on [0, 1]=X, (X, d) is quasicompact, and m can be restricted to the
g-algebra %, which - in accordance with Sect. 1 - denotes the Borel-o-algebra
of the d-topology. Throughout this section all topological and measure-
theoretical statements will refer to d and .

2.1. Theorem. Let Y <X be an interval, m(Y)24 A. For each f: Y-C and each
0<&<L A4 we have

oscl(f-ly,é)_s_(2+ 84 )

mr)—24) 1 oUin dm(x) 7 {1/ ldm()

Y

Proof. Fix 0<&< A and 0<g<&. There is a neN such that
(5) 2m—De<m(Y)<2ne.

We introduce the following notations: Let f be a function from Y—C. Ob-
serve the different meanings of

osc(f|y, & x)=ess sup {f ) =fI 1y, y,€8,(x)n Y}
and
osc(f- 1y, & x)=esssup{lf(y)—f W)l |y, y,€5.(x)},
where f(y)=f() (yeY) and f(3)=0 (yeX\Y). Now suppose that a, and a,
are the left and the right endpoint of Y. Set
I;=S.(a) (i=1,2), I,=Y\(I,ul,),
h(x)=osc(fly, & x)-1;(x) (i=0,1,2),
si(x)=esssup [f())|-1,(x) (i=1,2).

yeSc(x)nY

Then

(6) osc(f- 1y, & x)=hy(x)+ max {h,(x), s;(x)}.

i=1,2
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Set
()= sup {yeXld(a,, y)=t} if 120
~ | inf{yeXld(a,,y)=—t} if t<0

and consider the intervals J,=YnS,(x(2ke)) (k=1,...,n—1). As the J, are
pairwise disjoint, there is a ko {1, ...,n—1} with

(7N Jj 0sc(f)y, & x)dm(x) <
ko
For el —e, g] define now z,(E)=x(E+2ke) (k=0,...,ky) and z,(&)=x(E+0
+2(k—1)¢g) (k=ky+1,...,n), where 6=m(Y)—-2(n—1)e>0 according to (5).
Furthermore set F(&)=esssup{ () —fol lye U Y} where Uy(8)=S, ,(a,),
Uz(é)zss_g(az)a and fo=m(Y)_1 . ffdm Then
Y

(8) s () SF Q) +1fol  for x=x(ely,
$:(0)Z RO +1fol  for x=x(m(Y)+)el,,
and
©) max {h, (x(&)), F; (&)} + max {h, (x(m(Y)+ &), F(E)}
Y n
= T oselfins 850,

In order to show the latter inequality one has to consider four cases:
i) by (x(E) = F, (&), hy(x(m(Y)+ &)= F,(£). This case is trivial.
i) by (€)Y < Fi(&), hy(x(m(Y)+ &)< F,(&). In this case there is a ke {l,...,n

—1} such that )
essinf f(y)=fo < esssup f(y),
ye Sez(&) y& Stz

which proves the inequality in this case.

i) hy (x(E)ZF (&), hy(x(m(Y)+ E)) < F,(£). This case is more delicate and is
m(Y)
m(Y)—2¢
inequality again is true (even without the factor). Otherwise, setting u=x(& +¢)
we can suppose w.l.o.g. that c=ess inf(f(y) —f,)>0. Then

yzu

responsable for the factor . If there is a ke{l,...,n} as in ii), the

RO Y. oselfin a0 +e

and
m([u, a,]) - c<§(f(y —fo)dm(y)= —f(f )—fo)dm(y)

=2¢-F(§)=2e- hl(X(é)),
ie.

Céh@(f))'m
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such that
h (X(é +F é Z |Y’8 Zk(g))+h (X(C)) —(Y—z)s__zs_
Y n
éﬁn%f)z‘é - 2 0se(fiy B zi(d)).

