Generalized Bounded Variation and Applications to Piecewise Monotonic Transformations ${ }^{\star}$

Gerhard Keller

Universität Heidelberg, Institut für Angewandte Mathematik, Im Neuenheimer Feld 294, 6900 Heidelberg 1, Federal Republic of Germany

Summary. We prove the quasi-compactness of the Perron-Frobenius operator of piecewise monotonic transformations when the inverse of the derivative is Hölder-continuous or, more generally, of bounded p-variation.

Introduction

One of the most successfully used tools for the investigation of invariant measures for piecewise monotonic transformations T on $[0,1]$ is the Perron-Frobenius-operator. If $0=a_{0}<a_{1}<\ldots<a_{N}=1$, if $T_{i}=T_{\mid\left(a_{i-1}, a_{i}\right)}$ is strictly monotone and continuous $(i=1, \ldots, N)$, and if m is a Borel-probability on $[0,1]$ with respect to which T is nonsingular, then the Perron-Frobenius-operator (PFO) of T and m is the linear, positive contraction

$$
P: L_{m}^{1} \rightarrow L_{m}^{1}, \quad P f(x)=\sum_{i=1}^{N}(f \cdot g)\left(T_{i}^{-1} x\right) \cdot 1_{T\left(a_{i-1}, a_{i}\right)}(x)
$$

where $\frac{1}{g}=\frac{d}{d m}(m \circ T)$ is the Radon-Nikodym-derivative of T with respect to m. P reflects very well the ergodic properties of the system (T, m), namely:

- $\mu=h \cdot m$ is a T-invariant probability
if and only if
$0 \leqq h \in L_{m}^{1}, \int h d m=1$, and $P h=h$.
- Mixing properties of T are closely related to spectral properties of P (cf. [7]).

A particularly favorable situation for the investigation of P occurs if
(1) $\left\|\left(g \circ T^{n-1}\right) \cdot \ldots \cdot(g \circ T) \cdot g\right\|_{\infty}<1$ for some $n \in \mathbb{N}$ and
(2) g is of bounded variation.

[^0]It has been shown in [7] that under these assumptions
(3) There is a $h:[0,1] \rightarrow \mathbb{R}_{+}$of bounded variation such that $\mu=h \cdot m$ is a T invariant probability on $[0,1]$.
(4) For some power T^{k} the measure μ splits up into finitely many ergodic components, on each of which T^{k} is weakly Bernoulli with exponential mixing rate. This is good enough to imply central limit theorems and almost sure invariance principles for stochastic processes $\left(f \circ T^{n k}\right)_{n \in \mathbb{N}}$ with f of bounded variation.

Partial results in this direction can be found e.g. in [10] and [15]. M. Rychlik [12] has given a new, very elegant proof of (3) and (4), which applies also to a broad class of transformations with a countable number of monotonicity intervals. For further references see [7].

In [16] an attempt has been made to replace (2) in the case where m is Lebesgue-measure by " g is Hölder-continuous", but the result was unsatisfactory since some additional conditions had to be imposed, which in general cannot be checked effectively. Nevertheless a result in this direction is desirable because of two reasons:
a) Some problems related to the Lorenz-attractor can be reduced to problems concerning a piecewise monotonic transformation with Hölder-continuous derivative (cf. [16]). These problems could be solved setting $m=$ Lebesguemeasure and $g=1 /\left|T^{\prime}\right|$.
b) If $g=\lambda \cdot e^{\phi}, \lambda>0, P h=h$, and $\mu=h \cdot m$, then μ is called an equilibrium state for ϕ. For a particular class of transformations including the β-transformation $(x \rightarrow \beta x \bmod 1, \beta>1)$ and Markov-transformations it has been shown in $[7,8]$ that for each ϕ of bounded variation satisfying $\sum_{i=1}^{\infty} \operatorname{var}_{i}(\phi)<\infty\left(\operatorname{var}_{i}(\phi)\right.$ $=\sup \left\{|\phi(x)-\phi(y)| \mid x, y \in I, I\right.$ an interval on which T^{i} is monotone $\}$) there is a measure m and a real $\lambda>0$ such that $g=\lambda \cdot e^{\phi}$ and g satisfies (1) and (2) above. For topological Markov-chains over a finite alphabet however (and hence for Markov-transformations), the same result was already known when ϕ is only Hölder-continuous (this implies $\sum \operatorname{var}_{i}(\phi)<\infty$, see [1]), although in this case ϕ is not necessarily of bounded variation.

The aim of this paper is to replace (2) above by
$\left(2^{\prime}\right) g$ is of universally bounded p-variation, i.e.

$$
\operatorname{var}_{p}(g)=\sup _{0 \leqq x_{0}<\ldots<x_{n} \leqq 1}\left(\sum_{i=1}^{n}\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right|^{p}\right)^{1 / p}<\infty
$$

These are those functions which are called functions of bounded p-variation in [3]. At the end of Sect. 2 the word "universally" will be justified. The main result is Theorem 3.3 which asserts that under (1) and (2^{\prime}) the transformation T has the properties briefly sketched in (3) and (4).

As each Hölder-continuous function with Hölder-exponent $0<r \leqq 1$ is of universally bounded $1 / r$-variation, this solves the problems described under a)
and b). As a matter of fact, problem a) can be solved under the weaker assumption that $1 /\left|T^{\prime}\right|$ is of universally bounded $1 / r$-variation. I want to mention that Marek Rychlik orally announced me a solution of problem a) using basically the same idea.

In Sect. 1 we define a generalized concept of functions of bounded variation adapted to a quasi-compact, pseudo-metric space X equipped with a finite Borel-measure. This concept unifies Lipschitz-continuity, Hölder-continuity, Riemann-integrability, bounded variation, bounded p-variation, and gives many intermediate notions of bounded variation, some of which play an important role in Sect. 2 and 3. The main result is about compact embeddings of spaces of functions of generalized bounded variation into suitable L^{p}-spaces (Theorem 1.13). As in the theory of Sobolev-spaces, next to embedding theorems, trace theorems are the most fundamental ones. In Sect. 2 we prove such a theorem, when the underlying space is the unit-interval (not necessarily equipped with its Euclidean metric). This is the situation that occurs in Sect. 3, where results of Sects. 1 and 2 are used to show that PFO's satisfying (1) and (2) are quasi-compact as operators on some suitable space of functions of generalized bounded variation, which implies (3) and (4) as in [7] and [12].

1. Generalized Bounded Variation

Let (X, d) be a quasicompact topological space whose topology is defined by the pseudo-distance d. (This means that we do not require the Hausdorffproperty and allow $d(x, y)=0$ for $x \neq y$, cf. XII. 4 and Ex. XII.3. 6 of [5].) \mathscr{B} denotes the Borel- σ-algebra of (X, d) and m is a finite Borel-measure on \mathscr{B}. Open balls in X are denoted by $S_{\varepsilon}(x)=\{y \in X \mid d(x, y)<\varepsilon\} . F=\bigcap_{\substack{A \text { closed } \\ m(X \backslash A)=0}} A$ is the
support of m. 1.1. Definition. For an arbitrary function $h: X \rightarrow \mathbb{C}$ and $\varepsilon>0$ define $\operatorname{osc}(h, \varepsilon,):. X \rightarrow[0, \infty]$ by

$$
\operatorname{osc}(h, \varepsilon, x)= \begin{cases}\operatorname{ess} \sup \left\{\left|h\left(y_{1}\right)-h\left(y_{2}\right)\right| \mid y_{1}, y_{2} \in S_{\varepsilon}(x)\right\} & \text { if } m\left(S_{\varepsilon}(x)\right)>0 \\ 0 & \text { if } m\left(S_{\varepsilon}(x)\right)=0\end{cases}
$$

where the essential supremum is taken with respect to the product measure m^{2} on X^{2}. As $\operatorname{osc}(h, \varepsilon,$.$) is lower semi-continuous and hence measurable, one can$ define for $1 \leqq p \leqq \infty$:
$\operatorname{osc}_{p}(h, \varepsilon)=\|\operatorname{osc}(h, \varepsilon, .)\|_{p}$, where we admit the p-norm to take the value $+\infty$. $\operatorname{osc}_{p}(h, \varepsilon)$ can be interpreted as an isotonic function (in the variable ε) from $(0, A]$ to $[0, \infty]$, where A is any positive constant. This motivates the next
1.2. Definition. Fix $A>0$ and denote by Φ the class of all isotonic maps $\phi(0, A] \rightarrow[0, \infty]$ with $\phi(x) \rightarrow 0(x \rightarrow 0)$. Set

$$
R_{p}=\left\{h: X \rightarrow \mathbb{C} \mid \operatorname{osc}_{p}(h, .) \in \Phi\right\},
$$

and for $\phi \in \Phi$ set

$$
\begin{aligned}
R_{p, \phi} & =\left\{h \in R_{p} \mid \operatorname{osc}_{p}(h, .) \leqq \phi\right\} \\
S_{p, \phi} & =\bigcup_{n \in \mathbb{N}} R_{p, n \cdot \phi} .
\end{aligned}
$$

If $\phi(x)=x^{r}$, we simply write $S_{p, r}$ instead of $S_{p, \phi}$.
The following lemma is trivial:
1.3. Lemma. a) $\phi, \psi \in \Phi, \phi \leqq \psi \Rightarrow R_{p, \phi} \subseteq R_{p, \psi}, S_{p, \phi} \subseteq S_{p, \psi}$.
b) $R_{p}=\bigcup_{\phi \in \Phi} R_{p, \phi}=\bigcup_{\phi \in \Phi} S_{p, \phi}$.
c) If $1 \leqq p \leqq q \leqq \infty$ then $S_{q, \phi} \subseteq S_{p, \phi}$ for all $\phi \in \Phi$.
d) If M is one of the classes introduced in Definition 1.2 , then $h \in M \Rightarrow \operatorname{Re} h$, $\operatorname{Im} h \in M$.

