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Summary. W e  cont inue  our  inves t iga t ion  into robus t  finite exper iments  and  
decis ion p rob l ems  which we s tar ted  in par t  I. W e  give a shor t  der iva t ion  
of the Huber -S t r a s sen  theorem,  and also a p r o o f  of a new resul t  on the 
existence of  s imul taneous ly  least  favorable  exper iments  for c o n t a m i n a t e d  
classif icat ion problems.  The  ma in  effort goes into the deve lopmen t  of tools  
which al low us to app ly  the general  results of pa r t  I. The  pr inc ipa l  device 
needed  for our  der iva t ions  is a r epa rame t r i za t i on  of decis ion spaces and a 
co r re spond ing  lift of loss functions which we call " s t a n d a r d  loss funct ions"  
(in ana logy  to " s t a n d a r d  exper iments") .  N o n  robus t  decis ion theory  which 
deals  with l inear  funct ionals  (expectat ions)  does no t  need this device, bu t  
robus t  theory  based  on subl inear  funct ionals  (upper  expecta t ions)  does. 

Contents 

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  387 
2. Definition of Standard Loss Functions . . . . . . . . . . . . . . . . . . . . . . .  391 
3. Continuous Standard Loss Functions . . . . . . . . . . . . . . . . . . . . . . .  394 
4. The Huber-Strassen Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . .  402 
5. The Contamination Model . . . . . . . . . . . . . . . . . . . . . . . . . . . .  403 
6. Classification under Contamination . . . . . . . . . . . . . . . . . . . . . . . .  413 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  420 

1. Introduction 

In  this pape r  we cont inue  our  s tudy of robus t  finite decis ion prob lems ,  on 
which we e m b a r k e d  in the previous  paper  (par t  I) 1. Before we cont inue  our  
technica l  deve lopment ,  we will t ry to summar ize  the concepts  and  facts of pa r t  
I, and  shed some l ight  on the type of  p rob lems  we wish to answer  in the 
present  paper .  A t  the roo t  of our  inves t iga t ion  is the Huber -S t r a s sen  theorem 
[4],  of which the two sal ient  poin ts  can be descr ibed  as fol lows:  

1 Z. Wahrscheinlichkeitstheor. Verw. Gebiete 65, 367-384 (1984) 
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a) A robustness aspect is introduced in the testing problem of simple 
hypothesis versus simple alternative by replacing model distributions P0 by 
"inexact" distributions in the form of certain convex sets of distributions. 
Another way to characterize these "inexact" or "approximate" distributions is 
by set functions w o which are obtained as supremums over these convex sets of 
probability measures. Huber and Strassen deal more specifically with a kind of 
set functions which are known as capacities alternating of order 2. 

b) The Huber-Strassen theorem states the existence of simultaneously least 
favorable pairs (Q1,Q2) of distributions under the "approximate"  model 
(wl,w2). "Simultaneous" here is meant with regard to all testing levels or 
equivalently all prior weights. 

In part I we gave a framework for robust decision theory of general finite 
experiments, i.e. more than 2 but still finitely many parameter values. We 
started out with the definition of an "approximate model" (Vo) in terms of 
upper expectations. In order to meet the needs for convexity properties, we 
replaced the set functions w o of Huber-Strassen by sublinear functionals Vo, 
which are just supremums over expectations rather than probabilities. 

We then introduced various notions of randomized decision procedures, 
marred partly by technicalities which have to do with incompatibilities be- 
tween o-additivity and topological compactness requirements on sets of de- 
cision procedures. LeCam had another way of dealing with this problem, for 
which we refer to his important paper [7]. Connected with randomizations or 
transition probabilities is Blackwell's notion of sufficiency, which generalizes 
the more familiar Halmos-Savage definition. In turn, we defined our concept of 
"worst-case sufficiency" as a generalization of Blackwell's notion and also 
LeCam's "approximate sufficiency". 

Next we introduced the robust version of Blackwell's standard measures. In 
finite-parameter experiments, they play the same crucial role as distributions of 
probability density ratios in testing experiments. The trick is to replace ratios 
by tuples of densities (qo) with regard to the dominating measure ~,Q0, such 

0 
that one ends up with a mapping of sample space into the unit simplex of N ~ 
In the case of approximate models (Vo), there do not exist likelihood ratios or 
tuples of densities in general, but we can still define an "upper standard 
functional" on the unit simplex. For  details we must refer to part I, Sect. 5. We 
should also point out that part II can not be understood without a thorough 
understanding of standard measures and their connection with Bayes risks. 
Below we will reiterate some statements of part I as far as this subject is 
concerned. 

The seemingly disparate developments of part I lead to a new version of a 
theorem which is connected with the names of LeCam, Blackwell, Sherman, 
Stein, and others. In its original form it is a characterization of Blackwell- 
sufficiency in terms of Bayes risks and standard measures. Basically it asserts 
the equivalence of the following statements, which express the fact that (Qo) is 
universally less favorable than (P0): 

1) The experiment (Qo) can be obtained as the image of (P0) under a 
randomization. 



Simultaneously Least Favorable Experiments. Part II 389 

2) The minimal Bayes risk for (Qo) is never better than (i.e. below) the 
minimal Bayes risk for (P0), no matter what the loss function is. 

3) The values of the standard measure of (Qo) on concave functions on the 
unit simplex are never below the ones of the standard measure of (P0). 

LeCam [7] recognized that this theorem can be adapted to more general 
notions of sufficiency. Our own version in terms of worst-case sufficiency suits 
the needs of robust decision theory. Especially, it allowed us in part I to derive 
a structure theorem which characterizes those approximate models and classes 
of loss functions for which there do exist simultaneously least favorable experi- 
ments. The theorem is stated in terms of an additivity condition for the upper 
standard functional which belongs to the given approximate model. 

We now reiterate the definition of standard measures and Bayes risks in 
more technical terms. Our notation for the latter is: 

1 
R ((Q), a, (W)) = ~ ~o Qo a (Wo) 

where (Qo) is an (exact) experiment, a is a (randomized) decision procedure, 
and (W0) is a loss function. Obviously we confined ourselves to the uniform 
prior on the parameter set O. The reason is that we can always absorb an 
arbitrary prior c~ 0 in the loss function (replacing W 0 by [0[-%. W0), and thus 
artificially get back to the case of a uniform prior. As mentioned above, let us 

introduce densities qo with regard to the dominating measure ~Qo. The a 
posterior expected loss is then: 0 

at(q(Y)) = ~ Wo(t) " qo(Y) (*) 
0 

where q(Y)=(qo(Y)) is the vector of densities. Depending on our needs, we may 
consider at(z ) as a linear function on ~ o  or an affine function on the unit 
simplex of N ~ A Bayes procedure consists of deciding such that t~a~(q(y)) is 
minimized for given observation y. We therefore define" 

k (q (y)) = infa t (q (y)) (**) 
t 

where again we may consider k(z) either as a concave function on IR ~ or on 
the unit simplex of IR ~ These functions play an all-important role. They 
summarize the minimal a posteriori expected losses in a model-independent 
way, based on the loss function alone. With their help, the minimal Bayes risk 
can now be expressed as follows" 

(w))=S k(q(y))l Z infR((Q), Qo(dy). 
cT I t J I  O 

This motivates the definition of a standard measure as the distribution of the 
density vector q(y) under the marginal distribution of the observations, i.e., 

1 
IO] ~Qo. It resides on the unit simplex in ~o .  If we denote it by S <Q), we can 



390 A. Buja 

write the minimal Bayes risk as: 

infe((Q), a, (W)) = S(~ = ~ k(z) S((2)(dz). 

The same holds true if we pass to the robust case of approximate  models (Vo) 
instead of exact ones (Qo) (see part  I, Sects. 4 and 5). The linear functional S (Q) 
is then replaced by a sublinear one s (v) (i.e., an upper expectation) which 
corresponds to the minimal upper Bayes risk of the approximate model (Vo) for 
the loss function (W0): 

infR((v), a,(W))=s(V)(k)= sup S(Q)(k). 
a (Q) ~ (v) 

The main result of part  I can now be stated as follows: For  an approximate 
model and a class of loss functions there exists a simultaneously least favorable 
experiment if and only if the upper standard functional s (v) is additive on the 
concave functions k which are generated by the loss functions in question. 

The intention here in part  II is to supply a technique which makes the 
results of part  I applicable. A difficulty stems from the fact that the concave 
functions k (i.e. basically the minimal a posteriori expected losses) depend in 
general superadditively rather than linearly on the loss functions W0(t ) as can 
be seen from the formulae (,) and (**) above. This is our main motivation for 
introducing the concept of a standard loss function. It  is obtained essentiallly 
by a reparametrizat ion of the upper tangets a t of k such that the correspon- 
dence becomes linear (Sect. 2). 

Another  problem in applying the results of part  I comes from the difficulty 
of minimizing upper Bayes risks of approximate models over randomized 
procedures. For  technical reasons, however, minimization over non-rando- 
mized decision procedures is feasible, hence one is forced to find out when 
randomizat ion can be eliminated. It can, - at least for continuous standard loss 
functions, which turns out to be sufficient for our purposes. Continuity is 
essential since our proof  requires a homotopy  argument. 

With these tools we can proceed to examples. The Huber-Strassen result is 
an immediate corollary. It is  relatively easily obgained since it remains in the 
binary case ([0]=2). A more involved application concerns e-contamination 
models in a mult iparameter  setting ([O[ >2). Here one is given an exact model 
(P0), but one safeguards against the worst case of the form 

(Qo) = ((1 - e)- P0 + e. Ho). 

Optimal procedures consist of deciding as in the exact case (P0) after having cut 
away those elements of the decision space which would result in too high 
losses. We call this process decision-censoring. There exist loss functions which 
do not require decision-censoring for a given contamination model. In this case 
the same decision rule which is optimal under the uncontaminated model (P0) 
will remain optimal even under contamination. This is the content of Sect. 5, in 
which we will have to go into some nontrivial convex optimization. 

As an application, we consider robust classification in Sect. 6. Here it is 
natural to investigate simultaneous least favorability for families of priors, but 
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this case can be treated the same way as the case of a class of loss functions 
(see remark above). Curiously enough, for technical reasons it is most natural 
to consider sets of priors which are contamination neighborhoods in the sense 
of distributions on the parameter set O. We are thus dealing with twofold 
contamination! Thus let us fix a prior distribution and an amount r/ of 
contamination for this prior, and also an amount s of contamination for a 
model (P0). Then the result is the following: 

There exists an experiment in the s-neighborhood of (Po) which is least 
favorable simultaneously for all elements of the ~-neighborhood of the given 
prior, - if the optimal classification rule for the uncontaminated model (Po) does 
not break down. 