V) by (x(&) <F, (&), hy(x(m(Y)+ &)= F,(&). This case is analogous to iii).
From (6), (8), and (9) it follows that

osc, (f- 1y, 8)
=fosc(f- 1y, ¢ x)dm(x)

S [ho(x)dm(x)+|fol - 48+W§@2— Es (é:oosc(f(y,é, zk(é))> dé

( ) x(m(Y)+¢)

nh)—2c .4, oUinEx)dm)

m(Y) )
)25 ) Ui B2 dme)

according to the choice of the z,(£),

m(Y) 1 )
< , . |
“m(Y)—2¢ (2+n—1> iosc(fm g x)ydm(x)+4e- |f,

by (7) and since  sup  osc(f}y, & x)

xeSc(a)\Y

< inf osc(fiy,8x) (i=1,2),
xeSe{ai))nY

< [hoG)dm(x)+|f,] - 48+

8
= o ) ot e 415

by (5) and as m(Y)=4A=4e.

As osc, (f- 1y, ¢) is continuous from below in the variable ¢ (see Lemma 1.14),
this implies that for each 0 <&<4:

oscy (f-1y,8) = <2+m) : If/OSC(fIY’ & x)dm(x)

+48-m(Y)~L | fldm. O
Y

The proof of the following lemma is similar but easier. We skip it:

2.2. Lemma. For bounded f: Y—>C (Y =X an interval) and 0 <e¢ <A we have

Il Se™! -(I{OSC(ﬁy, & X)dm(x))+m(Y)"! - 1[lfldm

(This estimate is quite rough but sufficient for our purposes.)
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23. Lemma. Let Y, Z< X, T: Y—Z be bijective, and f: Y—C. Set
8z)=sup {d(T~'y, T~'2)lyeS, () Z}.

Then osc(fo T4 4, 6 2)S0sc(fiy, &(z), T~ 2) for each ze Z.
The proof is straightforward.

24. Lemma. Let Y,Z<X be intervals, T: Y—Z an order-isomorphism or
d
-antiisomorphism, non-singular with respect to m, and call T’=%(moT) the

Radon-Nikodym derivative of T with respect to m. Suppose that T'(y)=a>0 for
a.e. ye Y. Then for each f: Y->C

| osc (%o T8 z) dm(z) < [osc(fiy, o™ "¢, y)dm(y)

1 1
+5 -gosc (—T—,o T=Y, ¢ z) dm(z) (m(Y)‘1 . g |f|dm+2- iosc(fly,A, y)dm(y)).

Proof. Using a) of Lemma 1.5 one easily shows that for a.e. zeZ
10 S T-! <|\f(r-t ! T-1
(1) ose (o T 6 ASIA(T12)| - 05c (o T~ 500, 2

1 _

+m' osc(foT ™1 4,8, 2)
1
+2 - osc (7"70 T8 z) osc(fe T4, ¢, 2).
We first treat the integral over the second term in this sum:
(11) fosc(foT 15 62) (T (2)dm(z)
zZ
<fosc(fiy, &2, T~'2)- (T~ (2)dm(z) (by 2.3)
z

égosc(fly, o~ te, y)dm(y)

by integral transformation and observing that 7' =« >0 implies £<a~ e,
The integral over the first and the third term is estimated as follows:

(12) fosc (TLO T, & z) (f(T=22)|+2- osc(fe T4 4, & 2) dm(2)
V4
=5 -l iosc (%TD Tz Z) dm(z)
<5 {osc (-%oT”llz, a,z)

. (m(Y)—1-£1f|dm+%- _iosc(fly,A,y)dm(y))dm(z) (by 2.2)
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(10), (11), and (12) together prove the lemma. []

If m is not the Lebesgue-measure on [0, 1] and 4 is not the Euclidean
metric, it is hard to recognize functions in BV, ,. As we shall deal with such
situations in Sect. 3, it is important to characterize subclasses of BV, , at least.

2.6. Definition. For a function f: [0, 1]—-C define the universal p-variation by
n 1/p
v, ()= swp (Y 1f@) =S )
Sap<d1<...<an = i=1

and denote the space of functions of universally bounded p-variation by UBV,
={f:[0, I]->C|var,(f)<o}.

These are exactly the functions of bounded p-variation in the sense of [3].
The following lemma justifies the notation:

27. Lemma. UBV, = ﬂ BV, ,,, for all 1<p<co, where the intersection ranges

m
over all spaces BV, ,,, which stem from any atom-free finite Borel-measure m on
[0, 17 and its associated pseudo-distance d. In particular, if m is a probability-
measure, then var, ,,(f)<2'? - var,(f).