The next lemma provides some elementary facts about the oscillationfunctions:
1.4. Lemma. For $1 \leqq p \leqq \infty$ holds:
a) If $h_{1}=h_{2} m$-a.e., then $\operatorname{osc}\left(h_{1}, \varepsilon,.\right)=\operatorname{osc}\left(h_{2}, \varepsilon,.\right)$.
b) Each $h \in R_{p}$ is bounded and \mathscr{B}_{0}-measurable, where \mathscr{B}_{0} is the m-completion of \mathscr{B}.
c) If $\left\{P_{1}, \ldots, P_{N}\right\}$ is a measurable partition of X and if

$$
\text { ess inf } h\left(P_{n}\right) \leqq f(x) \leqq e \operatorname{ess} \sup h\left(P_{n}\right) \quad \text { for all } x \in P_{n}(n=1, \ldots, N)
$$

then $\|f-h\|_{p} \leqq \operatorname{osc}_{p}(h, \varepsilon)$, where $\varepsilon=\sup \left\{\operatorname{diam}\left(P_{n}\right) \mid n=1, \ldots, N\right\}$.
d) $\operatorname{osc}(h, \varepsilon,$.$) is bounded on X$ for each $h \in R_{p}$ and $\varepsilon>0$.
e) For each $h \in R_{p}$ there are elementary functions $\underline{h}_{n}, \bar{h}_{n}$ with

$$
\underline{h}_{1} \leqq \ldots \leqq \underline{h}_{n} \leqq \ldots \leqq h \leqq \ldots \leqq \bar{h}_{n} \leqq \ldots \leqq \bar{h}_{1}
$$

such that $\left\|\bar{h}_{n}-\underline{h}_{n}\right\|_{p} \leqq \operatorname{osc}_{p}\left(h, \frac{1}{n}\right) \rightarrow 0$.
Proof. a) is obvious. We next prove c): For a.e. $x \in P_{n}$ holds:

$$
|f(x)-h(x)| \leqq \text { ess sup } h\left(P_{n}\right)-\text { ess } \inf h\left(P_{n}\right) \leqq \operatorname{osc}(h, \varepsilon, x)
$$

hence $\|f-h\|_{p} \leqq \operatorname{osc}_{p}(h, \varepsilon)$ by definition.
d) is proved for small ε first: $h \in R_{p}$ implies that for sufficiently small $\varepsilon>0: \operatorname{osc}(h, 4 \varepsilon,.) \in L_{m}^{p}$. By the quasi-compactness of X one can choose $x_{1}, \ldots, x_{n} \in X$ with $X=\bigcup_{i=1}^{n} S_{\varepsilon}\left(x_{i}\right)$. As osc $(h, 4 \varepsilon,.) \in L_{m}^{p}$ and as for each

$$
y \in S_{2 \varepsilon}\left(x_{i}\right): \operatorname{osc}(h, 4 \varepsilon, y) \geqq \operatorname{osc}\left(h, 2 \varepsilon, x_{i}\right),
$$

it follows that $M=\max \left\{\operatorname{osc}\left(h, 2 \varepsilon, x_{i}\right) \mid i=1, \ldots, n\right\}<\infty$. Hence $\operatorname{osc}(h, \varepsilon, y) \leqq M$ for all y. In order to prove e) we choose for each $n \in \mathbb{N}$ a partition \mathscr{P}_{n} $=\left\{P_{1}(n), \ldots, P_{N(n)}(n)\right\}$ of X finitely generated from balls with diameter less than
$\frac{1}{n}$. We may assume that \mathscr{P}_{n+1} is finer than \mathscr{P}_{n}. Define $\underline{h}_{n}, \breve{h}_{n}$ by $\underline{h}_{n}(x)$ $=\operatorname{ess} \inf h\left(P_{i}(n)\right), \bar{h}_{n}(x)=\operatorname{ess} \sup h\left(P_{i}(n)\right)$ if $x \in P_{i}(n) . \underline{h}_{n}, \bar{h}_{n}$ are \mathscr{B}-measurable elementary functions, $\underline{h}_{n} \leqq h \leqq \bar{h}_{n}$, and they are bounded for big n, as we know that d) holds for small ε at least. Furthermore $\left\|\bar{h}_{n}-\underline{h}_{n}\right\|_{p} \leqq\left\|\operatorname{osc}\left(h, \frac{1}{n}, .\right)\right\|_{p}$ $=\operatorname{osc}_{p}\left(h, \frac{1}{n}\right) \rightarrow 0(n \rightarrow \infty)$. Finally e) implies b), and because of b) assertion d) holds for arbitrary ε.

The next lemma helps finding "smooth" versions of functions $h \in R_{p}$:
1.5. Lemma. a) For each $h \in R_{p}(1 \leqq p \leqq \infty)$ and $\varepsilon>0$ holds:

$$
\text { ess inf }\{h(y) \mid d(y, x)<\varepsilon\} \leqq h(x) \leqq \text { ess } \sup \{h(y) \mid d(y, x)<\varepsilon\} \quad \text { m-a.e. }
$$

b) For each $h \in R_{\infty}$ there is a $h^{*}: X \rightarrow \mathbb{C}$ with $h_{F F}^{*} \in C(F)$ and $h=h^{*}$ m-a.e. If $h \in R_{\infty, \phi}$ for continuous ϕ, then $\left|h^{*}(x)-h^{*}(y)\right| \leqq \phi(d(x, y))$ for all $x, y \in F$.
Proof. a) If there were $x \in X$ and $\varepsilon>0$ such that $h(y)>\operatorname{ess} \sup \{h(z) \mid d(z, y)<2 \varepsilon\}$ for y in a subset of positive measure of $S_{\varepsilon}(x)$, then it would follow that $h(y)>\operatorname{ess} \sup \{h(z) \mid d(x, z)<\varepsilon\}$ on a set of y 's of positive measure in $S_{\varepsilon}(x)$ contradicting the definition of the essential supremum. As X can be covered by a finite number of such balls $S_{\varepsilon}(x)$ and as the same reasoning applies to the essential infimum, this proves a).
b) As $\operatorname{osc}(h, \varepsilon,$.$) is lower semi-continuous and bounded (by d$ of Lemma 1.4), $\sup _{x \in F} \operatorname{osc}(h, \varepsilon, x)=\underset{x \in F}{\operatorname{ess} \sup } \operatorname{osc}(h, \varepsilon, x)$, such that $\operatorname{osc}(h, \varepsilon, x) \rightarrow 0(\varepsilon \rightarrow 0)$ uniformly for all $x \in F$. For these x define now

$$
h^{*}(x)=\lim _{\varepsilon \rightarrow 0} \operatorname{ess} \sup \{h(y) \mid d(y, x)<\varepsilon\}=\lim _{\varepsilon \rightarrow 0} \operatorname{ess} \inf \{h(y) \mid d(y, x)<\varepsilon\},
$$

and set $h^{*}(x)=0$ for $x \in X \backslash F$. As $h=h^{*} m$-a.e. by part a), we only have to show that $h_{F}^{*} \in C(F)$. But for $x, y \in F$ and arbitrary $\delta>0$ we have

$$
\left|h^{*}(x)-h^{*}(y)\right| \leqq \operatorname{osc}(h, d(x, y)+\delta, x) \leqq\|\operatorname{osc}(h, d(x, y)+\delta, .)\|_{\infty} \leqq \phi(d(x, y)+\delta)
$$

for some $\phi \in \Phi$. Hence $h_{\mid F}^{*} \in C(F)$, and if ϕ is continuous,

$$
\left|h^{*}(x)-h^{*}(y)\right| \leqq \phi(d(x, y))
$$

1.6. Examples. a) For $1 \leqq p<\infty R_{p}$ is the class of all Riemann-integrable functions on $X(\bmod m)$. This follows from e) of Lemma 1.4 (cf. [11], Chap. 7).
b) $R_{\infty \mid F}=C^{*}(F)$, the class of all continuous functions on $F(\bmod m)$, by Lemma 1.5.
c) $S_{p, 1 / p}$ will be called the class of functions of bounded p-variation. If X $=[0,1]$ and m is the Lebesgue-measure, one can show that this class contains those functions of bounded p-variation considered in [3]. See Lemma 2.7.
d) $S_{\infty, r \mid F}$ is the class of Hölder-continuous functions on F with exponent r $(\bmod m)$. This follows from Lemma 1.5.