Here, breaking down means that throwing away the data and deciding a 
priori is preferable, which corresponds to decision-censoring the classification 
loss function. The existence of such an experiment can be proved by mixing the 
standard loss functions which belong to the t/-contaminated priors. By this 
mixing procedure we obtain a continuous standard loss function which does 
not have to be decision-censored under s-contamination of (P0) iff none of the 
contaminated priors cause breakdown. But from the fact that no decision- 
censoring is required, additivity of the upper Bayes risk on the involved 
standard loss functions follows. Thus the theory of part I becomes applicable, 
and we have proved a theorem on the existence of simultaneously least favor- 
able experiments for robust classification. 

It is unfortunate that the present theory appears relatively involved, al- 
though the ideas underlying our developments are basically simple and can be 
expressed in intuitive notions such as decision-censoring and breakdown of a 
classification rule. But from a mathematical point of view, we expand decision 
theory into the framework of sublinear functionals, abandoning the nice linear- 
ity of expectations. The conceptual gain in this endeavor consists in the 
robustization of decision theory through worst-case considerations based on 
the notions of approximate models (=  parametrized families of sublinear func- 
tionals). 

2. Definition of Standard Loss Functions 

Recall again the meaning of our crucial concave functions k from the previous 
section. The value of k(z) at z=(Zo)=(qo(y)) is the minimal a posteriori expect- 
ed loss for the observation y. In this way, to every loss function is assigned a 
concave function k, but different loss functions may lead to the same k. This 
means that they are equivalent from the point of view of Bayes problems (for a 
fixed prior, here chosen to be uniform on O). However, in every equivalence 
class of loss functions, one can pick a canonical element as follows: 

Given a concave function k arising from a bounded loss function, there 
exists for every point ~ K  an affine function a~ which is an upper tangent of k 
at ~: 

k(z)<a~(z) Vz~K, and k(0=a~(~) (.) 
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The affine function a~ can be written as a linear combination 

a~(z) = ~ a~, o" Zo. 
0 

Now, choose the simplex K as a decision space and define a loss function ITf 0 
by 

By I?d(~)=(W0(0) we denote the whole vector of losses 2. The properties (,) can 
be summarized as follows: 

2 Wo(z)'zo = inf 2 Wo (0"% (**) 
0 ~eK 0 

or in scalar product notation: 

< l?V(z), z)  -- inf ( 17f (0, z) .  
~eK 

Loss functions on the decision space T = K  satisfying (**) will be called 
standard loss functions. They share some convenient features. E.g. the search for 
optimal procedures is trivialized in exact models, and a useful additivity 
property holds, as the next two propositions show: 

Proposition 2.1. For every exact model (Qo) and every standard loss function (17Vo) , 
the density vector q = (qo) with respect to the dominating measure ~ Qo is a Bayes 

0 

procedure. Especially for every standard model (So) the identity map id: K ~ K is 
a Bayes procedure. 

Proof This remark follows from the fact that a Bayes procedure consists in 
minimizing the posterior expected loss: 

a~(q(y)) = ~ 17vo(O. qo(Y). 
0 

For standard loss functions this is achieved by the procedure y -~(=q(y )  as is 
seen from the defining property (**). In Sect. 5 of part I, it was seen that the 
identity map on K is a density vector for every standard model. [] 

Proposition2.2. Given two standard loss functions l?r and W02((), the sum 
I~0(()=I~01(()+17(2(() is also a standard loss function, and the corresponding 
concave functions depend additively on them: k (z) = k 1 (z) + k 2 (z). 

Proof Immediate consequences of the definition (**). [] 

Note that for general loss functions on a fixed but arbitrary decision space, 
the concave functions depend only superadditively on their loss functions: 
k(z)>kl(z)+k2(z).  The first half of Proposition2.2 states that the standard loss 
functions form a convex cone. On a more basic level, the convenience of 

2 Since the upper tangents a~ are often not  unique, measurabili ty problems could arise. But it is 
always possible to select a set of tangents a~ such that the dependence on ( becomes measurable 
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standard loss functions stems also from the fact that they reside on a common 
decision space K and that there exists a Bayes-equivalent standard loss func- 
tion for any given loss function. 

For  a finite decision space T={1 ,2 , . . . ,m} ,  one can provide a direct con- 
struction as follows: Let Wo(t ) be the loss matrix and choose a measurable 
p a r t i t i o n  (At)t= 1 . . . .  of K such that 

At c {zeK[~ We(t). zo= rain y' Wo(t'). zo} 
0 t ' = l . . . m  O 

i.e., for zeAt the decision t is optimal since it minimizes the a posteriori 
expected loss. Then a corresponding standard loss function can be defined by 

3=1 

The concave function k arising from a loss matrix on a finite decision set is not 
smooth as it has edges resulting from the finite minimization. In contrast, if a 
standard loss function is continuous it must stem from an infinite decision 
space. This might appear unnatural for finite experiments, but it turns out that 
continuous standard loss functions are indispensable technical tools as we will 
see later. 

We give a couple of examples which are not arbitrarily chosen. Later on, 
we will prove theorems on the existence of simultaneously least favorable 
experiments for both, the first one leading to the Huber-Strassen theorem. 

1) Simple Testing. Consider testing experiments, i.e. parameter  sets O={1,2}.  
The elements of the unit simplex K are denoted as usual by z=(z~,z2) , where 
zo>O and z , + z 2 = l .  Let the losses be zero for correct decision, and ~1, 
respectively ~2(>0) for erroneously rejecting 1, respectively 2. Using the de- 
cision space T =  {1, 2}, we are considering the following loss matrix: 

( W~(1) W~(1)~ = 

w;(2) w;(2)f 

We obtain then a concave function 

k=(z) = min(% zl,  % z2) , 

A corresponding standard loss function is: 

C1 �9 

= (~1 ,  c~2). 

W~(Z)  = 0{ 1 �9 1[ . . . . . . . . .  ](Z) 

~V;(z )=  ~2" 1~ . . . .  >= . . . .  l(z). 

The following generalizes this example: 

2) Classification. Let O = {1,2 . . . .  ,m} be an arbitrary finite parameter  set. Take 
as a decision space T = { 1 , 2  ..... m}, and assign losses ~0__>0 for incorrectly 



394 A. Bu ja  

rejecting 0, i,e. for misclassification of 0: 

-W[(1) W~(1)...] [ 0  %. . .  

W~(2) W~(2). . . |  = [~.1.% 0 . . .  

w;(3) w;(3)...J ~2... 

The concave function is: 

U(z)= min (~aoZo-~tzt)=~C~oZo-maxc~tz~ 
t=  1...m 0 0 t 

Again we denote ~= (e l ,  e2 .. . .  ). To find a standard loss function for U, choose 
any measurable partition (Ao) of K satisfying 

A o c { z ~K I% z o = max~ 0- Zo,}. 
Then we can put: 0' 

l~0~ (z) = %. 1Ag(Z ) = %,(1 -- 1Ao(Z)) 

By constructing a standard loss function for a given decision problem, we 
actually solve it, as becomes clear from the examples. Only at this stage the 
convex structure of a decision problem is reduced to its purest form, where we 
deal just with a posteriori expected losses as upper tangents to the minimal a 
posteriori expected losses. 

3. Continuous Standard Loss Functions 

In this section we will elaborate on the important role of continuous standard 
loss functions. The central topic will be elimination of randomization. For 
exact models it is a very simple fact that Bayes procedures can be picked 
nonrandomized. For  approximate models, however, matters escalate considera- 
bly. Tile need for nonrandomized procedures is ultimately urgent since minimi- 
zation of upper Bayes risks over randomized procedures is not feasible, but the 
possibility of elimination of randomization can be proved only for continuous 
standard loss functions. Furthermore, the proof involves some topological 
machinery. What we will show is that for a given randomized procedure, there 
always exists a nonrandomized procedure which incurs no worse a loss. Unlike 
risk, loss does not involve any models, hence the result is applicable no matter 
what the model is (approximate or exact). 

Continuous standard loss functions arise in a very natural way by mixing 
discontinuous ones. Similar to convolution, the mixtures inherit smoothness 
properties from the mixing measures. The resulting continuous standard loss 
functions will bring minimal Bayes risks and standard measures to bear, 
replacing quantities like the Kullback-Leibler information or Hellinger trans- 
forms. 

At the heart of this section is a kind of multidimensional intermediate 
value theorem (topological Lemma 3.4). Unlike other theorems of this type it 
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cannot be deduced from the Brouwer fixed point theorem. This is why we have 
to go through some basic arguments involving topological degrees of con- 
tinuous mappings. For  binary experiments we need actually just the simple 
intermediate value theorem. The reason why this does not show up in pub- 
lished proofs of the Huber-Strassen theorem is that in this case it is possible to 
construct a nonrandomized test statistic more or less explicitly [4, Sect. 3]. For 
general finite approximate models, things are considerably more intricate and 
we cannot expect the analogue of Huber-Strassen's Sect. 3 to hold. We have to 
make an effort equivalent to the present section. 

Besides the results about elimination of randomization, we will also 
derive facts (3.9 and 3.10) which explain why convex optimization theory will 
come into play later on in Sect. 5. 

Theorem 3.1. Let IiVo(z ) be a standard loss function which depends continuously 
on z. Then there exists for any randomized procedure o: Y - -+T=K a non- 
randomized procedure ~ with a loss which is not worse: 

6(176o)__<o-(I,']7o) VO~O, i.e., liVo(~(y))<=~ a(y, dz') liVo(dz' ) 

i.e., randomization can be eliminated, no matter what the experiment is. 

Proof In Proposition 3.3 below, we will show that the sets 

%={z~KlG(z)<S,~(y,  dz')G(z') VO~O} 

are nonempty for all y~ Y. The remaining problem is to show that for each y~ Y 
one can pick z=~(y)~Jy such that ~: Y ~ K  is measurable. This can be 
achieved by a technical device which can be found in Parthasarathy [8, 
Theorem4.1]  It amounts to replacing K by a compact subset A of the unit 
interval [0, 1]. In A one has natural ways of picking elements of subsets, e.g. 
the supremum or infimum. We will first transform our problem somewhat in 
order to defer the technicalities to a lemma which has the flavor of an implicit 
function theorem. Let 

g(y, z) = dz') VVo(Z') - G(z)]- 
0 

where c - = - c  for c < 0  and c : 0  for c > 0  as usual. We notice that g is 
measurable in y for every z, continuous in z for every y, and 

J , :  {z K I g(y, z) = 0}. 

