On Dvoretzky Coverings for the Circle

Benoit B. Mandelbrot

The problem of random cutouts treated in the preceding paper [3]-henceforth to be called the " R-problem"-is a more natural variant of a problem posed earlier by Dvoretzky: the " D-problem"; see [2, Chapter 9]. D cutouts are open arcs of the circle of unit circumference, whose positions t_{n} are random (t_{n} uniform from 0 to 1) but whose durations z_{n} are prescribed, with $z_{n}<1$. The problem is to determine whether covering of the circle by such cutouts is a.s., or has a probability less than 1 . Let the z_{n} be ranked by nonincreasing value, and the number of cutouts satisfying $z_{n} \geqq z$ be designated by $-G(z)$. For various specific forms of $G(z)$, the probability of D covering has been obtained by Dvoretzky, J. P. Kahane, Erdös and Billard, but for other $G(z)$'s the problem had remained open. An example is $z_{n}=1 /(n+1)$. I propose to show that the partial solution of the R-problem in [3] can help improve the existing very partial solution of the D-problem. In particular: if $z_{n}=1 /(n+1)$, covering is shown to be a.s. We proceed by a sequence of small steps.

1. The probability of D covering is unaffected by adding and deleting cutouts in finite numbers, so that one can eliminate all z_{n} such that $z_{n} \geqq \frac{1}{2}$, and thus assume $-G\left(\frac{1}{2}\right)=0$. Also, the circle $\left.] 0,1\right]$ is a.s. D covered iff the half circle $\left.] \frac{1}{2}, 1\right]$ is a.s. D-covered.
2. Comparison Rule: Assume $G^{\prime}(z)>G^{\prime \prime}(z)$ for all z. If D cutouts ruled by $G^{\prime}(z)$ cover the circle a.s., then D cutouts ruled by $G^{\prime \prime}(z)$ also cover it a.s. If D cutouts ruled by $G^{\prime \prime}(z)$ do not cover the circle a.s., then D cutouts ruled by $G^{\prime}(z)$ do not either cover the circle a.s.
3. To provide a connecting link between the R and the D problems, define a third variant, the " D_{0} problem" as being the problem of cutouts on the real line R with random t_{n} (uniform from 0 to 1) and prescribed z_{n}. The number of D_{0} cutouts with $z_{n} \geqq z$ will be denoted $-G_{0}(z)$. The half circle $\left.] \frac{1}{2}, 1\right]$ is a.s. D-covered iff the set $\left.] \frac{1}{2}, 1\right]$ of R is D_{0} covered, with $G_{0}(z)=G(z)$. The R-problem on $\left.] \frac{1}{2}, 1\right]$, when $M \leqq \frac{1}{2}$, can be split into two portions: Random selection of the values of z_{n} that correspond to cutouts such that $0<t_{n}<1$, and then random selection of the t_{n}, with uniform density between 0 and 1 . This transforms the R problem ruled by the known function $F(z)$, into a random D_{0} problem ruled by a r.f. $G(z)$, with independent increments and such that $E G(z)=F(z)$.
4. The comparison rule of step 2 continues to hold when either $G^{\prime}(z)$, or $G^{\prime \prime}(z)$, or both, are random, and $G^{\prime}(z)>G^{\prime \prime}(z)$ for all z holds a.s. If D cutouts ruled by $G^{\prime}(z)$ cover the circle a.s., then D cutouts ruled by $G^{\prime \prime}(z)$ also cover it a.s. If D cutouts ruled by $G^{\prime \prime}(z)$ do not cover the circle a.s., then D cutouts ruled by $G^{\prime}(z)$ do not either cover the circle a.s.
5. From step 4, it follows that one can solve a D_{0} problem if one succeeds in bounding it on one side, or on both, by appropriate R problems. This is made possible by the law of the iterated logarithm, which implies that by modifying z_{n} for $z_{n} \geqq z_{0}$, where z_{0} is a r.v. such that a.s. $z_{0}>0$ one can obtain a function $G_{1}(z)$ that satisfies a.s. the double inequality

$$
|F(z)|-\sqrt{2|F(z)| \log \log |F(z)|}<\left|G_{1}(z)\right|<|F(z)|+\sqrt{2|F(z)| \log \log |F(z)|} .
$$