Examples c) and d) suggest the following restriction of the class Φ :
1.7. Definition. $\Phi_{1}=\{\phi \in \Phi \mid \phi(x) \geqq a \cdot x(0<x \leqq A)$ for some $a>0\}$.

Now we can prove the following density-result for S-classes:
1.8. Proposition. a) $S_{p, \phi}$ is dense in $\left(L_{m}^{p},\|\cdot\|_{p}\right)$ for $1 \leqq p<\infty$ and $\phi \in \Phi_{1}$.
b) $S_{\infty, \phi \mid F}$ is dense in $\left(C^{*}(F),\|\cdot\|_{\infty}\right)$ for all $\phi \in \Phi_{1}$.

Proof. We first show b): $S_{\infty, \phi \mid F} \subseteq C^{*}(F)$ by Lemma 1.5. Furthermore, a) of Lemma 1.3 implies that for

$$
\phi \in \Phi_{1}: S_{\infty, \phi}=\bigcup_{n \in \mathbb{N}} R_{\infty, n \cdot \phi} \supseteq \bigcup_{n \in \mathbb{N}} R_{\infty,(\varepsilon \rightarrow n \varepsilon)}=S_{\infty, 1}
$$

and $S_{\infty, 1 \mid F}$ is dense in $C^{*}(F)$, as it is the space of Lipschitz-continuous functions on F (see Ex. 1.6.d).

We now show a): By b) of Lemma 1.4, $S_{p, \phi} \subseteq L_{m}^{p}$. By c) of Lemma 1.3, $S_{\infty, \phi} \subseteq S_{p, \phi}$, and the denseness of $C^{*}(X)$ in L_{m}^{p} together with part b) implies the denseness of $S_{p, \phi}$ in L_{m}^{p}.

In order to make the S-spaces into Banach-spaces we pass to m-equivalence classes of functions and introduce a norm on them:
1.9. Definition. For $p \geqq 1$ and $\phi \in \Phi$ we define:
a) $B V_{p, \phi}$ is the space of m-equivalence classes of functions in $S_{p, \phi}$.
b) For $h: X \rightarrow \mathbb{C}$ set $\operatorname{var}_{p, \phi}(h)=\sup _{0<\varepsilon \leqq A} \frac{\operatorname{osc}_{p}(h, \varepsilon)}{\phi(\varepsilon)}$.
c) For $h \in B V_{p, \phi}$ set $\|h\|_{p, \phi}=\operatorname{var}_{p, \phi}(h)+\|h\|_{p} \cdot\left(\|\cdot\|_{p, \phi}\right.$ is well defined because of a) of Lemma 1.4.)

If $\phi(\varepsilon)=\varepsilon^{r}$ we simply write $B V_{p, r},\|\cdot\|_{p, r}, \operatorname{var}_{p, r}$. Observe that the definition depends on the constant A !

The proof of the following lemma is straightforward:
1.10. Lemma. $B V_{p, \phi}$ is a linear space, and $\|\cdot\|_{p, \phi}$ is a norm on it $(1 \leqq p \leqq \infty$, $\phi \in \Phi)$.

In order to show that $\left(B V_{p, \phi},\|\cdot\|_{p, \phi}\right)$ is a Banach-space with a compact embedding into L_{m}^{p} we need two preparatory lemmas:
1.11. Lemma. If $h \in B V_{p, \phi}$ and if $\mathscr{P}=\left\{P_{1}, \ldots, P_{N}\right\}$ is a measurable partition of X, then $\left\|h-E_{m}[h \mid \mathscr{P}]\right\|_{p} \leqq \operatorname{var}_{p, \phi}(h) \cdot \phi(d)$, provided $d=\sup _{P \in \mathscr{P}} \operatorname{diam}(P) \leqq A$. Here $E_{m}[h \mid \mathscr{P}]=\sum_{i=1}^{N} m\left(P_{i}\right)^{-1} \cdot \int_{P_{i}} h d m \cdot 1_{P_{i}}$.
Proof. By c) of Lemma 1.4 we have $\left\|h-E_{m}[h \mid \mathscr{P}]\right\|_{p} \leqq \operatorname{osc}_{p}(h, \varepsilon)$, where ε $=\sup _{P \in \mathscr{F}} \operatorname{diam}(P)$. As osc ${ }_{p}(h, \varepsilon) \leqq \operatorname{var}_{p, \phi}(h) \cdot \phi(\varepsilon)$, this proves the lemma.
1.12. Lemma. Let $\left(h_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $B V_{p, \phi}$ converging in $\|\cdot\|_{p}$-norm to some element $h \in L_{m}^{p}$. Then

$$
\operatorname{var}_{p, \phi}(h) \leqq \liminf _{n \rightarrow \infty} \operatorname{var}_{p, \phi}\left(h_{n}\right)
$$

Proof. Passing, if necessary, to a subsequence we can assume that $\liminf \operatorname{var}_{p, \phi}\left(h_{n}\right)=\lim \operatorname{var}_{p, \phi}\left(h_{n}\right)$. Passing to a subsequence again we also can assume that $h_{n}(x) \xrightarrow{n \rightarrow \infty} h(x)$ for all $x \in X \backslash N$, where N is some set of measure 0 . Fix $x \in X, \varepsilon>0$. There is a subset $N_{x} \subseteq X^{2}$ with $m^{2}\left(N_{x}\right)=0$, such that for all $(y, z) \in X^{2} \backslash N_{x}$ with $d(x, y), d(x, z)<\varepsilon$ holds:

$$
|h(y)-h(z)|=\lim _{n \rightarrow \infty}\left|h_{n}(y)-h_{n}(z)\right| \leqq \liminf _{n \rightarrow \infty} \operatorname{osc}\left(h_{n}, \varepsilon, x\right) .
$$

Hence $\operatorname{osc}(h, \varepsilon, x) \leqq \liminf _{n \rightarrow \infty} \operatorname{osc}\left(h_{n}, \varepsilon, x\right)$. By Fatou's lemma we get:

$$
\int \operatorname{osc}(h, \varepsilon, x)^{p} d m(x) \leqq \liminf _{n \rightarrow \infty} \int \operatorname{osc}\left(h_{n}, \varepsilon, x\right)^{p} d m(x)
$$

for $1 \leqq p<\infty$, while (for $p=\infty$) obviously

$$
\underset{x \in X}{\operatorname{ess} \sup } \operatorname{osc}(h, \varepsilon, x) \leqq \liminf _{n \rightarrow \infty}^{\operatorname{ess} \sup } \underset{x \in X}{ } \operatorname{osc}\left(h_{n}, \varepsilon, x\right) .
$$

Hence, for $1 \leqq p \leqq \infty$,

$$
\operatorname{osc}_{p}(h, \varepsilon) \leqq \liminf _{n \rightarrow \infty} \operatorname{osc}_{p}\left(h_{n}, \varepsilon\right) \leqq \phi(\varepsilon) \cdot \liminf _{n \rightarrow \infty} \operatorname{var}_{p, \phi}\left(h_{n}\right)
$$

for all $\varepsilon \leqq A$ implying $\operatorname{var}_{p, \phi}(h) \leqq \liminf _{n \rightarrow \infty} \operatorname{var}_{p, \phi}\left(h_{n}\right)$.
The main result of this section is:
1.13. Theorem. For $1 \leqq p \leqq \infty$ and $\phi \in \Phi$ we have:
a) $E=\left\{f \in B V_{p, \phi} \mid\|f\|_{p, \phi} \leqq c\right\}$ is a compact subset of L_{m}^{p} for each $c>0$.
b) $\left(B V_{p, \phi},\|\cdot\|_{p, \phi}\right)$ is a Banach-space.
c) For $\phi \in \Phi_{1}, B V_{p, \phi}$ is dense in $L_{m}^{p}($ in case $1 \leqq p<\infty)$ or in $C^{*}(F)$ (in case p $=\infty$) respectively.

Proof. a) Let f_{n} be in $E(n \geqq 1)$. From Lemma 1.11 and Theorem IV.8.18 in [6] it follows that there is a subsequence $\left(g_{n}\right)$ of $\left(f_{n}\right)$ and an element $f \in L_{m}^{p}$ with $\lim _{n \rightarrow \infty}\left\|f-g_{n}\right\|_{p}=0$. Hence Lemma 1.12 implies that

$$
\begin{aligned}
\|f\|_{p, \phi} & =\|f\|_{p}+\operatorname{var}_{p, \phi}(f) \leqq \lim _{n \rightarrow \infty}\left\|g_{n}\right\|_{p}+\operatorname{liminff}_{n \rightarrow \infty} \operatorname{var}_{p, \phi}\left(g_{n}\right) \\
& =\underset{n \rightarrow \infty}{\liminf }\left\|g_{n}\right\|_{p, \phi} \leqq c, \quad \text { i.e.: } f \in E .
\end{aligned}
$$

b) follows immediately from I.1.6 in [13] now, and c) from Proposition 1.8.