The proof  of Theorem 3.1 is finished by the following: 

Lemma3.2 .  Let Y be a measurable space, Z a compact metric space, g(y,z) a 
real valued function on Y x Z  which is measurable in y for every z e Z  and 
continuous in z for every yeY. I f  finally {zeKlg(y , z )=O} is nonempty for every 
y e Y, then there exists a measurable mapping f: Y ~  Z which solves g(y, z )=  0: 

g(y , f  (y))=O V y~ Y. 
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Proof By [-8, Theorem4.1] there exists a closed (hence compact) subset A of 
[-0, 1] and a continuous map h from A onto Z. By means of h, we shift g from 
Z t o  A: 

g* (y, a) = g(y, h(a)), 

which is again measurable in y, continuous in a, and 

J* = {a~Alg*(y, a) = 0} 

is nonempty and compact for all y~ Y. We put 

f *  (y) = inf J*, 

and notice that f * ( y ) eJ*  due to compactness, hence 

g*(y,f*(y))=O YyeY.  

Also, f *  is measurable: for this, introduce a countable dense subset A' of A, 
and consider the following equalities: 

{y~ Y l f * ( y ) < c }  = {y~ Y[3 a~A: a <c, g*(y, a)--0} 

={YeY[ inf Ig*(y,a)l=0} 
a<c,a~A" 

For the second equality we used continuity of g* in a. Since g* is measurable in 
y and all set operations are countable, f *  has to be measurable. 

The measurable f unc t ion f ( y )=h( f* (y ) )  solves g(y,z)=0. [] 

Proposition3.3. Let 17Vo(z ) be a continuous standard loss function and l~(dz) a 
probability measure on K. Then there exists z ~ K  such that 

r162 S ~(dz') r v o~o.  

Proof Denote by lY(z)=(17C0(z)) the vector with components l~0(z ), and by 
W(/~) its componentwise #-integral. Now, the method of proof is to shift 
everything to the unit sphere S"-z={ff~R"l[[~]l=l}, where n=lO[. We may 
assume 17V(z)+ITV(#)Vz~K, since otherwise nothing is to prove. Hence we can 
define a map A by 

9r r162 z 
A ( ~ ) - [ [ ~ _  ITV(~[ t for ~=[[~- and zeK.  

Let K' be the image of the unit simplex under normalization: 

K '=  { ~ S " -  II~o>O V O}. (,) 

The map A: K ' ~ S  "-1 is continuous and satisfies (A(~),~)>0. This follows 
from continuity of 17r and the definition of a standard loss function. Since 

Z 
for ~-[[z[l' 
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our problem is to find ~eK' such that A(~)~K'. We may thus summarize the 
required argument in the following: 

Topological Lemma 3.4. Let K' be the nonnegative face of the unit sphere in ~n. 
I f  A : K' ~ S"- 1 is a continuous mapping which satisfies 

<A(r162 >0  V CeK', 

then A(K')c~ K' is nonempty. 

The proof can be deferred to still another lemma with stronger assumptions 
and stronger conclusion. If we denote by 

8K'= {~eK']3 0eO: ~0=0} (**) 

= { ~ S " -  1IV 0eO: ~0>__0, 3 0EO: G0=0} 

the boundary of K' as a subspace of S"-1, we recognize that nothing is to 
prove if A(OK')c~K' is nonempty. Thus the above lemma is proved if we can 
show the following lemma which is of interest in itself: 

Topological Lemma 3.5. I f  in addition to the assumptions of the previous lemma 
A(OK')c-~K' is empty, then K' cA(K') .  

Proof. We have to show that each point in K' is taken on at least once by A. A 
suitable tool for this purpose is the topological degree of continuous map- 
pings. Let 7': closure (f2)--,IRP be a continuous mapping, where f 2 c N  p is open 
and bounded. For any point x67"(8~2) the degree deg(7", x) is well defined, and 
the two following basic properties hold true: 

1) If deg(7",x)4=0, then xzT'(Q). 
2) If 7"=idL~?, then deg(7",x)=l  for xeQ. 
3) If q~: [0,1] xO~?~lR p is a continuous homotopy, and if 7"0 and 7"1 are 

both maps closure (~?)--*NP satisfying 7"0 [8~= ~(0,-) and 7"118f~= ~b(1, .), then 
we have 

deg(~b(t, .), x) = constant ~' tz [0,13 

for points x z R  p satisfying x~q~(t, 8f2) V tz[0, 1]. 
See [1, p. 65-67], and [9, p. 80-81], for (approximately) these facts. In 

our application we will actually be working with the map A: K'--, S"-1. We 
plan to show that its restriction ztlOK' is homotopic to idlOK' within a 
punctured sphere. To this situation, 3) can be applied since the punctured 
sphere is homeomorphic to IR "-1. Furthermore, we will construct the ho- 
motopy such that it does not touch the interior of K'. By 2), we conclude that 
all points ~inter ior(K')  have degree 1 with regard to the mapping A. By 1), 
any such point is attained by A. Since A(K') is compact and hence closed, we 
even obtain K' ~ A(K'). 

Now for the details: First we have to show that the map A lives in a 
punctured sphere. Let e = - l / 1 / ~ . ( 1 , 1  .. . .  ,1). The point e cannot be in the 
image of A: we have <e,~><0V~eK' ,  but by assumption we also have 
<A(~),~>>0; thus e is not in the image of A. 

In the main step of the proof, we will construct a sequence of homotopies 
which deform A[OK' into idlOK' without crossing the interior of K' and the 
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point e. We will break it up by first deforming AIOK' into a mapping F: 
OK'--* OK' which can be shown to be homotopic to id[ OK'. This latter step will 
be deferred to yet another topological lemma, in whose proof we deform F 
into idl0K' within OK', thus neither crossing e nor the interior of K'. 

In order to stay within the unit sphere, we will have to normalize all the 
vectors we use. For ease of notation we let the symbol oc denote equality of 
vectors up to normalization. We will always have to make sure that normaliza- 
tion is possible, i.e., the vectors in question do not vanish (a). Then we have to 
prove that the side constraints are satisfied: neither the interior of K'  (b), nor e 
(c) is crossed. 

Let 4~ 0 (s, f) oc A 0 (f) - s. d(f), where d(0  = rain A 0(f). The homotopy parameter 
0 

is ss [0 ,1] ,  whereas f~0K'.  Notice that d ( f )<0  since A(f) is not in K'  by 
assumption. This homotopy deforms 45(s=0, . )=A( . ) l?K'  into some mapping 
F ( . ) =  ~b(s= l, .). Now we have to show that the requirements (a)-(c) are satis- 
fied: 

(a) �9 is well defined: if Ao(f)-s.d(f)=O for all 0 and some fe0K' ,  then all 
components of A(~) must be identical and negative, hence A(f)=e,  which is 
impossible. 

(b) 4~ does not touch the interior of K': for the component 0 at which Ao(~ ) 
attains the minimum d(f), we have Ao(f)=d(f), hence Ao(f)-s .d( f )= 
(1-s).d(f)<__O, which shows that ~b stays outside the interior of K'. 

(c) �9 does not touch e: if Ao(f ) -s .d( f  ) were constant for all 0 at some f 
and s, then Ao(~ ) would have to be constant, too, hence A(f)= _+e or 0, neither 
of which is possible. 

We have F(OK')~ OK' since 

c0(0= ,~o(S = 1, OOC A o ( O - d ( O  >= O, 

and = 0  for a minimizing component 0. The map F satisfies ( F ( f ) , f ) > 0 .  To 
prove this, assume the opposite: 

0__> ( r ( 0 ,  O oc (A (0, O - d(O 

and hence 0 > d ( f ) > ( A ( f ) , ~ ) ,  which contradicts the assumptions on A. 
We would have to show now that F can be deformed into idl~K' observing 

(b) and (c). This will be achieved by the following: 

Topological Lemma 3.6. Let OK' be the boundary of the nonnegative face K' on 
the unit sphere S"-1. Let F" OK'~ OK' be a continuous map satisfying 

(F(f), f )  > 0 V f~OK', 

then F is homotopic to idl0K' within OK'. 

Proof In a first step, we will deform F within OK' into a map A which satisfies 
A0(f)=0 whenever ~0=0, i.e., A(f) comes to lie on the same side of OK' as ~. 
The second step will straightforwardly deform A within 0K' into idl0K'. In 
both steps we will have to show that the homotopies are welldefined (a) and 
remain within OK' (b). 
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(1) 4~(s,f)~min(1,  1-S+(o) .Fo(  0 for s~[0, 1] and ( ~ K ' .  This homotopy 
deforms F ( . ) ; ~ l ( s = 0 , . )  into some mapping A ( . ) = q ~ ( s = l ,  ") which has the 
above mentioned property: F0(0=0 for (0=0. 

(la) q~l is welldefined: assume that all components min(1,1-S+fo) .dot( f )  
vanish for some s and f; we notice two facts: (i) we have F0(f)>0 generally, as 
F(SK')c~K'; (ii) for strictly positive F0(() we must have 1 - s + f o = 0 ,  and thus 
f0 = - ( i - s ) < 0 ;  (i) and (ii) lead to (F (0 ,~ )=~F0(0 . (0_<0 ,  which contradicts 
the assumptions on F. o 

(lb) ~ acts within OK', since F(f)~OK' and min(l, 1 - S + f o ) > 0 .  

(2) ~( f )oc (1 - s ) .Ao+s .~o  for ~e0K'. We have q~2(s=0 , ' )=F( - )  and 
q~2(s= 1, . )=idJ0K' .  

This homotopy is possible only because of the previous step (1), otherwise 
it would cross the interior of K'. 

(2a) ~2 is welldefined: (1 - s ) .  Ao(O+s. (0=0 V 0~O is impossible for s - 1 ,  

since ~eS "- l .  For s < l  we would have A o ( f ) = - ~ S ~ f o V O ~ O ,  which is 
(1 -s )  

possible only for s - � 8 9  due to normalization: A ( O -  - f .  This is in contradiction 
to f, A(~)~K' .  