Proof. As each feUBV, is bounded, fIfldm<oco for any finite measure m.
With a similar argument as in the proof of Theorem 2.1 one shows that
Josc(f, & x)Pdm(x)<2¢ - (var,(f)). We leave the details to the reader. [J

Problem. Can the inclusion in Lemma 2.7 be replaced by equality?

3. Perron-Frobenius Operators
for Piecewise Monotonic Transformations Acting on BV,-Classes

As in [7] we now assume the following situation: Let {I,,..., Iy} be a finite
partition of X=[0, 1] into intervals, and let T: X—»X be a transformation
which is monotone and continuous on each I,. (We call such a transformation
piecewise monotonic.) Assume that

(13) there is a Borel-probability m on X with respect to which T is non-

d -1 1
singular, Call g={—(moT =——, and suppose g(x)<a~ ' <oo m-a.e.
dm T’ P

Define
(14 P: mb(X)-»mb(X) (={f: X—>C|f measurable and bounded}) by

N
Pfx)=Y (f-geT, "1z, where T,=T,.
i=1

N d N
Then m(Ply=)> [ ——(meT"Y)dm=) [ dm=m(B) for each Be%,
such that 51 T@nry dm i=1 Bl
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(15) m(Pf=m(f) for all femb(X), and P extends to a positive linear con-
traction on L.

From these assumptions it follows that m is atom-free (cf. Lemma 2 in [7]),
and with d(x, y)=m({z[x<z=y or y<z=<x}) we are in the situation of Sect. 2.
Our goal is to find a spectral decomposition for P as in [7]. To this end we
need:

3.1. Lemma. (Remember that var, ,(f)= sup M depends on the con-

o<exa  O(E)
stant A!)

If ge UBV, (1<p< o), then for each 6>0 there are constants A=A(6)>0
and K =K(0)>0 such that for f: X->C

2
vty (PR S var, (4K - 1.

o 5\ . . .
Proof. Set M=—~-a~!/7. ( ) . Refining, if necessary, the partition

20 164296
{I,,...,1y} we can assume that
(16) var, (g )<M (i=1,...,N).

This is possible because each g of universally bounded p-variation has one-
sided limits in each point and its set of discontinuities is at most countable. If

d; denotes the height of the j-th discontinuity, then ) d? < co. Hence there are
j=1

only finitely many j’s with d;= M, and these d; can be taken as new partition-

points. Refining the partition further one finally obtains (16). We remark that

the refinement can be done in such a way that if

I =min {m(TI)lie (1, ..., N}, m(I)>0}

and

I =max {m(TI)jie{l, ..., N}},
then
(17 r,<2-r1.
Now set

)

1 = =7 —
(18) A=A@)=T. 16426

Then we have for 0<e< A:

N N 8A
09 o, PfA= Y o0 T dned = Y (4t
m(I;)>0 I)>0

fl o
= oT; 1dm) (by 2.1).

!

TI;

< | osc ioT.‘1 1, & X ) dm(x)+dem(TI)" - | |=
T |TI; i ot

i
TI;

13
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Furthermore

1
20 o T Y (=T Y)dm= dm,
(20) Tt )(T ; )m [1f1dm
21 34 32+é (by (18)),

4y °7
YT —24=""2
S o
(22) [ osc (o T, Y gy, & X ) dm(x)
TI, T; ' .
é!osc(.flIi’ a_lsa y)dm(y)+5 I OS¢ (FOE_IfTIﬂ &, Z) dm(z)
i TI i

1 i L

: (rW(Ii)‘leiflder% j"l osc(fir, 4, y)dm(Y)) (by 24),
and

1
@3 ] osc (o T ryp ) dme)
TI; i

3

1 P 1/p
< ( ose (o T tmonz) dmia) - o1
TI; T '

!
<26 - var, (F Ti‘llni) TU-UD (by 2.7)

=Q2e)lr. [E-1P) . yar ), as the universal p-variation
+ p8ir)> 85 THO T .
is invariant under order-iso-
and -antiisomorphisms,