The following lemma will be used in the next section:
1.14. Lemma. For fixed f and $p, \operatorname{osc}_{p}(f, \varepsilon)$ is continuous from below and isotone as a function of ε.

Proof. osc (f, ε, x) is continuous from below and isotone as a function of ε for fixed x. For $1 \leqq p<\infty$ the assertion then follows from the monotone convergence theorem, while for $p=\infty$ it is enough to observe the fact that " $\mathrm{g}_{\boldsymbol{n}} \uparrow g$ pointwise" implies " $\left\|g_{n}\right\|_{\infty} \rightarrow\|g\|_{\infty}$ " if $g_{n}, g>0$.

2. The One-Dimensional Case with $p=1$ (Trace Theorem, Products and Transformations)

Working with variation-norms one often needs theorems of the following type:
Let Y be a "nice" subset of $X, f \in B V$. Then

$$
\operatorname{var}\left(f \cdot 1_{Y}\right) \leqq C_{1} \cdot \operatorname{var}\left(f_{\mid Y}\right)+C_{2} \cdot \int_{Y}|f| d m,
$$

where C_{1}, C_{2} are constants depending on Y only. (This is a combination of an extension- and a trace theorem, cf. [14].) In general such theorems are hard to establish. The constants C_{1} and C_{2} will depend on the dimension and shape of the boundary of Y, and there are many combinations of p and ϕ for which var $_{p, \phi}$ does not satisfy such a relation at all. Therefore we restrict our interest here to the one-dimensional case needed in Sect. 3, i.e. X is the unit interval, m is an atom-free Borel-measure on X, and d is the pseudo-distance given by $d(x, y)=m\{z \mid x \leqq z \leqq y$ or $y \leqq z \leqq x\}$. As the d-topology is coarser than the usual topology on $[0,1]=X,(X, d)$ is quasicompact, and m can be restricted to the σ-algebra \mathscr{B}, which - in accordance with Sect. 1 - denotes the Borel- σ-algebra of the d-topology. Throughout this section all topological and measuretheoretical statements will refer to d and \mathscr{B}.
2.1. Theorem. Let $Y \subseteq X$ be an interval, $m(Y) \geqq 4 A$. For each $f: Y \rightarrow \mathbb{C}$ and each $0<\tilde{\varepsilon} \leqq A$ we have

$$
\operatorname{osc}_{1}\left(f \cdot 1_{Y}, \tilde{\varepsilon}\right) \leqq\left(2+\frac{8 A}{m(Y)-2 A}\right) \cdot \int_{Y} \operatorname{osc}\left(f_{\mid Y}, \tilde{\varepsilon}, x\right) d m(x)+\frac{4 \tilde{\varepsilon}}{m(Y)} \cdot \int_{Y}|f(x)| d m(x)
$$

Proof. Fix $0<\tilde{\varepsilon} \leqq A$ and $0<\varepsilon<\tilde{\varepsilon}$. There is a $n \in \mathbb{N}$ such that

$$
\begin{equation*}
2(n-1) \varepsilon<m(Y) \leqq 2 n \varepsilon . \tag{5}
\end{equation*}
$$

We introduce the following notations: Let f be a function from $Y \rightarrow \mathbb{C}$. Observe the different meanings of

$$
\operatorname{osc}\left(f_{\mid Y}, \varepsilon, x\right)=\text { ess sup }\left\{\left|f\left(y_{1}\right)-f\left(y_{2}\right)\right| \mid y_{1}, y_{2} \in S_{\varepsilon}(x) \cap Y\right\}
$$

and

$$
\operatorname{osc}\left(f \cdot 1_{Y}, \varepsilon, x\right)=\operatorname{ess} \sup \left\{\left|\tilde{f}\left(y_{1}\right)-\tilde{f}\left(y_{2}\right)\right| \mid y_{1}, y_{2} \in S_{\varepsilon}(x)\right\}
$$

where $\tilde{f}(y)=f(y)(y \in Y)$ and $\tilde{f}(y)=0(y \in X \backslash Y)$. Now suppose that a_{1} and a_{2} are the left and the right endpoint of Y. Set

$$
\begin{aligned}
I_{i} & =S_{\varepsilon}\left(a_{i}\right) \quad(i=1,2), \quad I_{0}=Y \backslash\left(I_{1} \cup I_{2}\right), \\
h_{i}(x) & =\operatorname{osc}\left(f_{\mid Y}, \varepsilon, x\right) \cdot 1_{I_{i}}(x) \quad(i=0,1,2), \\
S_{i}(x) & =\underset{y \in S_{\varepsilon}(x) \cap Y}{\operatorname{ess} \sup _{y}}|f(y)| \cdot 1_{I_{i}}(x) \quad(i=1,2) .
\end{aligned}
$$

Then

$$
\begin{equation*}
\operatorname{osc}\left(f \cdot 1_{Y}, \varepsilon, x\right)=h_{0}(x)+\sum_{i=1,2} \max \left\{h_{i}(x), s_{i}(x)\right\} \tag{6}
\end{equation*}
$$

Set

$$
x(t)= \begin{cases}\sup \left\{y \in X \mid d\left(a_{1}, y\right)=t\right\} & \text { if } t \geqq 0 \\ \inf \left\{y \in X \mid d\left(a_{1}, y\right)=-t\right\} & \text { if } t<0\end{cases}
$$

and consider the intervals $J_{k}=Y \cap S_{\varepsilon}(x(2 k \varepsilon))(k=1, \ldots, n-1)$. As the J_{k} are pairwise disjoint, there is a $k_{0} \in\{1, \ldots, n-1\}$ with

$$
\begin{equation*}
\int_{J_{k_{0}}} \operatorname{osc}\left(f_{\mid Y}, \tilde{\varepsilon}, x\right) d m(x) \leqq \frac{1}{n-1} \cdot \int_{Y} \operatorname{osc}\left(f_{\mid Y}, \tilde{\varepsilon}, x\right) d m(x) . \tag{7}
\end{equation*}
$$

For $\xi \in[-\varepsilon, \varepsilon]$ define now $z_{k}(\xi)=x(\xi+2 k \varepsilon)\left(k=0, \ldots, k_{0}\right)$ and $z_{k}(\xi)=x(\xi+\delta$ $+2(k-1) \varepsilon)\left(k=k_{0}+1, \ldots, n\right)$, where $\delta=m(Y)-2(n-1) \varepsilon>0$ according to (5). Furthermore set $F_{i}(\xi)=\operatorname{ess} \sup \left\{\left|f(y)-f_{0}\right| \mid y \in U_{i}(\xi) \cap Y\right\}$ where $U_{1}(\xi)=S_{\varepsilon+\xi}\left(a_{1}\right)$, $U_{2}(\xi)=S_{\varepsilon-\xi}\left(a_{2}\right)$, and $f_{0}=m(Y)^{-1} \cdot \int_{Y} f d m$. Then

$$
\begin{array}{ll}
s_{1}(x) \leqq F_{1}(\xi)+\left|f_{0}\right| & \text { for } x=x(\xi) \in I_{1} \tag{8}\\
s_{2}(x) \leqq F_{2}(\xi)+\left|f_{0}\right| & \text { for } x=x(m(Y)+\xi) \in I_{2}
\end{array}
$$

and

$$
\begin{align*}
& \max \left\{h_{1}(x(\xi)), F_{1}(\xi)\right\}+\max \left\{h_{2}(x(m(Y)+\xi)), F_{2}(\xi)\right\} \tag{9}\\
& \quad \leqq \frac{m(Y)}{m(Y)-2 \varepsilon} \sum_{k=0}^{n} \operatorname{osc}\left(f_{\mid Y}, \tilde{\varepsilon}, z_{k}(\xi)\right)
\end{align*}
$$

In order to show the latter inequality one has to consider four cases:
i) $h_{1}(x(\xi)) \geqq F_{1}(\xi), h_{2}(x(m(Y)+\xi)) \geqq F_{2}(\xi)$. This case is trivial.
ii) $h_{1}(x(\xi))<F_{1}(\xi), h_{2}(x(m(Y)+\xi))<F_{2}(\xi)$. In this case there is a $k \in\{1, \ldots, n$ -1 \} such that

$$
\underset{y \in S_{\bar{\varepsilon}}\left(z_{k}(\xi)\right)}{\operatorname{ess} \inf } \underset{y}{ } f(y) \leqq f_{0} \leqq \operatorname{ess}_{y \in S_{\bar{E}}\left(z_{k}(\xi)\right)}^{\operatorname{ens}} \sup ^{2}(y),
$$

which proves the inequality in this case.
iii) $h_{1}(x(\xi)) \geqq F_{1}(\xi), h_{2}(x(m(Y)+\xi))<F_{2}(\xi)$. This case is more delicate and is responsable for the factor $\frac{m(Y)}{m(Y)-2 \varepsilon}$. If there is a $k \in\{1, \ldots, n\}$ as in ii), the inequality again is true (even without the factor). Otherwise, setting $u=x(\xi+\varepsilon)$ we can suppose w.l.o.g. that $c=\underset{y \geqq u}{\operatorname{ess} \inf }\left(f(y)-f_{0}\right)>0$. Then

$$
F_{2}(\xi) \leqq \sum_{k=1}^{n} \operatorname{osc}\left(f_{\mid Y}, \tilde{\varepsilon}, z_{k}(\xi)\right)+c
$$

and

$$
\begin{aligned}
& m\left(\left[u, a_{2}\right]\right) \cdot c \leqq \int_{u}^{a_{2}}\left(f(y)-f_{0}\right) d m(y)=-\int_{a_{1}}^{u}\left(f(y)-f_{0}\right) d m(y) \\
& \leqq 2 \varepsilon \cdot F_{1}(\xi) \leqq 2 \varepsilon \cdot h_{1}(x(\xi))
\end{aligned}
$$

i.e.