(2b) q~2 stays within OK', since f ,A (~)~K '  and A0(f)=0 whenever f0 
=0. [] 

Lemma 3.5 can be used to derive the following result, which deals with a 
type of continuous standard loss functions which arise, e.g., by mixing the 
standard loss functions of classification problems (Sect. 2, Example2). These 
loss functions make intuitive sense, since they put maximal 0-loss ITV0(z ) on 
those z which are least likely under 0, namely z0=0. Recall that n.z  o is the 0- 
density in a standard experiment with regard to a standard measure (part I, 
Sect. 5). The content of Proposition 3.7 is that the convex surface formed by the 
loss vectors {lTV(z)lz~K} is so wide that any mixture of surface points is still 
fully below the surface, where "below" is taken in the sense of the usual partial 
ordering in N~: 

Proposition 3.7. Let 17V'o(Z ) be a nontrivial continuous standard loss function in the 
sense that 

in( ~/o(z')<sup ffVo(z' ) V0~O, 
z ' ~ K  z" ~K 

and which also satisfies 

I~o (z)-- sup ~/o (z') VOeO for zo=O. 
z ' ~ K  

Then for every probability measure p on K and every direction ~ K ,  there exists 
zEK and z>=O such that 

v o s o .  

This implies but is stronger than" 

v0 o. 
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E.g. by choosing 5=e(")=(O,O ... .  ,1) we obtain the existence of z e K  such that 

(vo(Z)=S#(dz')(vo(Z') V0 =1 ,2  .. . .  , n - 1  

(v.(z) <= #(dz') (v~ 

Proof We use the same notation as before. The assertion is obviously equiva- 
lent to K'cA(K ' ) .  So we would like to apply Lemma 3.5. Unfortunately this is 
not readily possible: the assumption (v0(z)=sup (v0(z') for zo=O translates only 

z" 

into Ao(()<=O for (0=0. However, we can replace A by slightly perturbed 
versions A ~ which we may obtain by using the measures #(~)=(1-e) .#  

1 1 
+e.-~be(O).  The term ~c~e(o ) is the mixture of the point masses at the 

n ~ n T 
corners e (~ .. . .  ,1, . . . ,0) of K. This serves the following purpose: the func- 
tion (vo(Z) takes on its minimum at z = e  (~ and we have by assumption 
inf(v0<sup (v0; thus for ~>0 we get S#(~)(dz')(vo(Z')<sup (vo, where strict in- 
equality is due to the point mass at e (~ Then the mappings A(~)(z)ocW(# (~)) 
- (v(z) are well defined for small enough e>0,  and they satisfy A(0~)(()<0 for (0 
=0,  hence Lemma3.5 becomes applicable. We conclude K'cA(~)(K ') for e > 0  
(__< 1). The following elementary lemma allows to conclude K ' c  A(K'): 

Lemma3.8.  Assume U, V metric spaces, U compact. Let A("): U ~ V  be a 
sequence of continuous mappings which converge uniformly to A: U-~ V. I f  A 
c3(")(U) for all n, then also A c A ( U ) .  

Proof A simple subsequence argument applied to preimages u (") of aeA under 
A ("). [] 

As a corollary of Proposition 3.3, we will prove a convexity result. It will be 
crucial later in Sect. 5. 

Proposition3.9. I f  W is a continuous standard loss function, then an affine 
function a ( ' )  is above k ( ' )  on K iff a ( ' )  is above some (V-tangent, i.e., 3 z~K:  
( ( v ( z ) , ' ) < a ( ' )  on K. 

Remarks. a) Recall that any affine function a(-)  on K is given by a form a(z) 
= ~ a  o. Zo, where ao=a(e(~ An affine function may as well be identified with a 

0 
vector (ao)~lR ~ and then we can write a( z )=(a , z ) .  Now let: 

A k = {aEll~ (a, ") > k( ')} 

A w = {aMR~ zEK: ( a , ' )  >= ( (v ( z ) , ' ) } .  

The above corollary can be stated as follows: Ag=A w. From the definition of 
standard loss functions follows that A w c A  k without any conditions on (V, thus 
the nontrivial part is the opposite inclusion. 

b) A side result is that the set A w is convex. This is actually the main step 
in the proof, where Proposition 3.3 is needed. 

c) The following geometrical fact can also be deduced from Proposi- 
tion3.9: at interior points z~K,  there exists only one tangent of k, namely 
(v(z). At boundary points z, the tangent (v(z) is the lowest among all tangents. 
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The proof  of 3.9 will be in several steps. 

1) Both  sets A k , A  w are convex: this is clear for Ak; for convexity of  Aw,  
take a (1), a(2) ~ Aw; there exist z (1), z (2) e K such that ITV 0 (z (1)) < a o V 0 (i = 1, 2). By 
3.3, there exists z such that  

ITVo(z ) < c~ . Wo(z (1)) + (1 - c~). W0 (z(2)), 

using p = c~- 6z(1) + (1 - e). cSz(:); thus ITVo(z ) < a o for a = e. a (1) + (1 - c~). a (2). 
2) Both  A k and A w are closed. To show this in case of Aw,  one needs 

compactness  of K and continuity of W. 
3) N o w  we show that  all linear forms on I (  ~ attain the same min imum 

values on both  sets Ak, Aw: since both  are unbounded  upwards, one has 
i n f ( r / , a ) = - o o  for bo th  A = A  k and A = A w ,  if 77 has some strictly nega t ive  
a a A  

components .  Hence we can assume t /aK. Then in f (~ / ,a )=k( t / )  for bo th  A 
= Ak ' Aw" a~A 

F r o m  1)-3) we conclude A k = A  y .  [] 

Finally we will establish that  continuity of a s tandard loss function implies 
cont inuous differentiability of the corresponding concave function, as one 
might  expect since the s tandard loss function forms upper  tangents:  

Proposition 3.10. Denote the directional derivative of  the concave function k at z 
in the direction h = z ' - z  by 

Dz; h k (z) = lim 1 (k (z + 1: h) - k (z)). 
~$0 I: 

I f  the standard loss function 17V o is continuous, we have 

D z; h k (z) = (17V (z), h ).  

The proof  involves a twofold application of the defining inequality for s tandard 
loss functions. 

k(z + r h ) - k ( z )  (ITV(z + r h),z + z h ) - ( f f V ( z ) , z )  

1: 1: 

An applicat ion to the term <(V(z+1:h),z+1:h> gives as an upper  bound :  

< < ITV(z), z + 1: h> - < lzV(z), z> _ < ITV(z), h>. 
1: 

Similarly an application to the term < ?V(z), z> gives a lower bound :  

(V(z + zh ) , z  + zh> -<lTV(z + zh),z> 
> =(17V(z+1:h),h) 

1: 

Since Wis  continuous,  the right hand  side converges to ( W ( z ) , h )  as 1:$0. []  
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4. The Huber-Strassen Theorem 

In our formulation of the Huber-Strassen theorem [4], we deal with certain 
approximate binary experiments, more specifically pairs of 2-alternating upper 
expectations (vi, va). The theorem states the existence of universally least favor- 
able pairs (Q~,Q2) under the approximate model. The proof can be relatively 
streamlined due to the theory we developed in part I and the previous section. 
We +vill use only arguments which generalize to arbitrary finite experiments. 
Particularly, we will not have to assume Huber-Strassen's construction of 
minimax test statistics [4, p. 256 bottom] in order to prove the existence of 
least favorable pairs (see the introductory remarks to the previous section). 

One word should be said about the existence of universally least favorable 
experiments in case of more than two parameter values ([0]>2). A literal 
analogue to the Huber-Strassen theorem is not going to hold anymore. But 
partial results of this type can be expected to be true if one suitably shrinks the 
set of decision problems (loss functions) for which one wishes to find simulta- 
neously least favorable experiments. We will present an instance of such a 
theorem for some sufficiently small classes of classification loss functions under 
e-contaminated experiments later in Sect. 5. Another method to generate such 
results could feasibly consist in allowing "small" upper expectations only, i.e., 
upper expectations which are obtained as suprema over small sets of probabili- 
ty measures. 

As for the technicalities, we make use of the tools provided by example 1) 
of Sect. 2: 

k~(z) = min(~l ZI '  ~2 Z2) 

 Vf(z) = . . . . . . .  l(z) 

l?V; (z)= ~2" lr~lz~->~2z21(z) �9 

These are the concave function respectively the standard loss functions of the 
testing problem with weights proportional to (~1,a2), which we can restrict to 
(~1, ~2 ) :  ~eK, i.e., ~0 >0  and ~1 + ~2---1. The convex cone 

{a+ ~ ciU'la affine function on K, ci>O } 
i 

is dense in the set of all continuous concave functions on K. Hence, if there 
exists a simultaneously least favorable pair (Q~,Qz) for all k ~ then it is uni- 
versally least favorable, hence "least sufficient". This remark facilitates the 
proof of the Huber-Strassen theorem which we adapt as follows: 

Theorem 4.1. I f  (vl, v2) is a pair of upper expectations generated by 2-alternating 
capacities (see part I, Sect. 2), then there exists a "least sufficient" pair (Qa, Qz) 
under (vl, v2). 

Proof We wish to apply Theorem 8.4 of part I. To this end we introduce a 
finite continuous measure 2(d~) on K and consider the mixtures 

k (z) = S k (z) 

r S 
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The standard loss function l~0 ~ belongs to k x and is continuous because of 
continuity of 2 (i.e. 2{e} = 0  V e). Hence we can restrict consideration to non- 
randomized procedures by Theorem 3.1 of the preceding section. The crucial 
step is to see that for any measurable map a: Y~ K, we have 

a)= 

This, however, follows immediately from Proposition2.8 of part  I. So we 
obtain additivity of the Bayes risk for any nonrandomized procedure: 

R((v), a, (IYV~)) = ~ R((v), a, (IYV~)) 2 (de). 

Minimizing over a, we get: 

s ~ v~ (k ~) >= S s~ ~ (k~) '~ (d e). 

Hence we have equality since " ~ "  holds anyway by subadditivity of s (v). By 8.4 
of part  I, the theorem follows. [] 

5. The Contamination Model 

In this section we will basically solve the robust decision problem for finite 
experiments under s-contamination. However, we will be able to achieve this 
only for continuous standard loss functions. The technical difficulty stems from 
the need of smooth concave functions k in the convex minimization problem 
ensuing from the contaminated decision problem. The next section will show 
how the solutions found for continuous standard loss functions carry over to 
discontinuous ones via mixing and smoothing of standard loss functions and 
theorems of simultaneous least favorability. At the end of this section we 
introduce the notion of standard singular loss functions robust under e-con- 
tamination. 