<2-¢glr.pU-n. M (by (16) and (17)).
If we set y=min {m(I)|ie{l, ..., N}, m(I)>0}, then (19)-(23) imply

osc (Pf,e)= (2—}—%) (f osc(f, o~ te y)dm(y)+10- V. L 1-vr. M
X

1 1
) (§ )j{lfldM+Z'3[OSC(f> A, y)dm(J’)))
+4e-T-1-[ifldm,
X
such that

osc, (Pf, )

eglip

< ((2%) : oc‘””+10-F_l‘l/P-M-A‘/”‘1> var, 1. (f)

+((2+g) - 10-Ff‘””~M%+4‘A1“””-Fj1)-jlﬂdm
X

<@2+8)-a~ Y var, ,,(f)+K-[|fldm
: X

by definition of M and A4, which proves the lemma. [
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The following theorem is an easy consequence of this lemma:
3.2. Theorem. Let T,P, and m be as described in (13)~(15). If geUBV,

(1Zp<w) and if there is a nelN with |g,l,<1 (where g,(x)

= (2% (mo T”)>_1(x)=g(T"’1x)- e g(TX)- g(x)), then there are keN,

0<B<1, and C>0 such that for each fe BV,

i/p
“Pkf“1,1/p§ﬁ' ”f”1,1/p+c' “f“1

Proof. It is easy to see that T’ is piecewise monotonic and g€ UBV, for all
jeN. (UBV, is closed under product and order-(anti)isomorphism.) Hence
there is a ke N with g, e UBV, and | g, <. Applying Lemma 3.1 with §=1
to P* gives

||Pkf”1,1/p=V3r1,1/p(Pkf)+“Pkfnl
Savary (D +HE+HD L2300+ K+ D -0 S, O

As P is a Ll -contraction, the last theorem and Theorem 1.13 allow to apply
an ergodic theorem of Ionescu-Tulcea and Marinescu [9] stating in an abstract
Banach space setting the results 3.3.1-3.3.3 of the following theorem (they are
formulated here for the special situation under consideration). From this 3.3.4-
3.3.8 can be derived as in [7].

3.3. Theorem. Under the assumptions of the preceding theorem holds:
3.3.0. P: Lt —L! has a finite number of eigenvalues A, ..., ), of modulus 1.
332. E;={feL,|Pf=)f}<BV, ,, and dim(E)< oo (i=1, ..., 7).

333. P=3 A,¥%+Q, where the ¥, are projections onto the eigenspaces E,,
i=1

I%ll,<1, and Q is a linear operator on L. with Q(BV,, )<BV, ,,

sup [|Q"[|, <oo, and Q"] 1,,=0(q") for some 0<q<1. Furthermore Y ¥=0(

nelN

*j) and ¥.Q0=0Q¥ =0 for all i. (This means that P is quasi-compact as operator
on BV 1 11, 1))

3.34. 1 is an eigenvalue of P, and assuming ,=1 and h=Y,(1), u=h-m is the
greatest T-invariant probability on X absolutely continuous with respect to m, i.e.
if [i is T-invariant and fi<m, then fi<u.

3.3.5. There is a partition {C, j\k=1,...,r, I=1,...,L,} of X such that TC,,
= Cy 45 1ymoar, @nd Tigs  is weakly mixing for all k and 1.

3.3.6. If (T, p) is weakly mixing and II is an arbitrary finite partition of X into
intervals, then there are constants K>0 and 0<p<1 such that ) 3 |u(RS)
RS
n—1
—u(R)- u(S)| K- p' where the summation extends over all Re \/ T'II,
n+l+k—1 i=0
Se V T, and k,I,neN are arbitrary. This means that IT is a weak

i=n+l
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Bernoulli-partition for (T, p) with exponentially decreasing mixing-coefficients. In
particular, the natural extension of (T, ) is isomorphic to a Bernoulli-shift (cf.
[2]). (The proof of this fact needs some minor modifications compared to [7], as
g is no longer in UBV, but in UBV,.)