$$
c \leqq h_{1}(x(\xi)) \cdot \frac{2 \varepsilon}{m(Y)-2 \varepsilon}
$$

such that

$$
\begin{aligned}
h_{1}(x(\xi))+F_{2}(\xi) & \leqq \sum_{k=0}^{n} \operatorname{osc}\left(f_{\mid Y}, \tilde{\varepsilon}, z_{k}(\xi)\right)+h_{1}(x(\xi)) \cdot \frac{2 \varepsilon}{m(Y)-2 \varepsilon} \\
& \leqq \frac{m(Y)}{m(Y)-2 \varepsilon} \cdot \sum_{k=0}^{n} \operatorname{osc}\left(f_{\mid Y}, \tilde{\varepsilon}, z_{k}(\xi)\right) .
\end{aligned}
$$

iv) $h_{1}(x(\xi))<F_{1}(\xi), h_{2}(x(m(Y)+\xi)) \geqq F_{2}(\xi)$. This case is analogous to iii).

From (6), (8), and (9) it follows that

$$
\begin{aligned}
& \operatorname{osc}_{1}\left(f \cdot 1_{Y}, \varepsilon\right) \\
& \quad=\int \operatorname{osc}\left(f \cdot 1_{Y}, \varepsilon, x\right) d m(x) \\
& \quad \leqq \int h_{0}(x) d m(x)+\left|f_{0}\right| \cdot 4 \varepsilon+\frac{m(Y)}{m(Y)-2 \varepsilon} \cdot \int_{-\varepsilon}^{\varepsilon}\left(\sum_{k=0}^{n} \operatorname{osc}\left(f_{\mid Y}, \tilde{\varepsilon}, z_{k}(\xi)\right)\right) d \xi \\
& \leqq \int h_{0}(x) d m(x)+\left|f_{0}\right| \cdot 4 \varepsilon+\frac{m(Y)}{m(Y)-2 \varepsilon} \cdot \int_{x(-\varepsilon)}^{x(m(Y)+\varepsilon)} \operatorname{osc}\left(f_{\mid Y}, \tilde{\varepsilon}, x\right) d m(x) \\
& \quad+\frac{m(Y)}{m(Y)-2 \varepsilon} \cdot \int_{J_{k_{0}}} \operatorname{osc}\left(f_{\mid Y}, \tilde{\varepsilon}, x\right) d m(x)
\end{aligned}
$$

according to the choice of the $z_{k}(\xi)$,
$\leqq \frac{m(Y)}{m(Y)-2 \varepsilon} \cdot\left(2+\frac{1}{n-1}\right) \cdot \int_{Y} \operatorname{osc}\left(f_{\mid Y}, \tilde{\varepsilon}, x\right) d m(x)+4 \varepsilon \cdot\left|f_{0}\right|$
by (7) and since $\sup _{x \in S_{\varepsilon}\left(a_{i}\right) \backslash Y} \operatorname{osc}\left(f_{\mid Y}, \tilde{\varepsilon}, x\right)$

$$
\leqq \inf _{x \in S_{\varepsilon}\left(a_{i}\right) \cap Y} \operatorname{osc}\left(f_{\mid Y}, \tilde{\varepsilon}, x\right) \quad(i=1,2)
$$

$$
\leqq\left(2+\frac{8 \varepsilon}{m(Y)-2 \varepsilon}\right) \int_{Y} \operatorname{osc}\left(f_{\mid Y}, \tilde{\varepsilon}, x\right) d m(x)+4 \varepsilon \cdot\left|f_{0}\right|
$$

by (5) and as $m(Y) \geqq 4 A \geqq 4 \varepsilon$.
As $\operatorname{osc}_{1}\left(f \cdot 1_{Y}, \varepsilon\right)$ is continuous from below in the variable ε (see Lemma 1.14), this implies that for each $0<\tilde{\varepsilon} \leqq A$:

$$
\begin{aligned}
\operatorname{osc}_{1}\left(f \cdot 1_{Y}, \tilde{\varepsilon}\right) \leqq & \left(2+\frac{8 A}{m(Y)-2 A}\right) \cdot \int_{Y} \operatorname{osc}\left(f_{\mid Y}, \tilde{\varepsilon}, x\right) d m(x) \\
& +4 \tilde{\varepsilon} \cdot m(Y)^{-1} \cdot \int_{Y}|f| d m . \quad \square
\end{aligned}
$$

The proof of the following lemma is similar but easier. We skip it:
2.2. Lemma. For bounded $f: Y \rightarrow \mathbb{C}(Y \subseteq X$ an interval) and $0<\varepsilon \leqq A$ we have

$$
\|f\|_{\infty} \leqq \varepsilon^{-1} \cdot\left(\int_{Y} \operatorname{osc}\left(f_{\mid Y}, \varepsilon, x\right) d m(x)\right)+m(Y)^{-1} \cdot \int_{Y}|f| d m
$$

(This estimate is quite rough but sufficient for our purposes.)
2.3. Lemma. Let $Y, Z \subseteq X, T: Y \rightarrow Z$ be bijective, and $f: Y \rightarrow \mathbb{C}$. Set

$$
\tilde{\varepsilon}(z)=\sup \left\{d\left(T^{-1} y, T^{-1} z\right) \mid y \in S_{\varepsilon}(z) \cap Z\right\} .
$$

Then $\operatorname{osc}\left(f \circ T^{-1}{ }_{\mid Z}, \varepsilon, z\right) \leqq \operatorname{osc}\left(f_{\mid Y}, \tilde{\varepsilon}(z), T^{-1} z\right)$ for each $z \in Z$.
The proof is straightforward.
2.4. Lemma. Let $Y, Z \subseteq X$ be intervals, $T: Y \rightarrow Z$ an order-isomorphism or -antiisomorphism, non-singular with respect to m, and call $T^{\prime}=\frac{d}{d m}(m \circ T)$ the Radon-Nikodym derivative of T with respect to m. Suppose that $T^{\prime}(y) \geqq \alpha>0$ for a.e. $y \in Y$. Then for each $f: Y \rightarrow \mathbb{C}$

$$
\begin{aligned}
& \int_{Z} \operatorname{osc}\left(\frac{f}{T^{\prime}} \circ T^{-1}{ }_{\mid Z}, \varepsilon, z\right) d m(z) \leqq \int_{Y} \operatorname{osc}\left(f_{\mid Y}, \alpha^{-1} \varepsilon, y\right) d m(y) \\
& +5 \cdot \int_{Z} \operatorname{osc}\left(\frac{1}{T^{\prime}} \circ T^{-1}{ }_{\mid Z}, \varepsilon, z\right) d m(z)\left(m(Y)^{-1} \cdot \int_{Y}|f| d m+\frac{1}{A} \cdot \int_{Y} \operatorname{osc}\left(f_{\mid Y}, A, y\right) d m(y)\right) .
\end{aligned}
$$

Proof. Using a) of Lemma 1.5 one easily shows that for a.e. $z \in Z$
(10) $\quad \operatorname{osc}\left(\frac{f}{T^{\prime}} \circ T^{-1}{ }_{\mid Z}, \varepsilon, z\right) \leqq\left|f\left(T^{-1} z\right)\right| \cdot \operatorname{osc}\left(\frac{1}{T^{\prime}} \circ T^{-1}{ }_{\mid z}, \varepsilon, z\right)$

$$
\begin{aligned}
& +\frac{1}{T^{\prime}\left(T^{-1} z\right)} \cdot \operatorname{osc}\left(f \circ T^{-1}{ }_{\mid Z}, \varepsilon, z\right) \\
& +2 \cdot \operatorname{osc}\left(\frac{1}{T^{\prime}} \circ T^{-1}{ }_{\mid Z}, \varepsilon, z\right) \cdot \operatorname{osc}\left(f \circ T^{-1}{ }_{\mid Z}, \varepsilon, z\right)
\end{aligned}
$$