In this and the following section we restrict consideration to upper expec- 
tations provided by s-contamination of an exact model (see part  I, Sect. 2): 

Vo(f) = (1 - s)- P0(f) + e. supf. 

The corresponding set of probabilities dominated by v o is the s-contamination 
neighborhood of P0: 

{(1 - s). P0 + s- Hol H o arbitrary probability}. 

The contamination model leads to "censored" procedures. This means that the 
classical procedures resulting from the exact model (P0) are modified if they are 
based on probabili ty ratios which are too close to zero or infinity. In this way, 
the upper Bayes risk can be minimized as we will see. 

We will deal only with continuous standard loss functions to avoid rando- 
mization (Sect. 3). Given the contamination model (Vo), the upper Bayes risk of 
a (nonrandomized) procedure a: Y~ K is: 
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! 

y~Y 

Obviously an optimal procedure makes a tradeoff between the two terms. It 
lowers the suprema as long as the decrease is not offset by the increase in 
R((P),a,(ITV)). Lowering the terms sup lzV0a means cutting down on the de- 
cisions z=a(y)  with highest losses 17V0(z ). To control this process of decision 
censoring, we introduce thresholds c o and define a censored decision space by 

T~ = { ~ K I  W0(~) _-< Co V 0}. 

Here c = (Co) denotes the tuple of thresholds. We let it vary within the set 

((c0)l T~, ~} 

which coincides with the sets A k and A w of the remark after Proposition 3.9. 
We can construct a concave function k c which arises from restricting lzV to T~: 

kc = inf • lTvo(~).z o. 
~ T c  0 

It coincides on T c with the concave function k of ~ but dominates k outside: 

k~>k, kcl T~= kl T~. 

With these definitions, we can reformulate the minimization of Bayes risks as 
follows: 

Proposition 5.1. The minimal upper Bayes risk for the contamination model can 
be found by a minimization over the thresholds e=(Co): 

There exists a minimizing tuple c. 

Proof. 1) That  the minimum is attained follows from continuity of c-*S(e)(kc) 
and lower compactness of {(c0)lT~=~(b }. Continuity in turn follows from an 
application of the dominated convergence theorem and continuity of e-*kc(z ) 
for every z. 

2) The trivial part  of the asserted equality is: 

s (~) (k)  < s (~) (kc) < (1 - E).  S ~P) (kc) + ~ 1 ~Eo CO" 

3) For  the reverse inequality, choose a nearly optimal procedure ~r: 

s (~ (k) + t /~  R((v), a, (I~V)) 
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for given t/>0. By Theorem3.1, we know that we can assume that a is non- 
randomized. Put c0=su p l~/0(a(') ). Then we obtain'  

R((v), a, (17V)) = R((v), a, (17r T~)) 
- 1 

=(1 -~)" R((P), a,(WIT~))+ e "n ; co 
u 

1 
>= (1 - ~).  S ~P~(kc) + ~ - ~ Co. 

n T 

Since 1/>0 was arbitrary, the remaining inequality follows. It is crucial here to 
see how the need for a non-randomized a comes in: if a were randomized, the 
construction of the thresholds 

c0=su p I~0 ~r = sup y IYVo(z)a(y, dz) 
Y 

would not allow to pull through the first of the above equalities/inequalities 
(namely R((v),a,(IYV))=R((v),a,((V[T~))), since the support of the measures 
a( ' ,dz)  would not necessarily have to be within the set Tc. [] 

We will pursue now the problem of optimal censoring, i.e., we want to find 
characterizations of optimal thresholds c=(c0). For this, we have to study the 
dependence of 

1 c (t-~).S~P)(kc)+~.~ ~ 0 

on c, the hard part being obviously kr It will turn out that this expression is 
convex in c. This fact will allow us to use directional derivatives in order to 
characterize global minima. The crucial point will be the calculation of direc- 
tional derivatives for c--* kc(z ), which can be done by relating them to Lagrange 
multipliers. These can be found from the dual optimization problem of the 
constrained minimization which defines kr Our references for convex opti- 
mization are [5] and [6]. The next few steps will essentially consist of adap- 
tations of some classical optimization results. Proposition 3.9 will lead us in the 
first step. It states that the set of upper tangents provided by the standard loss 
function IYg(z) is complete if I~(z) is continuous. 

As in the remark a) after Proposition 3.9, denote by A k the cone of affine 
functions above k on K: 

A k = {a~N ~ (a, z) >= k(z) V zeK}.  

Then we can write by 3.9" 

kc(z) = inf {(a, c)[a~Ak, a <= c} (,) 

where "a < c" is the componentwise partial ordering for vectors: ao<C o'r O. 
Thus we obtain kc(z ) by minimization of the affine (and hence convex) 

function a ~ ( a , z )  over the convex set A k under the constraints a<c. In 
optimization theory, the map c--,kc(z ) is called primal function [6, p. 216] or 
perturbation function [5, p. 371 of the given minimum problem. 
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1 
Lemma 5.2. Both kc(z ) and ( 1 - 0 '  S(m(ke)+ ~ "- ~,co are convex in c. 

n T 

The proof of convexity of kc(z ) is not hard and can be obtained from [5, p. 
37] or [6, p. 216]. By mixing kc(z ) over z with regard to the measure s(e)(dz), 

1 
and by adding the affine function e - - ~ c  o, the lemma follows. [] 

n T 

The above lemma grants the existence of directional derivatives ]-5, p. 16- 
19] with regard to c for directions h = c ' - c ,  both c,c'SAk: 

Definition. 

Dc; h kc(z) = lira _1. (k~+ ~h(Z) -- k~(z)). 
r$0 "C 

The difference quotient on the right hand side stays uniformly bounded due to 
boundedness of W(z) as can be seen from the proof of Proposition 3.10. Thus, 
when integrating k~(z) with regard to S ~'), one can interchange differentiation 
and integration: 

Directional derivatives of convex functions depend subadditively on the direc- 
tions: D~;hl+h2<D~;hl+D~;h2. Additivity is equivalent to differentiability. For  
convex functions, global minima can be characterized by non-negative direc- 
tional derivatives. Thus we obtain: 

Proposition 5.3. The thresholds c = (Co) are optimal iff 

1 
0 < S(e)(Dr kc) + l ~ e  - n ~oho 

for all directions h = c ' - c ,  and c,c' e A  k. 

We see that everything depends on whether we are able to calculate 
Dc;h(k~). To pursue this further, we will relate directional derivatives to so 
called subgradients and subderivatives [5, p. 20]. A subgradient of c--+k~(z) at 
ceinterior(Ak) is a vector Ae lR  ~ which satisfies 

kc,(z)-k~(z)><&c'-c> Vc'eA~. 

(Analogously, we can say that the standard loss function vector l?d(z) is a 
supergradient of z---,k(z), due to its defining property.) The set of all sub- 
gradients A at c will be denoted 0~ k~(z). In I-5], this is called the subderivative 
or subdifferential. 

Lemma 5.4. Directional derivatives of  c ~ k c ( z )  at ceinterior(Ak) can be obtained 
by 

D c, h k ~(z) = sup {(A, h ) l A eO c k~(z)}. 

The supremum is attained. 
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A proof is in [5, p. 27]. Implicitly we use here the fact that convex functions 
on finite dimensional spaces are always continuous on the interior of their 
domain, see [5, p. 28] or [6, p. 194]. 

Subgradients would not be of any use if they were not easier to obtain than 
directional derivatives. The theory of constrained optimization provides us 
with a link between subgradients and Lagrange multipliers, which we introduce 
now~ 

When applied to the minimization (.) of a-~ ( a , z )  over the convex set A k 
under the constraints a-<_c, the fundamental Lagrange multiplier theorem [6, p. 
217] grants the following: 

Lemma 5.5. For c~interior(Ak) , there does exist a Lagrange multiplier or Kuhn- 
Tucker vector A >0 (i.e. A o >0 V 0), satisfying 

kc(z ) = inf ((a, z)  + (a  - c, A)). 
aEAk 

The proof follows from the cited reference. (Notice that the constraint operator 
G in [6, p. 216] specializes to G ( a ) = a - c ,  and hence the assumption of 
Theorem l [6, p. 217] concerning the existence of aeA k satisfying G(a)<0 
translates into the requirement of c being in the interior of Ak. ) 

Our interest in Lagrange multipliers stems from the fact that they are 
basically the subgradients of the primal function (modulo sign): 

Lemma 5.6. I f  c~interior(Ak), the set -Ockc(z ) coincides exactly with the set of 
Lagrange multipliers for the minimization problem (*). All elements A of 
- O~ kc(z) are non-negative. 

An explicit proof under slightly different assumptions is in [5, p. 38], or 
more implicitly in [6, p. 218 and p. 222 bottom]. 

We proceed with a characterization of Lagrange multipliers in terms of the 
dual of the optimization problem (,). The dual function cpc,~(A ) [6, p. 223f.] is 
defined as: 

(pc.~(A) = inf ((a, z)  + ( a -  c, A)). 
a~Ak 

The following lemma will allow us to explicitly determine the Lagrange multi- 
pliers: 

Lemma 5.7. I f  csinterior(Ak), the dual function A ~ qoc,~(A ) attains its maximum. 
The set of maxima coincides with the set of Lagrange multipliers for the 
minimization problem (*). 

The proof is contained in [6, p. 224f.]. 
The preceding lemmas are the basic machinery we need. We continue with 

the calculation of the dual function. It can be written as: 

%,~(A)= inf ( a , z + A ) - ( c , A ) .  
a~Ak 

( The infimum over a~A k is taken on at a = W  l + ~ A o !  as one can see from 

the definition of standard loss functions. We realize at this point that we 
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should extend both the concave function k(z) and the standard loss function 
lgd(z) from K to ~ + - K .  This is sensibly done by extending the latter by 
constancy along rays lR+-z, and k(z) via positive homogeneity. We make this 
precise in the following: 

Definition and Lemma 5.8. I f  the standard loss function 17V(z) is extended from 
the simplex K to the cone IR + . K via 

re(O= 9r ~oo v~>o (,o), 

then the corresponding concave function k(z) can be extended via 

k(~) = < r162 ~> 

to a positively homogeneous and concave function on the z=>O in ~o,  We 
preserve thus the crucial property 

k(~) --- inf(I~V(~'), ~} 
r 

where ~' may vary over K or all z > 0 in N ~ 

The proof is obvious, and we gave a formal statement of the above for its 
importance only. In terms of the extensions of k and ITV,, we obtain: 

Lemma 5.9. The dual function of the minimization problem (*) is 

A--*q~ c,z(A)=k(z + A ) - ( c , A ) .  