6. A Sufficient Condition for a.s. Covering in Dvoretzky's Problem. Apply step 5 with $G^{\prime}(z)$ a Poisson r.f. of expectation $F(x)$ and

$$
G^{\prime \prime}(z)=G(z)=F(z)+\sqrt{2|F(z)| \log \log |F(z)|} .
$$

If R cutouts ruled by $F(z)$ do not a.s. cover R, then D_{0} cutouts ruled by $G^{\prime}(z)$ do not a. s. cover $\left.] \frac{1}{2}, 1\right]$, and further D cutouts ruled by $G(z)$ do not a. s. cover the circle.

This leads to the following test for Dvoretzky's problem. Solve for F the equation $G=F+\sqrt{2|F| \log \log |F|}$, and test the criterion $H(F)<\infty$ and $K(F)<\infty$ of Section 4 of [2]. It is sufficient that the criterion should apply to the slightly overevalued solution $F^{*}=G-\sqrt{2}|G| \log \log |G|$. In particular, when $|G|<2 / z$, and therefore

$$
\int_{s}^{1} \sqrt{2|G| \log \log |G|} d z<\infty \quad \text { for all } s \geqq 0,
$$

$H(G)<\infty$ is a sufficient condition for $H(F)<\infty$, and $K(G)<\infty$ a sufficient condition for $K(F)<\infty$. In summary,

Proposition. If $|G|<2 / z$, then a sufficient ctiterion for the Pr of D covering to be less than 1 is that $H(G)<\infty$ and $K(G)<\infty$.
7. A Necessary Condition for a.s. Covering in Dvoretzky's Problem. Now apply step 5 with $G^{\prime \prime}(z)$ a Poisson r.f. of expectation $F(z)$ and

$$
G^{\prime}(z)=G(z)=F(z)-\sqrt{2|F(z)| \log \log |F(z)|} .
$$

If R cutouts ruled by $F(z)$ a.s. cover R, then D_{0} cutouts ruled by $G^{\prime \prime}(z)$ a. s. cover $\left.] \frac{1}{2}, 1\right]$ and D cutouts ruled by $G(z)$ a.s. cover the circle.

This leads to the following test for Dvoretzky's problem. Solve for F the equation $G=F-\sqrt{2|F| \log \log |F|}$, and test the criterion $H(F)=\infty$ and/or $K(F)=\infty$ of Section 4 of [2]. In particular,

Proposition. If $|G|<2 / z$, then a sufficient criterion of a.s. D covering is that $H(G)=\infty$ and/or $K(G)=\infty$.
8. Application. Let $z_{n}=1 /(n+1)$, with $n>1$. It follows that $G(z)=-1 / z+2$, with $G\left(\frac{1}{2}\right)=0$. In this case, we have $H(G)=\infty$. This closes a case stressed by Dvoretzky and left open by Billard: Almost surely, D cutouts with $z_{n}=1 /(n+1)$ do cover the circle.

Note Added in Proof. A full solution of the Dvoretzky problem has since been obtained by L.A. Shepp, in a paper titled "Covering the circle with randon arcs", to appear in Israel Journal of Mathematics. Also a partial solution different from mine has been obtained by S.Orey, in a paper titled "Random ares on the circle" to appear in Journal d'Analyse.

References

1. Dvoretzky, A.: On covering a circle by randomly placed arcs. Proc. Nat. Acad. Sc. U.S.A. 42, 199-203 (1956).
2. Kahane, J.P.: Some random series of functions. Lexington, Mass.: D. C. Heath and Co. 1968.
3. Mandelbrot, B.: Renewal sets and random cutouts. Z. Wahrscheinlichkeitstheorie verw. Geb. 22, 145-157 (1972).

B. B. Mandelbrot
IBM Thomas J. Watson
Research Center
Yorktown Heights, N. Y. 10598
USA

(Received January 16, 1968/in revised form June 1, 1971)