We first treat the integral over the second term in this sum:

$$
\begin{align*}
& \int_{Z} \operatorname{osc}\left(f \circ T^{-1}{ }_{\mid Z}, \varepsilon, z\right) \cdot\left(T^{-1}\right)^{\prime}(z) d m(z) \tag{11}\\
& \quad \leqq \int_{Z} \operatorname{osc}\left(f_{\mid Y}, \tilde{\varepsilon}(z), T^{-1} z\right) \cdot\left(T^{-1}\right)^{\prime}(z) d m(z) \quad \text { (by 2.3) } \\
& \quad \leqq \int_{Y} \operatorname{osc}\left(f_{\mid Y}, \alpha^{-1} \varepsilon, y\right) d m(y)
\end{align*}
$$

by integral transformation and observing that $T^{\prime} \geqq \alpha>0$ implies $\tilde{\varepsilon} \leqq \alpha^{-1} \varepsilon$.
The integral over the first and the third term is estimated as follows:

$$
\begin{align*}
& \int_{Z} \operatorname{osc}\left(\frac{1}{T^{\prime}} \circ T^{-1}{ }_{\mid Z}, \varepsilon, z\right) \cdot\left(\left|f\left(T^{-1} z\right)\right|+2 \cdot \operatorname{osc}\left(f \circ T^{-1}{ }_{\mid Z}, \varepsilon, z\right)\right) d m(z) \tag{12}\\
& \leqq 5 \cdot\left\|f_{\mid Y}\right\|_{\infty} \cdot \int_{Z} \operatorname{osc}\left(\frac{1}{T^{\prime}} \circ T^{-1}{ }_{\mid Z}, \varepsilon, z\right) d m(z) \\
& \leqq 5 \cdot \int_{Z} \operatorname{osc}\left(\frac{1}{T^{\prime}} \circ T^{-1}{ }_{\mid Z}, \varepsilon, z\right) \\
& \cdot\left(m(Y)^{-1} \cdot \int_{Y}|f| d m+\frac{1}{A} \cdot \int_{Y} \operatorname{osc}\left(f_{\mid Y}, A, y\right) d m(y)\right) d m(z) \quad \text { (by 2.2) }
\end{align*}
$$

(10), (11), and (12) together prove the lemma.

If m is not the Lebesgue-measure on $[0,1]$ and d is not the Euclidean metric, it is hard to recognize functions in $B V_{p, \phi}$. As we shall deal with such situations in Sect. 3, it is important to characterize subclasses of $B V_{p, \phi}$ at least.
2.6. Definition. For a function $f:[0,1] \rightarrow \mathbb{C}$ define the universal p-variation by

$$
\operatorname{var}_{p}(f)=\sup _{0 \leqq a_{0}<a_{1}<\ldots<a_{n} \leqq 1}\left(\sum_{i=1}^{n}\left|f\left(a_{i}\right)-f\left(a_{i-1}\right)\right|^{p}\right)^{1 / p}
$$

and denote the space of functions of universally bounded p-variation by $U B V_{p}$ $=\left\{f:[0,1] \rightarrow \mathbb{C} \mid \operatorname{var}_{p}(f)<\infty\right\}$.

These are exactly the functions of bounded p-variation in the sense of [3]. The following lemma justifies the notation:
2.7. Lemma. $U B V_{p} \subseteq \bigcap_{m} B V_{p, 1 / p}$ for all $1 \leqq p<\infty$, where the intersection ranges over all spaces $B V_{p, 1 / p}$ which stem from any atom-free finite Borel-measure m on $[0,1]$ and its associated pseudo-distance d. In particular, if m is a probabilitymeasure, then $\operatorname{var}_{p, 1 / p}(f) \leqq 2^{1 / p} \cdot \operatorname{var}_{p}(f)$.
Proof. As each $f \in U B V_{p}$ is bounded, $\int|f| d m<\infty$ for any finite measure m. With a similar argument as in the proof of Theorem 2.1 one shows that $\int \operatorname{osc}(f, \varepsilon, x)^{p} d m(x) \leqq 2 \varepsilon \cdot\left(\operatorname{var}_{p}(f)\right)^{p}$. We leave the details to the reader.
Problem. Can the inclusion in Lemma 2.7 be replaced by equality?

3. Perron-Frobenius Operators for Piecewise Monotonic Transformations Acting on $B V_{1}$-Classes

As in [7] we now assume the following situation: Let $\left\{I_{1}, \ldots, I_{N}\right\}$ be a finite partition of $X=[0,1]$ into intervals, and let $T: X \rightarrow X$ be a transformation which is monotone and continuous on each I_{i}. (We call such a transformation piecewise monotonic.) Assume that
(13) there is a Borel-probability m on X with respect to which T is nonsingular. Call $g=\left(\frac{d}{d m}(m \circ T)\right)^{-1}=\frac{1}{T^{\prime}}$, and suppose $g(x) \leqq \alpha^{-1}<\infty m$-a.e.

Define
(14) $P: m b(X) \rightarrow m b(X)(=\{f: X \rightarrow \mathbb{C} \mid f$ measurable and bounded $\})$ by

$$
P f(x)=\sum_{i=1}^{N}(f \cdot g) \circ T_{i}^{-1} \cdot 1_{T I_{i}}, \quad \text { where } T_{i}=T_{\mid I_{i}} .
$$

Then $m\left(P 1_{B}\right)=\sum_{i=1}^{N} \int_{T\left(B \cap I_{i}\right)} \frac{d}{d m}\left(m \circ T_{i}^{-1}\right) d m=\sum_{i=1}^{N} \int_{B \cap I_{i}} d m=m(B)$ for each $B \in \mathscr{B}$,
(15) $m(P f)=m(f)$ for all $f \in m b(X)$, and P extends to a positive linear contraction on L_{m}^{1}.

From these assumptions it follows that m is atom-free (cf. Lemma 2 in [7]), and with $d(x, y)=m(\{z \mid x \leqq z \leqq y$ or $y \leqq z \leqq x\})$ we are in the situation of Sect. 2. Our goal is to find a spectral decomposition for P as in [7]. To this end we need:
3.1. Lemma. (Remember that $\operatorname{var}_{p, \phi}(f)=\sup _{0<\varepsilon \leqq A} \frac{\operatorname{osc}_{p}(f, \varepsilon)}{\phi(\varepsilon)}$ depends on the constant $A!$)

If $g \in U B V_{p}(1 \leqq p<\infty)$, then for each $\delta>0$ there are constants $A=A(\delta)>0$ and $K=K(\delta)>0$ such that for $f: X \rightarrow \mathbb{C}$

$$
\operatorname{var}_{1,1 / p}(P f) \leqq \frac{2+\delta}{\alpha^{1 / p}} \operatorname{var}_{1,1 / p}(f)+K \cdot\|f\|_{1}
$$

Proof. Set $M=\frac{\delta}{20} \cdot \alpha^{-1 / p} \cdot\left(\frac{\delta}{16+2 \delta}\right)^{1-1 / p}$. Refining, if necessary, the partition $\left\{I_{1}, \ldots, I_{N}\right\}$ we can assume that

$$
\begin{equation*}
\operatorname{var}_{p}\left(g_{\mid I_{i}}\right)<M \quad(i=1, \ldots, N) \tag{16}
\end{equation*}
$$

This is possible because each g of universally bounded p-variation has onesided limits in each point and its set of discontinuities is at most countable. If d_{j} denotes the height of the j-th discontinuity, then $\sum_{j=1}^{\infty} d_{j}^{p}<\infty$. Hence there are only finitely many j 's with $d_{j} \geqq M$, and these d_{j} can be taken as new partitionpoints. Refining the partition further one finally obtains (16). We remark that the refinement can be done in such a way that if

$$
\Gamma_{-}=\min \left\{m\left(T I_{i}\right) \mid i \in\{1, \ldots, N\}, m\left(I_{i}\right)>0\right\}
$$

and

$$
\Gamma_{+}=\max \left\{m\left(T I_{i}\right) \mid i \in\{1, \ldots, N\}\right\}
$$

then

$$
\begin{equation*}
\Gamma_{+} \leqq 2 \cdot \Gamma_{-} \tag{17}
\end{equation*}
$$

Now set

$$
\begin{equation*}
A=A(\delta)=\Gamma_{-} \cdot \frac{\delta}{16+2 \delta} \tag{18}
\end{equation*}
$$

Then we have for $0<\varepsilon \leqq A$:
(19) $\quad \operatorname{osc}_{1}(P f, \varepsilon) \leqq \sum_{\substack{i=1 \\ m\left(I_{i}\right)>0}}^{N} \operatorname{osc}_{1}\left((f \cdot g) \circ T_{i}^{-1} \cdot 1_{T I_{i}}, \varepsilon\right) \leqq \sum_{\substack{i=1 \\ m\left(I_{i}\right)>0}}^{N}\left(\left(2+\frac{8 A}{m\left(T I_{i}\right)-2 A}\right)\right.$

$$
\left.\cdot \int_{T I_{i}} \operatorname{osc}\left(\frac{f}{T_{i}^{\prime}} \circ T_{i}^{-1}{ }_{\mid T I_{i}}, \varepsilon, x\right) d m(x)+4 \varepsilon m\left(T I_{i}\right)^{-1} \cdot \int_{T I_{i}}\left|\frac{f}{T_{i}^{\prime}}\right| \circ T_{i}^{-1} d m\right) \text { (by 2.1). }
$$