Fortunately, there do exist theorems for optimization over convex cones. 
To this end, however, we need the dual function and hence k(z) differentiable, 
i.e., directional derivatives must behave additively in the directions. This as- 
sumption is met in our case if the standard loss function is continuous, see 
Proposition3.10. The conditions of the following proposition are sufficient 
even without the differentiability assumption, but they are not necessary then. 

Proposition 5.10. Necessary and sufficient conditions for A >0 to maximize the 
dual function are: 

17V(z+A)<=c, (17V(z+A) ,A)=(c ,A) .  

The proof involves an application of a very useful lemma in [6, p. 227]. 
Applied to our context with the appropriate interchanges of concave/convex 
and > / < ,  it gives the following necessary and sufficient conditions for A to 
take on a maximum of the dual function (pc, z(A): 

DA;A,~Oc,z(A)<=O VA'>O 

Oa;agOc, z(A) =0. 

By the previous lemma, this translates into: 

(17V(z+A'),A')<__(c,A') VA'=>0 

(~(z + A), A) = (c, A). 
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The first condition boils down to constraint satisfaction (use for A the canoni- 
cal basis vectors e(~ 17Vo(z + A ) < c  o V O. [] 

Our search for ways of calculating directional derivatives Dc;hlCc(Z ) of the 
primal function c ~ k~(z) can now be summarized as follows: 

Proposition 5,11. For thresholds c =(Co)~interior(Ak) we have: 

Dc;hk~(z)=max{(h , -A)IITV(z + A)<c ,  (17V(z + A ) , A ) = @ , A ) ,  A_>_0}. 

If one can say so, Proposition 5.3 and 5.11 solve the problem of charac- 
terizing procedures which are minimax under e-contamination in the sense that 
they minimize the worst-case Bayes risk R((v),a,(17V)). The propositions de- 
scribe the optimal decision-censoring thresholds c o. As outlined at the be- 
ginning of this section, one has to cut out (censor) those decisions which result 
in standard losses above the optimal thresholds, and with the remaining 
decisions one should decide according to Bayes procedures. 

We would like to continue with the question of what standard loss func- 
tions do not require censoring for a given model (P0) and contamination e. Such 
standard loss functions may justifiably be called robust for this situation: 

Definition. A standard loss function 17V is called robust for the model (Po) under ~- 
contamination if the decision-censoring thresholds Co=SU p 17Vo(z ) are optimal, in 
other words, no decision-censoring is need. 

For thresholds c0>__su p I?r 0 no censoring happens. This is expressed by k 
--k c. Thus, when characterizing robust standard loss functions by directional 
derivatives with regard to thresholds, we do not have to consider directions 
other than negative ones: 

Proposition 5.12. Let Co=SU p I?V o be the trivial thresholds. The standard loss 
function ITV is robust for (Po) under e-contamination iff : 

1 
s(P)(Dc"- hkc)~l-- -- ~ "-n V h ~ K  (n = ]O[). 

I f  c--* k~(z) is differentiable from below V z, i.e., if 

Dc;_nkc(z)=~ho.  Dc;_e~o, kc(z ) V h E g ,  z~K,  
o 

then robustness can be characterized by the lower partial derivatives: 

e 1 
S (P) (Dc; _ e(O) kc) ~ ~ .  ~ V O. 

This last proposition motivates a further investigation into when differentia- 
bility from below at the trivial supremum thresholds is met, and how the lower 
partial derivatives are calculated. We would like to rely on Proposition 5.11, 
but we have to make sure that the assumption c~interior(Ak) is satisfied. The 
following lemma will take care of that: 
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Lemma 5.13. Assume the standard loss function I7V has no constant components: 
infl~Vo(')<su p lTVo(" ) V0. Then there exists z 6 K  such that 12Vo(z)<su p 17V0(- ) V0. 
In other words, the vector c of trivial thresholds c o = sup l?Vo(. ) is interior in A k. 
(For the remainder of  this section, we will always assume that this condition is 
satisfied.) 

Proof For each 0 there  exists z(~ such that 9Vo(Z(~ Then 
1 

consider the measure # = ~ 7 . ~ 6 = , o >  We notice that ~ITVo(z)#(dz ) 
i ~ i U 

<sup l~o(.)V0. By Proposition 3.3, we obtain the existence of z ~ K  for which 
17Vo(z)< ~ 17Vo(z')#(dz' ). This finishes the proof. [] 

If the trivial sup-thresholds co=su p l~o(. ) are interior in A k, we can charac- 
terize the lower directional derivatives by Proposition 5.11: 

De; _hkc(z)=max{(h ,  A)[(17V(z+A), A ) =  (c, A), A=>0}. 

This expression is additive in h iff there exists a largest vector A which attains 
the maximum on the right hand side simultaneously for all heK.  Thus: 

Proposition 5.14. The primal function c--+ kc(z ) is lower differentiable in c at the 
trivial thresholds c o = sup 1717o(" ) iff there exists a largest vector in the set 

{Ae1R~ A >=O, (17V(z + A), A>=(c ,  AS}. 

We wish to calculate the lower partial derivatives at the trivial thresholds. 
Simplifications in Proposition 5.11 occur in this case. When calculating 
Dc; _e(O) kc(z) at Co~ 17Vo(. ), it does not matter whether we raise %. to even larger 
values than sup W0.(" ) for 0'q=0. The point of this is to force A o, for 0'=t=0 to 
zero through the condition (17V(z+a), A>=(c ,  A )  in 5.11. Thus this condition 
simplifies to 

gVo(Z + 2. e(~ sup l?Vo( �9 ). 

Since A o, = 0 V 0' q= 0, we may write A = 2. e (~ To summarize: 

Proposition 5.15. At the trivial thresholds Co= sup 17Vo(" ), we have 

Dc; _ e(O) kc(Z ) = max {2 > 01 l~0(z + 2. e (~ = sup W0(" )}. 

As an application of lower partial derivatives, we will derive a theorem 
which shows that a certain degree of robustness in loss functions for finite 
experiments is a rather likely case. Our question will he: given an exact model 
(P0) and a continuous standard loss function 12r does there exist a contami- 
nation amount e > 0  for which 17r is robust? If we abbreviate Io,), k 
=infS(e)(D~;_hk~) for the moment, then Proposition 5.12 gives us e 

heK 

=I(e) ,k / ( I (e) ,k+~)  as the largest amount  of contamination for which we have 

robustness. The quantity Ice), k is zero iff I7r is non-robust for any e> 0. When 
comparing with the lower partial derivatives, we have in a first cut only the 
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following obvious  inequali ty:  

inf S w)(Dc; _ h kc(z)) < inf S (P) (D~; e(O) k e(Z)) .  
z~K 0~o 

We have equali ty if c--* k~(z) is lower differentiable at the trivial thresholds.  
However ,  it is possible to obta in  lower bounds  for the left hand  side in terms 
of the right hand  side: 

~,) 1 
L e m m a  5.16. infS ( (D~; h k~(z)) > - "  min SW)(D~; _ e~o~ k~(z)). 

hEK n 0~o 

Proof.  For  h = ~ h o . e ( ~  and z > 0 ,  we have k~_~.h>kc_~hoeco~VO, since the 
0 

constraints  satisfy trivially c - z h  < c - z h  o e (~ Differentiat ion with regard to z 
at + 0 and integrat ion with regard to SW)(dz) yields: 

S (P)(D~; _ h kc) > h o �9 S ~ _ e(O) kc) V O. 

Replacing S(P)(D~;_e~o~k~) by min  SW)(D~;_~o~k~) on the right hand  side and 
then taking m a x  h o we get: 0 

0 

S (v)(O~; _ h k~)> (max ho). min S (v)(oc; _ ~(o) k~). 
0 0 

1 
Finally we notice that  maxh0>__- for h s K .  This finishes the proof. [ ]  

0 n 

This rough est imate is enough to obta in  the following cri terion:  

Proposition 5.17. There ex is t s  a contaminat ion amount  e > 0  f o r  which the con- 
t inuous s tandard loss func t ion  17V is robust  under the model  (Po) i f f  

S (V) ( { z~K132>O: l?Vo(z+2 .e (~  > 0 VO. 

P r o o f  By L e m m a  5.16 and the remarks  beforehand,  there exists e > 0  for which 
we have robustness  iff infSW)(Dc; _eCO~ kc(z))>0 V 0. By 5.15, we get: 

0 

De; e~o, kc (z )>O iff 3 2 > 0 :  iTVo(z+2e(~ 

A s tandard  a rgument  f rom measure  theory finishes the proof.  [ ]  

Here  are some remarks  on the relevance of Propos i t ion  5.17. There  are two 
items which have an impac t  on the condit ion in 5.17: 1) the loss function (r 
and 2) the exper iment  (Po). 

ad 1): The  s tandard  loss function (gV0) takes on its s u p r e m u m  someplace  on 
the bounda ry  face {z I z o = 0} of the s implex K (or the posit ive quadran t  of 11 ~ 
if I?r is extended according to 5.8). This is seen by restricting 17V0(z ) to segments  
[e (~ on which the m a x i m u m  is taken on at z, due to concavi ty  of k 3. 
Intuitively,  this means  that  we encounter  the greatest  0-loss for those " s t anda rd  
observa t ions"  z which give least evidence to the pa rame te r  0: zo=O ~. For  those 

3 Recall that VV0(z ) is the value of the upper tangent ( -~ (I7r () of k at z, evaluated at e c~ 
4 Recall again that n.z  o is the density of the standard experiment (S(0 p~) with regard to the 
standard measure S w). See part I, Sect. 5 
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discontinuous standard loss functions which arise from loss matrices on finite 
decision sets T=  {1, 2, 3 . . . .  , n}, it is clear that the sets 

{z~K[3 2 > 0 :  I~0(z+ 2. e(~ sup W0(')} 

extend into the interior of K. If we plan to use continuous standard loss 
functions as approximations to discontinuous ones in some sense, we may 
actually consider this as a frequent case, and it appears not unlikely that the 
condition in Proposition 5.17 is satisfied in many cases. 

ad 2): It seems intuitively clear that one has the more robustness the more 
informative an experiment (P0) is. Some ways of formalizing information are 
in terms of Blackwell-sufficiency (part I, Sect�9 4), simultaneous comparison of 
Bayes risks (part I, Sect�9 6), and standard measures (part I, Sect. 5). The theorem 
of Blackwell-Sherman-Stein grants the equivalence of all these partial orderings 
of experiments (part I, Sect. 7). An intuitive interpretation of high information 
in an experiment (P0) via its standard measure S(P)(dz) is that it should take on 
small values on concave functions k(z), i.e., its mass should concentrate along 
the boundaries of K as much as possible�9 This is exactly what the condition of 
Proposition 5.17 asks for. 