337, If (T, ) is weakly mixing, fe UBV, for some 1Ss<w, f real-valued,
[fdu=0, and if S(t) is defined as S(t)= Y, foT', then the series ¢*=[f>dpu

O0=<i<t
+2- Z [f-(foT"dp converges absolutely, [S(t)?du=t-o*+0(1), and if o°
*0 the followmg holds:

1 z
Sz e *12dx|=0(t"% for some >0,
{01/( }ﬁﬂ (t) for some 6>0
b) Without changing its distribution one can redefine the process (S(1)),», on
a richer probability space together with a standard Brownian motion (B(®)»o
such that |6~ - S()—B(t)| =0(t**~*) p-a.e. for some 1>0. -

3.3.8. uis an equilibrium state for logg on X, i.e.

sup
zelR

W)+ [loggdp
=sup {h(v)+jloggdv|v is a T-invariant probability on X},

where h(v) is the entropy of (T, v).

3.3.9. In [4] it has been shown that 3.3.6 is sufficient for limit theorems for U-
statistics and v. Mises® functionals based on data from a stationary process X ,(w)
= f(T"w) (w e X), where again fe UBV, for some 1 <s<co.

Recently, M. Rychlik [13] has shown for the case p=1 how one can derive
the spectral decomposition 3.3.3 without referring to the theorem of Ionescu-
Tulcea and Marinescu. Using a slightly refined version of the inequality of
Theorem 3.2 he gives a direct proof that the operator P: BV —»BV is quasicom-
pact (that is what 3.3.1-3.3.3 mainly say) and a very short proof of 3.3.6.
Furthermore, his technique allows him to treat transformations with countably
many intervals of monotonicity in a very elegant way.

As in [7] and [8] one can show that the hypothesis of Theorem 3.2 (and
hence of 3.3) are satisfied in the following situations:

3.4. Theorem. Let ¢ € UBV,, (sup ¢ —inf @) <h,, (T). Then there is a probability
m on X and a real A>0 such that m and g=2Ae?® satisfy (13)-(15) and the
hypothesis of 3.3.

Proof. 1t easy to see that ¢ € UBV, implies ge UBV,. The existence of the
measure m and of a natural number »n with ||g,|l, <1 can be proved as in [&].

1
3.5. Theorem. Suppose T, is differentiable for each i, ;F—,e UBV,, and

(T"Y|=a>1 for some neN. Then the hypothesis of 3.3 are satisfied for m
= Lebesgue-measure.
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Let #={I,,...,1,} be a partition of [0,1] into intervals on which T is

n—1
monotone and continuous, and call J,(x) the element of \/ T '# containing
X. i=0

3.6. Definition. T is completely covering, if for each xe[0, 1] there is a ke N
and an infinite subset BN such that for all ne B:

C) T3 7 (x)=[0, 1].
j=1

This is a kind of weak specification property that has been introduced in [8],
§3. Also the following examples can be found there:

3.7. Examples. a) Irreducible Markov-transformations are completely covering.
(That are transformations with T(I)nI;+0=1,=T(I) and {) T"(I))=[0,1]
for all I,.) n=0

b) B-transformations (x— fx mod 1, f>1) are completely covering.

c) T(x)=px+oamodl B>1) is completely covering, if

1¢closure {T*(0)[ke N} or O¢closure {T*(1)|ke N}, particularly if 0 or 1 is
periodic under 7. b) is a special case of c¢), of course.

3.8. Theorem. If T is completely covering and

n—1

x,yeJe T‘ig‘}:O(q")

i=0

var, (¢)=sup {ld)(X) —o )l

for some 0<q<1, then there is a probability-measure m satisfying (13}(15), and
for this m the hypothesis of 3.3 are satisfied.

. InN .
Proof. From var,(¢)=0(q" it follows that ge UBY, for p> —%—, where N is
q

the number of monotonicity-intervals of T. The existence of a measure m
satisfying (13)-(15) is proved as in §1 of [8], and |g,|., <1 for some neN is
proved as Theorem 3 of [&].

Remark. The proofs: from [8] carry over to 3.4 and 3.8 since in [8] the fact
that ¢ is of bounded variation has been used only in order to show that one-
sided limits of ¢ exist in every point and that ¢ has at most countably many
discontinuities, and all this is true also for ¢ € UB v,
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