Furthermore

$$
\begin{gather*}
\int_{T I_{i}}\left(|f| \circ T_{i}^{-1}\right) \cdot\left(\frac{1}{T_{i}^{\prime}} \circ T_{i}^{-1}\right) d m=\int_{I_{i}}|f| d m, \tag{20}\\
2+\frac{8 A}{m\left(T I_{i}\right)-2 A} \leqq 2+\frac{\delta}{2} \quad(\text { by }(18)), \tag{21}
\end{gather*}
$$

(22) $\int_{T I_{i}} \operatorname{osc}\left(\frac{f}{T_{i}^{\prime}} \circ T_{i}^{-1}{ }_{\mid T I_{i}}, \varepsilon, x\right) d m(x)$

$$
\begin{aligned}
\leqq & \int_{I_{i}} \operatorname{osc}\left(f_{\mid I}^{i}, \alpha^{-1} \varepsilon, y\right) d m(y)+5 \cdot \int_{T I_{i}} \operatorname{osc}\left(\frac{1}{T_{i}^{\prime}} \circ T_{i}^{-1}{ }_{\mid T I_{i}}, \varepsilon, z\right) d m(z) \\
& \cdot\left(m\left(I_{i}\right)^{-1} \int_{I_{i}}|f| d m+\frac{1}{A} \int_{I_{i}} \operatorname{osc}\left(f_{\mid I_{i}}, A, y\right) d m(y)\right) \quad \text { (by 2.4), }
\end{aligned}
$$

and
(23) $\int_{T I_{i}} \operatorname{osc}\left(\frac{1}{T_{i}^{\prime}} \circ T_{i}^{-1}{ }_{\mid T I_{i}}, \varepsilon, z\right) d m(z)$

$$
\begin{aligned}
& \leqq\left(\int_{T I_{i}} \operatorname{Osc}\left(\left.\frac{1}{T_{i}^{\prime}} \circ T_{i}^{-1} \right\rvert\, T I_{i}, \varepsilon, z\right)^{p} d m(z)\right)^{1 / p} \cdot\left(m\left(T I_{i}\right)\right)^{(1-1 / p)} \\
& \leqq(2 \varepsilon)^{1 / p} \cdot \operatorname{var}_{p}\left(\frac{1}{T_{i}^{\prime}} \circ T_{i}^{-1}{ }_{\mid T I_{i}}\right) \cdot \Gamma_{+}^{(1-1 / p)} \quad \text { (by 2.7) } \\
& =(2 \varepsilon)^{1 / p} \cdot \Gamma_{+}^{(1-1 / p)} \cdot \operatorname{var}_{p}\left(g_{\mid I_{i}}\right), \quad \text { as the universal } p \text {-variation } \\
& \text { is invariant under order-iso- } \\
& \text { and -antiisomorphisms, } \\
& <2 \cdot \varepsilon^{1 / p} \cdot \Gamma_{-}^{(1-1 / p)} \cdot M \quad \text { (by (16) and (17)). }
\end{aligned}
$$

If we set $\gamma=\min \left\{m\left(I_{i}\right) \mid i \in\{1, \ldots, N\}, m\left(I_{i}\right)>0\right\}$, then (19)-(23) imply

$$
\begin{aligned}
\operatorname{osc}_{1}(P f, \varepsilon) \leqq\left(2+\frac{\delta}{2}\right) & \left(\int_{X} \operatorname{osc}\left(f, \alpha^{-1} \varepsilon, y\right) d m(y)+10 \cdot \varepsilon^{1 / p} \cdot \Gamma_{-}^{1-1 / p} \cdot M\right. \\
& \left.\cdot\left(\frac{1}{\gamma} \cdot \int_{X}|f| d m+\frac{1}{A} \cdot \int_{X} \operatorname{osc}(f, A, y) d m(y)\right)\right) \\
& +4 \varepsilon \cdot \Gamma_{-}^{-1} \cdot \int_{X}|f| d m
\end{aligned}
$$

such that

$$
\begin{aligned}
\frac{\operatorname{osc}_{1}(P f, \varepsilon)}{\varepsilon^{1 / p}} \leqq & \left(\left(2+\frac{\delta}{2}\right) \cdot \alpha^{-1 / p}+10 \cdot \Gamma_{-}^{1-1 / p} \cdot M \cdot A^{1 / p-1}\right) \cdot \operatorname{var}_{1,1 / p}(f) \\
& +\left(\left(2+\frac{\delta}{2}\right) \cdot 10 \cdot \Gamma_{-}^{1-1 / p} \cdot M \cdot \frac{1}{\gamma}+4 \cdot A^{1-1 / p} \cdot \Gamma_{-}^{-1}\right) \cdot \int_{X}|f| d m \\
& \leqq(2+\delta) \cdot \alpha^{-1 / p} \cdot \operatorname{var}_{1,1 / p}(f)+K \cdot \int_{X}|f| d m
\end{aligned}
$$

by definition of M and A, which proves the lemma.

The following theorem is an easy consequence of this lemma:
3.2. Theorem. Let T, P, and m be as described in (13)-(15). If $g \in U B V_{p}$ $(1 \leqq p<\infty)$ and if there is a $n \in \mathbb{N}$ with $\left\|g_{n}\right\|_{\infty}<1$ (where $g_{n}(x)$ $\left.=\left(\frac{d}{d m}\left(m \circ T^{n}\right)\right)^{-1}(x)=g\left(T^{n-1} x\right) \cdot \ldots \cdot g(T x) \cdot g(x)\right)$, then there are $k \in \mathbb{N}$, $0<\beta<1$, and $C>0$ such that for each $f \in B V_{1,1 / p}$

$$
\left\|P^{k} f\right\|_{1,1 / p} \leqq \beta \cdot\|f\|_{1,1 / p}+C \cdot\|f\|_{1}
$$

Proof. It is easy to see that T^{j} is piecewise monotonic and $g_{j} \in U B V_{p}$ for all $j \in \mathbb{N}$. ($U B V_{p}$ is closed under product and order-(anti)isomorphism.) Hence there is a $k \in \mathbb{N}$ with $g_{k} \in U B V_{p}$ and $\left\|g_{k}\right\|_{\infty} \leqq\left(\frac{1}{4}\right)^{p}$. Applying Lemma 3.1 with $\delta=1$ to P^{k} gives

$$
\begin{aligned}
\left\|P^{k} f\right\|_{1,1 / p} & =\operatorname{var}_{1,1 / p}\left(P^{k} f\right)+\left\|P^{k} f\right\|_{1} \\
& \leqq \frac{3}{4} \operatorname{var}_{1,1 / p}(f)+(K+1) \cdot\|f\|_{1} \leqq \frac{3}{4}\|f\|_{1,1 / p}+(K+1) \cdot\|f\|_{1} .
\end{aligned}
$$

As P is a L_{m}^{1}-contraction, the last theorem and Theorem 1.13 allow to apply an ergodic theorem of Ionescu-Tulcea and Marinescu [9] stating in an abstract Banach space setting the results 3.3.1-3.3.3 of the following theorem (they are formulated here for the special situation under consideration). From this 3.3.43.3.8 can be derived as in [7].
3.3. Theorem. Under the assumptions of the preceding theorem holds:
3.3.1. $P: L_{m}^{1} \rightarrow L_{m}^{1}$ has a finite number of eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ of modulus 1 .
3.3.2. $E_{i}=\left\{f \in L_{m}^{1} \mid P f=\lambda_{i} f\right\} \subseteq B V_{1,1 / p}$ and $\operatorname{dim}\left(E_{i}\right)<\infty(i=1, \ldots, r)$.
3.3.3. $P=\sum_{i=1}^{r} \lambda_{i} \Psi_{i}+Q$, where the Ψ_{i} are projections onto the eigenspaces E_{i}, $\left\|\Psi_{i}\right\|_{1} \leqq 1$, and Q is a linear operator on L_{m}^{1} with $Q\left(B V_{1,1 / p}\right) \subseteq B V_{1,1 / p}$, $\sup _{n \in \mathbb{N}}\left\|Q^{n}\right\|_{1}<\infty$, and $\left\|Q^{n}\right\|_{1,1 / p}=O\left(q^{n}\right)$ for some $0<q<1$. Furthermore $\Psi_{i} \Psi_{j}=0(i$ $\neq j$) and $\Psi_{i} Q=Q \Psi_{i}=0$ for all i. (This means that P is quasi-compact as operator on $\left(B V_{1,1 / p},\|\cdot\|_{1,1 / p}\right)$)
3.3.4. 1 is an eigenvalue of P, and assuming $\lambda_{1}=1$ and $h=\Psi_{1}(1), \mu=h \cdot m$ is the greatest T-invariant probability on X absolutely continuous with respect to m, i.e. if $\tilde{\mu}$ is T-invariant and $\tilde{\mu} \ll m$, then $\tilde{\mu} \ll \mu$.
3.3.5. There is a partition $\left\{C_{k, l} \mid k=1, \ldots, r, l=1, \ldots, L_{k}\right\}$ of X such that $T C_{k, l}$ $=C_{k,(l+1) \bmod L_{k}}$ and $T_{C_{C_{k}, 2}}^{L_{k}}$ is weakly mixing for all k and l.
3.3.6. If (T, μ) is weakly mixing and II is an arbitrary finite partition of X into intervals, then there are constants $K>0$ and $0<\rho<1$ such that $\sum_{R} \sum_{S} \mid \mu(R \cap S)$
 $S \in \underset{i=n+1}{\bigvee} T^{-i} \Pi$, and $k, l, n \in \mathbb{N}$ are arbitrary. This means that $I \Pi$ is a weak