Last in this section, we will prove a theorem on the existence of simulta- 
neously least favorable experiments, suitable for application to contaminated 
classification problems�9 The proof uses Theorem 8.4 of part 1, and relies on 
mixing arbitrary (e.g., discontinuous) standard loss functions such that the 
mixture is continuous, as was the case in Sect. 4 for the Huber-Strassen 
theorem. As pointed out at the beginning of Sect�9 3, mixing is likely to 
produce continuous standard loss functions, since they may inherit the smooth- 
ness properties of the mixing measure. 

Theorem 5.18. Let 17VoW(Z) be a parametrized family of standard loss functions, not 
necessarily continuous in z. Make the following assumptions: 

1) Let (VoW(Z) be measurable in ~ for each z, and the corresponding concave 
functions U(z) depend continuously on c~. 

2) Every (VOW(.) takes on its supremum over z at some common point z(~ 

17g0~(z(~ p l~g(z) V 0cO, e. 
z 

3) Let 2(d~) be a probability measure on the parameters ~. Assume that the 
mixed standard loss function 

= Wo (z) (d 

is continuous and robust for (Po) under e-contamination. 
Then there exists a least favorable experiment (Qo) = ((1 - e). Po + e. 14o) simul- 

taneously for all 17V ~. 

Proof. Robustness means that the trivial supremum thresholds are optimal, 
hence, by 5.1: 

s(V)(k~)=(1-e).S(~')(k~)+~ 1 �9 Z sup 
o- 
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where k ~ is the 2-mixture of U. The first term on the right hand side is 
additive: 

S w) (k ;~) = j" S (P) (U) (d c O. 

To evaluate the second term, we note that 

~ sup W0a(-) = ~ sup ~/o~( �9 ) Vc~ 
0 0 

since suprema are taken on at identical z's across all cds. This leads to the 
following: 

s(V)(kZ)= ~ [ (1 -  e)" S(P)(U) +e" ! Z sup I~V0~(')] 2(de). 
n 0 

If we denote by p = (Po(')) the vector of densities of the probability measures Po 
under the dominating measure ~ Po (see part I, Sect. 5), then we obtain for the 
integrand: 0 

1 
sup Wd (1 - ~ ) .  SW)(k~) + ~ . -  ~ sup !2Vo~ = R ((P), p, (I~))  + ~ �9 1 

t/ 0 n --g 

>= R ((v), p, ( I~ ) )  ~ s (~) (kS). 

Thus we get the inequality: 

s~) (k~) ---- S s(~) (k~) ~ (d ~). 

The reverse inequality holds true anyway due to subadditivity of s (~), hence the 
assumptions of Theorem 8.4 of part I are 'satisfied, and the assertion of 5.18 
follows. [] 

6. Classification Under Contamination 

As an application of the previous section, we wish to present a result on 
simultaneously least favorable experiments for certain sets of classification loss 
functions. We believe that it is the first theorem which goes beyond the Huber- 
Strassen theorem and binary experiments, although in another way it re- 
sembles more Huber's earlier results [2, 3], due to our use of s-contamination 
rather than capacities. How much can be generalized remains an open ques- 
tion. As mentioned in Sect. 4, for general finite experiments it is unlikely that 
there exist least favorable experiments simultaneously for all loss functions (i.e., 
all decision problems). We will have to be somewhat more modest and consid- 
er smaller sets of loss functions, or choose other, less satisfactory upper 
expectations than the ones given by, e.g., e-contamination. We will stay with ~- 
contaminated models and introduce some peculiar subsets of loss functions. 
Recall from Sect. 2 that a classification loss function is given by a set of 
parameters % which can be interpreted either 1) as losses for erroneously 

1 
rejecting 0 given the uniform prior which puts weight - on each parameter 

n 
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value 0, or 2) as prior weights on the parameter values 0 given the uniform 
1 

losses - for erroneously rejecting 0. Both interpretations lead to the same 
rt 

standard loss functions and Bayes risks. We prefer to think of c~ 0 as prior 
weight, because the sets of classification loss functions we wish to consider are 
given by contamination neighborhoods of (c~0) as probability distribution on O. 
This means that we will fix a prior ~*=(c~*) and contaminate it as follows: 

,0=(1 - q ) .  ~ '  + t/. ~0 

where ~sK is an arbitrary contaminating prior on O. We will thus be dealing 
with two types of contamination: e-contamination on the side of the model, 
and q-contamination on the side of the priors. We will show the existence of 
least favorable experiments in the e-contamination neighborhood of (P0) simul- 
taneously for all q-contaminated priors, at least if e and q are not too large. 
The precise condition is that the classical procedure (based on maximum 
weighted densities under (P0)) should not break down under both contami- 
nations, where breakdown means that throwing away the data and deciding a 
priori is preferable under the worst possible contamination. 

Here are the relevant notations and facts which we partly introduced in 
Sect. 2 already. Let the following be the set of "standard observations" (i.e., 
elements of the simplex K) for which one may decide for 0: 

Bo= {(a, z)~K x K Io:oZo=SUp ~ol Zol}" 
O1 

Unfortunately, these sets do not quite form a partition of K into disjoint sets. 
As in Sect. 2, we introduce therefor measurable sets AocB o which form a 
partition, such as Ao=B o-  U Bol" The cross sections will be denoted by: 

01<0  

Ao(z)= {=~KI(~, z)~Ao}, Bo(z)-- {~EKI(~, z)~Bo}. 

Due to symmetry in e and z, we do not have to distinguish these sets from ~- 
cross sections: A0(e)= {z~K[(~, z)~Ao}, and same for Bo(c O. For later we notice 
that closure (A0(e))= Bo(cO. 

According to Sect. 2, an instance of a standard loss function of a classifi- 
cation problem with prior weights c~ 0 is given by: 

W0C~(z) = ~x 0 �9 1A0C(C( , z ) =  ~X 0 �9 1AoC(~)(Z ). 

In what follows, we wish to work towards meeting the assumptions of Theo- 
rem 5.18. Thus we introduce mixtures of the above standard loss functions with 
regard to measures 2(de) on K: 

17V0Z (z) = S VV0~(z) 2(d~)-- S s 0 �9 1ag(z)(a ) 2(do O. 

Without loss of generality we may restrict ourselves to probability measures 2. 
Our next concern is to pick 2 such that ITV0 z is continuous. A sufficient 

condition for this to hold is that the boundary ~Ao(z ) is a null set with regard 
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to 2 for all z6K.  This is seen by the dominated convergence theorem since: 

1A0~e(,))(~ )--* 1Ag(~)(~ ) ,~-a.s. if z ~") ~ z and c ~ A o ( z ) ,  

which implies almost sure convergence with regard to 2 since OAo(z ) is a null 
set. This latter condition is met, e.g., if Z is absolutely continuous with regard 
to the uniform measure on the unit simplex K. 

In a next step we specify the mixing measure 2 further. This is where the 
contamination neighborhoods of priors come in. As before, let e*~K be a fixed 
prior on @, and denote by ( l - r / ) .  c~*+t/. K the set of all t/-contaminated 
priors, where we always assume r/>0. We may now pick 2(de) as the uniform 
distribution on ( 1 - r / ) . a * + r / . K ,  but all we really need is that 2 have 
(1 - t / ) . c~*+ t / .K  as its support and the resulting standard loss function be 
continuous (which is the case here since this 2 is absolutely continuous with 
regard to the uniform distribution on K). 

Consider next the concave functions obtained by 2-mixing: 

and also the primal function c-~k2(z) which goes with it. For  the mixing 
measures 2 specified above, we will be able to show that the primal function 
c~k~c(Z) is lower differentiable at the trivial supremum thresholds e o 
=sup I~0X(.), and we can also calculate the lower derivatives explicitly. This 
and Proposition 5.12 will give us a simple criterion for robustness of the 
mixture standard loss function W0 ~. With Theorem 5.18 we will finally arrive at 
a theorem of the anticipated sort. First, however, we have to face some 
technicalities for the sake of proving lower differentiability via Proposition 
5.14. This will be done by chopping up the arguments into a series of lemmas. 
To make use of 5.14, we have to determine what are the sets: 

{Ae~I. ~ [ A => 0, < ITVX (z + A), A> = <c, A>}. 

This will be answered by the following: 

Lemma 6.1. Assume as always in this section that the mixing measure 2(de) has 
the set (1 - tl) a* + t 1 �9 K as its support, and that ITVo ~ is continuous. Denote by 

~(o)  = ( 1  - ~). ~* + tt. e (~ 

the extremal points of  the set ( 1 -  t/). c~*+ ~/. K, and let always c o = sup 17VoZ ( �9 ) be 
the trivial thresholds. For A >= 0 the following statements are equivalent: 

1) (17VX(z+ A), A ) = - ( c ,  A ) .  
2) V0eO" Ao=O or C~(o~176 

Ol+O 
1 

- - .  max C~(o~ �9 (Zo~ + (1 -6o ,  o~).Ao~)-z  o. 3) V0~O" A~ < ~(o ~ o~ 

Remark 6.2. The extremal priors of  the tl-contamination neighborhood satisfy the 
following inequalities: 
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1) c~~ ~~176 

~~176 V0~4=0, 024=0. 

2) c~ (~ . c~ (~ < ~(ol)..(o) V 0, 0~, 02. 01 02 ~ 01 ~02 

Proof of Remark 6.2. 1) These inequalities follow immediately from the de- 
finitions: 

"(m = (1 - t / ) .  c~* 1 for 014=0, e(o ~ = (1 - r/). c~ + t/, and %1 

and the assumption 17>0. 2) If 02=01 we have equality. If 024=01 we get 
~(o1)<o~ ~(o~ and ~0~(~ =< ~01"(~ from which 6.2 follows. [] 

Proof of Lemma 6.1. 1)~=> 2): The first condition translates into: 

V 0 : A o = 0  or (VoX(z+A)=co . 