Bernoulli-partition for (T, μ) with exponentially decreasing mixing-coefficients. In particular, the natural extension of (T, μ) is isomorphic to a Bernoulli-shift (cf. [2]). (The proof of this fact needs some minor modifications compared to [7], as g is no longer in $U B V_{1}$ but in $U B V_{p}$.)
3.3.7. If (T, μ) is weakly mixing, $f \in U B V_{s}$ for some $1 \leqq s<\infty, f$ real-valued, $\int f d \mu=0$, and if $S(t)$ is defined as $S(t)=\sum_{0 \leqq i<t} f \circ T^{i}$, then the series $\sigma^{2}=\int f^{2} d \mu$ $+2 \cdot \sum_{k=1}^{\infty} \int f \cdot\left(f \circ T^{k}\right) d \mu$ converges absolutely, $\int S(t)^{2} d \mu=t \cdot \sigma^{2}+O(1)$, and if σ^{2} $\neq 0$ the following holds:
a) $\sup _{z \in \mathbb{R}}\left|\mu\left\{\frac{1}{\sigma \sqrt{t}} S(t) \leqq z\right\}-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-x^{2} / 2} d x\right|=O\left(t^{-\theta}\right)$ for some $\theta>0$.
b) Without changing its distribution one can redefine the process $(S(t))_{t \geq 0}$ on a richer probability space together with a standard Brownian motion $(B(t))_{t \geqq 0}$ such that $\left|\sigma^{-1} \cdot S(t)-B(t)\right|=O\left(t^{1 / 2-2}\right) \mu$-a.e. for some $\lambda>0$.
3.3.8. μ is an equilibrium state for $\log g$ on X, i.e.

$$
\begin{aligned}
& h(\mu)+\int \log g d \mu \\
& \quad=\sup \left\{h(v)+\int \log g d v \mid v \text { is a } T \text {-invariant probability on } X\right\}
\end{aligned}
$$

where $h(v)$ is the entropy of (T, v).
3.3.9. In [4] it has been shown that 3.3 .6 is sufficient for limit theorems for U statistics and v. Mises' functionals based on data from a stationary process $X_{n}(\omega)$ $=f\left(T^{n} \omega\right)(\omega \in X)$, where again $f \in U B V_{s}$ for some $1 \leqq s<\infty$.

Recently, M. Rychlik [13] has shown for the case $p=1$ how one can derive the spectral decomposition 3.3 .3 without referring to the theorem of IonescuTulcea and Marinescu. Using a slightly refined version of the inequality of Theorem 3.2 he gives a direct proof that the operator $P: B V \rightarrow B V$ is quasicompact (that is what 3.3.1-3.3.3 mainly say) and a very short proof of 3.3.6. Furthermore, his technique allows him to treat transformations with countably many intervals of monotonicity in a very elegant way.

As in [7] and [8] one can show that the hypothesis of Theorem 3.2 (and hence of 3.3) are satisfied in the following situations:
3.4. Theorem. Let $\phi \in U B V_{p}$, $(\sup \phi-\inf \phi)<h_{\mathrm{top}}(T)$. Then there is a probability m on X and a real $\lambda>0$ such that m and $g=\lambda e^{\phi}$ satisfy (13)-(15) and the hypothesis of 3.3.
Proof. It easy to see that $\phi \in U B V_{p}$ implies $g \in U B V_{p}$. The existence of the measure m and of a natural number n with $\left\|g_{n}\right\|_{\infty}<1$ can be proved as in [8].
3.5. Theorem. Suppose $T_{I I_{i}}$ is differentiable for each $i, \frac{1}{T^{i}} \in U B V_{p}$, and $\left|\left(T^{n}\right)^{\prime}\right| \geqq \alpha>1$ for some $n \in \mathbb{N}$. Then the hypothesis of 3.3 are satisfied for m $=$ Lebesgue-measure.

Let $\mathscr{P}=\left\{I_{1}, \ldots, I_{N}\right\}$ be a partition of $[0,1]$ into intervals on which T is monotone and continuous, and call $J_{n}(x)$ the element of $V^{n-1} T^{-i} \mathscr{P}$ containing x.
3.6. Definition. T is completely covering, if for each $x \in[0,1]$ there is a $k \in \mathbb{N}$ and an infinite subset $B \subseteq \mathbb{N}$ such that for all $n \in B$:

$$
\bigcup_{j=1}^{k} T^{n+j} J_{n}(x)=[0,1] .
$$

This is a kind of weak specification property that has been introduced in [8], §3. Also the following examples can be found there:
3.7. Examples. a) Irreducible Markov-transformations are completely covering. (That are transformations with $T\left(I_{i}\right) \cap I_{j} \neq \emptyset \Rightarrow I_{j} \subseteq T\left(I_{i}\right)$ and $\bigcup_{n=0}^{\infty} T^{n}\left(I_{i}\right)=[0,1]$
for all I_{i}.)
b) β-transformations $(x \rightarrow \beta x \bmod 1, \beta>1)$ are completely covering.
c) $T(x)=\beta x+\alpha \bmod 1 \quad(\beta>1) \quad$ is completely covering, if $1 \notin$ closure $\left\{T^{k}(0) \mid k \in \mathbb{N}\right\}$ or $0 \notin$ closure $\left\{T^{k}(1) \mid k \in \mathbb{N}\right\}$, particularly if 0 or 1 is periodic under T. b) is a special case of c), of course.
3.8. Theorem. If T is completely covering and

$$
\operatorname{var}_{n}(\phi)=\sup \left\{|\phi(x)-\phi(y)| \mid x, y \in J \in \bigvee_{i=0}^{n-1} T^{-i} \mathscr{P}\right\}=O\left(q^{n}\right)
$$

for some $0<q<1$, then there is a probability-measure m satisfying (13)-(15), and for this m the hypothesis of 3.3 are satisfied.
Proof. From $\operatorname{var}_{n}(\phi)=O\left(q^{n}\right)$ it follows that $g \in U B V_{p}$ for $p>-\frac{\ln N}{\ln q}$, where N is the number of monotonicity-intervals of T. The existence of a measure m satisfying (13)-(15) is proved as in $\S 1$ of [8], and $\left\|g_{n}\right\|_{\infty}<1$ for some $n \in \mathbb{N}$ is proved as Theorem 3 of [8].

Remark. The proofs from [8] carry over to 3.4 and 3.8 since in [8] the fact that ϕ is of bounded variation has been used only in order to show that onesided limits of ϕ exist in every point and that ϕ has at most countably many discontinuities, and all this is true also for $\phi \in U B V_{p}$.

References

[^1]5. Dieudonné, J.: Treatise on analysis, Vol. II. New York: Academic Press 1970
6. Dunford, N., Schwartz, J.T.: Linear operators, Part I. New York: Interscience 1958
7. Hofbauer, F., Keller, G.: Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180, 119-140 (1982)
8. Hofbauer, F., Keller, G.: Equilibrium states for piecewise monotonic transformations. Ergodic Theory Dyn. Syst. 2, 23-43 (1982)
9. Ionescu-Tulcea, C., Marinescu, G.: Théorie ergodique pour des classes d'opérations non complètement continues. Ann. Math. (2) 52, 140-147 (1950)
10. Lasota, A., Yorke, J.A.: On the existence of invariant measures for piecewise monotonic transformations. Trans. Am. Math. Soc. 186, 481-488 (1973)
11. Oxtoby, J.C.: Measure and category. Graduate texts in Math. Vol. 2. Berlin-Heidelberg-New York: Springer 1971
12. Rychlik, M.: Bounded variation and invariant measures. Studia math. 76, 69-80 (1983)
13. Schaefer, H.H.: Topological Vector Spaces. New York: Mac Millan 1966
14. Suquet, P.: Fonctions à variation bornée sur un ouvert de \mathbb{R}^{N}. Sém. d'Analyse Convexe, Montpellier 1978, Exposé N ${ }^{\circ} 4$.
15. Wong, S.: Some metric properties of piecewise monotonic mappings of the unit interval. Trans. Am. Math. Soc. 246, 493-500 (1978)
16. Wong, S.: Hölder continuous derivatives and ergodic theory. J. Lond. Math. Soc. 22, 506-520 (1980)

Received December 1, 1982

[^0]: * This work has been supported by the Deutsche Forschungsgemeinschaft

[^1]: 1. Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Math. 470. Berlin-Heidelberg-New York: Springer 1975
 2. Bowen, R.: Bernoulli maps of the interval. Isr. J. Math. 28, 161-168 (1978)
 3. Bruneau, M.: Variation totale d'une fonction, Lecture Notes in Math. 413. Berlin-HeidelbergNew York: Springer 1974
 4. Denker, M., Keller, G.: Simulations for invariant measures of dynamical systems. Preprint