To the second equality we may apply the following equivalence: 

iff Zo <=max  ol, 
01 =PO 

which gives us condition 2). The proof of the latter equivalence is obtained 
through a sequence of reformulations: 

(vo (z) = co iff (1 - ~ ) .  e* +~7. K c closure (ACo(Z)) 

iff (1 - t / ) . c~*+t / .K  c Q) Bol(Z ) 
0 1 " 0  

iff V e e ( 1 - t l ) . ~ * + ~ . K  ~01+0: ~o Zol=maxc~o2Zo~ 
02 

iff V e e ( 1 - t / ) . c ~ * + ~ . K :  C~oZo<maxaolZo~ 
01=u0 

iff e~o) Zo < max c~~ Zo. 
01 *0  

The last equivalence is due to the following inequalities: 

V c ~ ( 1 - r / ) . ~ * + t / . K :  ~(o~ and cd ~ --<C~ol for 014=0, 

which immediately follow from the definitions. 

2)<=~3): This is straightforward by rewriting the inequality in 2) with A o 
alone on the left hand side. This is always possible since c~~ 0. The maximum 
in 3) is extended over all 01 and includes especially 01 =0,  which results in a 
zero and covers the case A o=0. [] 

Lemma 6.3. The set of A >O which satisfy one of the equivalent conditions in 6.1 
has a largest element which is given by: 

1 
A o = --~(oO ) �9 max01 ~~ z~ - z~ 

Proof. We introduce an auxiliary mapping f (A)  from {A~F.~ into itself 
as follows: 

1 
- - - - - m a x  ~(o ~ (Zol + (1 -rio, ol)" Ao)--Zo" fo(A) o) ol 
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Lemma 6.3 asserts that the set {A > 01A < f(A)} has a greatest element, namely 
A=f(0) .  It is immediate that f(0)  is in this set, since 0 < f ( 0 )  and f is 
monotone increasing, and hence f ( 0 ) <  f( f(O)).  There remains to show that f(0)  
is the largest element: 

A<=f(A)~A<=f(O).  

Assume the left hand side, or equivalently (by 6.1): 

V0eO:  Ao=O or ~01=~0: a~~176 

If for given A > 0  we introduce the set o(A)={0~O I A0>0 }, the above assump- 
tion is equivalent to the existence of a map g: o ( A ) ~ o  such that for 01=g(0 ) 
we have: 

Ol:t=O and ~(o~176 

The conclusion A < f ( O )  we are aiming at can be restated as: 

V O~ 0 : c~ ~ (z o + Ao) < max ~(0~ ) Zoo. (*) 
01 

Our idea of proof is to consider iterates gm of g as far as they exist, i.e., as 
0, g(0), g2(0) . . . . .  gm l(0)sO(a)" We will show below that 

a) such a sequence of iterates cannot end up in a loop, i.e., gk(0)~gm(0) for 
k#m,  and 

b) for Ol=gm(O) we have c~ ~ (zo+Ao)<__Cdo ~ (Zol+A01). 

From a) and finiteness of the set 0 (A) follows that for every 0 ~ 0  (A) there does 
exist a maximal sequence of iterates 0, g(0), g2(0) . . . . .  gin(0) such that 01 =g"(0) 
is no longer in the domain 0 (A) of g, and hence Ao, = 0. Applying (b) above to 
this case we get ~0). (zo+Ao)<~(oO)z01, which is the conclusion (,) we wanted to 
reach. To finish the proof, we need to take care of a) and b): 

ad a): If for 0 ~ 0  (A) and 01 =g(0) we can show that 

~ 0 )  �9 " < .(01) (zo + Ao) ~ol " (Zol + Aol), 

then loops in sequences of iterates obviously cannot occur�9 Proof of this 
inequality: since 0~ 0 (A) we have A o > 0, hence: 

0 < C~o ~ (Zo + <_ (07 �9 A o )  - ~ " (ZOl + Aol)" 

This implies Zol +Ao~ >0. Since 01 =t= 0 we also have e(0)< cd0~) and hence: 01 01 

~(o ~ " (Zo + Ao) =< ~176 (Zo~ + Aol) < ,~of . (Zol + Ao,)" 

ad b): We will use induction: Assume for m>O that 0 i =gin(O) exists and 

~(o ~ (zo + Ao) < ~o). (Zol + Ao). 

(This is trivially true for m=O.) We show that it also holds for r e + l ,  if 
01~0 (a). Let then be Oz=g(OO=g"+l(O),  for which we get: 

g(oOl). (Zol + Aol) ~_ ~(o,).oz (Zo2 -)- Aoz). 



418 A. Buja 

Combining this with the induction assumption, we obtain: 

~(o ~ " ~o1~(~ " (zo + Ao) < .4o) . (Zo~+Ao) .  

To the right hand side we may apply 6.2.1), which gives 

�9 = o~ ~o~ "(Zoo+ A o ) ,  

and hence the required inequality follows: 

~o ~ (Zo+ Ao) <= ~o~. (~o~ + Ao). [] 

Proposition 6.4. The primal function c~k2(z )  is lower 
supremum thresholds, and the lower partial derivatives are: 

differentiable at the 

Dc; -e '~176  " Ol~tO 

Proof Lower differentiability follows immediately from 6.3 and 5.14�9 The lower 
partial derivatives can be obtained from the remarks preceding 5.14, from 
which it follows that the 0-component of the largest element in the set 
{A >O[ (17V(z + A), A ) =  (c, A) ,  A>_0}: 

1 
De. _ e(o~ kc (z) = �9 max ~(o) z - z o 

' ~(0 0) 01 01 01 

1 
= - - - ( m a x  cd0~ e(0 ~ Zo) ~0) Ot Z01 -- 

= 1 ~-k~'~ Z ~~ ol I 
i 

0~ O) 01 ~- 0 

where the last equality can be obtained from the end of Sect. 2. [] 

Proposition 6.5. The loss function fVo x is robust under e-contamination of (Po) if 

1 1 
( l - e ) .  S(~(k~'~ -<-._ (1-~(o ~ V 0. 

n n 

Proof By 5.12 and in view of lower differentiability (6.4), the criterion is 

1 e 
S (P)(D~. _ ~,o, k~) > 2.  V O. 

' n 1 - e  

With 6.4 we rewrite the left hand side: 

1 .S(P)(_U(~ ~ ~:~O~zo~ ) 
S (v) (D~; _ ~,o, k2)  = o:~o ~ o~ *o 

= + . ( -  S,,)(k~'~ . (1-~oO,)) 



Simultaneously Least Favorable Experiments. Part II 419 

1 
where we used the basic fact S(e)(Zo)= - ,  see part I, Sect. 5. Simple calculation 
yields the assertion. [] n 

After these technicalities, things fall in place since Theorem 5.18 is now 
applicable. We would like to interpret the results and eliminate the purely 
technical devices such as the mixing measures 2 and the threshold derivatives 
De; e(O k2c(Z) from our formulations. We summarize as follows: 

Theorem 6.6. Let  ~* =(~*) be a prior satisfying c~* >0  V 0, and as before, let a(o) 
= ( 1 - t  1). ~* +t l .  e (~ be the extremal contaminated prior which concentrates all 
contamination on the parameter value O. I f  we have 

1 1 
(1 -~ ) .  S(e)(k~'~~ �9 - < - .  (1 -~(o ~ V O, 

n n 

then there exists an experiment Q o = ( 1 - e )  .Po+e.  Ho which is simultaneously 
least favorable for  all contaminated priors c~=(1- t / ) .c~*+t / . (  (where ( ~ K  is 
arbitrary). For these contaminated priors c~ we have: 

1 
s (~) (k ~') = (1 - ~)- S ~") (k ~') + ~. - .  

n 

Proof. We have to verify the assumptions of 5.18. Measurability of the standard 
loss function and continuity of the concave function are no problem. Second, 
for every e in the interior of K, i.e., c~0>0 V 0, the standard loss W0~(z) takes on 
its supremum ~0 at any z for which z o = 0. All elements of our q-contamination 
neighborhood are in the interior of K. Last, there remains continuity and 
robustness of the mixture standard loss function 17V0Z. Continuity is no problem 
according to the remarks at the beginning of this section. Robustness follows 
from Proposition 6.5. [] 

Although our point of view is the one of the theory of comparison of 
experiments which is characterized by focusing on risks rather than procedures, 
we will decode the theorem in terms of procedures. Recall from Sect. 2 that for 
any standard loss function such as W0 " the Bayes procedure for an exact model 
(P0) is the vector of densities p-(P0). This amounts to nothing else than using 
the ordinary Bayes procedure for (Po), e.g., in the case of classification the rule 
based on maximal weighted densities: given the observation y, decide for a 
parameter 0 which satisfies e0" Po(Y)= max %1 "Pol (Y), or equivalently: 

0t 

p(y)~ { z E K I a o z o-- max e01 Zol} = Bo(cO 
01 

in the "standard formulation". Optimality of p is expressed by 

S (P) (k ~) = R ((P), p, (l?V~)), 

see part I, Sect. 5. (Values of standard measures on concave functions are just 
Bayes risks with regard to the corresponding loss functions.) 
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Now consider the procedure  which decides a priori  in favor of 0. Its Bayes 
risk is independen t  of the model  and  depends on the prior  weights only:  

R((v), a-O, (17r -1. (1 -a0). 
n 

Assume that the density vector p does no t  boil down to an a priori  decision, 
which means  in the " s t anda rd  fo rmula t ion" :  image(p)r 0 a.s. V0. The 
upper  Bayes risk of p under  e -con tamina t ion  becomes:  

R((v), p, (17V~)) = (1 - e). R((P), p, (ITV~))+ e. 1 ~ sup 17Vo~(p(y)) 
n o y 

1 
= (1 - e ) -  S~P)(k~')+ e. - .  

n 

With this in mind,  we see that  the inequal i ty  

1 1 
(1 - e ) -  #' ) (k  ~) + ~ .  - < =  - .  (1 - ~0) 

n n 
holds true iff: 

1) the optimal procedure p based on (P0) does not degenerate to an a priori 
decision for 0, and 

2) the procedure p yields a better or not worse upper Bayes risk under e- 
c o n t a m i n a t i o n  than  deciding a priori  for 0. 

The assumpt ion  of Theorem 6.6 says that  p mus t  not  break down in favor 
of 0 in the sense of 1) and  2) even if the prior  e* is ~/-contaminated in favor of 
0. 
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